1 [UBL NDRSC SPEC’S, SECTIONS 4.1, 4.2, & 4.3 11/27/01]
[Ed. Note - This Chapter will contain informative material]

[Ed. Note–Blue text was taken from outside sources and will require proper rewrite/referencing before we can go public.]

.1 XSD-Specific Considerations

The adoption of a specific language for the design of UBL documents and data components does much to define the space in which best-practice UBL naming and design rules must function. This is particularly true where re-use is anticipated.

· Since XSD does not accommodate the modification of existing attributes, elements rather than attributes must be used to contain data thought subject to extension.

· [Ed. Note - XSD extensibility has other subtle - and not so subtle implications for extensibility - we should probably use some more stuff here]
· The strong data typing available in XSD can be used to greatly reduce the amount of data checking which must be programmed into applications, but should be used cautiously in designing a common library. Placing restrictions on, for example, field-length must be approached with care to prevent serious re-use and versioning problems.

· XSD extension mechanisms are additive, in that a component specified as required cannot be restricted. It is better to recognize what is in fact common, rather than taking a (possibly wrong) guess at what might be useful.

· The XSD include and import directives, augmented by namespaces, allow the division of documents into multiple files. XSD's lack of a formal versioning mechanism, however, means that such modularity must be used with care.

· Because XSD inherits XML's lack of intrinsic element hierarchical levels, it allows the use of elements in ways which can create problems in conjunction with ISO 11179 naming conventions.

.2 Designing for Extensibility

Many basic e-commerce document types are generally useful, but require minor structural modifications for specific tasks or markets. When a truly common XML structure is to be established for e-commerce, it needs to be easy and inexpensive to modify.

In EDI there has been a gradual increase in the number of published components to accommodate market-specific variations. Several efforts within the EDI community are focused on eliminating this problem; variations are a requirement, and one that is not easy to meet. A related EDI phenomenon is the overloading of the meaning and use of existing elements, which greatly complicates interoperation.

To avoid the high degree of cross-application coordination required to handle structural variations in EDI - and in DTD-based systems - it is necessary to accommodate the required variations in basic data structures without either overloading the meaning and use of existing data elements, or requiring wholesale addition of data elements. This can be accomplished by allowing implementers to specify new element types that inherit the properties of existing elements, and to also specify exactly the structural and data content of the modifications.

Many data structures used in e-commerce are very similar to “standard” data structures, but have some significant semantic difference native to a particular industry or process. This can be expressed by saying that extensions of core elements are driven by context [need ref here]. Context driven extensions should be renamed to distinguish them from their parents, and designed so that only the new elements require new processing.

Similarly, data structures should be designed so that processes can be readily engineered to ignore additions which are not needed.

.3 Modularity

Modularity is here defined to mean the division of large documents into smaller logical modules. Modularity is an important adjunct to the component library concept, though dividing schema documents too finely (e.g. one schema document per type) can be confusing and inconvenient to users. The Benefits of modularity include:

· Smaller, modular schema documents encourage reuse.

· Smaller schema documents are easier to read and maintain.

· Schema documents can be used to organize schema components into logical units.

Modularity does not necessarily imply a formal hierarchical structure. It is useful to provide a master document so that all of the modules necessary to a particular structure are listed in one place . Otherwise, identifying a module as having an intrinsic hierarchical level is generally counter-productive because it unnecessarily restricts the usage of the module.

In XML, any given parent element (except the root) may be a child and any child element may be a parent. The generic processing capabilities of XML tools do not recognize any intrinsic difference. This is only more true in XSD, where the parent/child relationships of global elements may be difficult for a flesh-and-blood reader to determine. In building a particular set of business documents that are easy to understand and use, however, the conceptual classification of data elements may be helpful. [Ed. Note - The following may belong elsewhere:]When it is, a four-level breakdown, based on the Simpl-EDI model, may be the best approach. The four types are:

1. Message Type—the type of the master document.

2. Segment—the type of the subsection module (frequently nested).

3. Composite Data Elements—data elements that have both data members and some substructure

4. Data Elements—data elements without substructure

1

