[image: image1.png]
XML Technical Specification

for Higher Education
Version 1.00

A publication of the

Postsecondary Electronic Standards Council

Washington, DC

September 2001

XML Technical Specification for Higher Education

Table of Contents

11
Introduction


11.1
Purpose and Scope


11.2
Intended Audience


22
XML Forum Work Products


22.1
General Guidelines


22.1.1
General Naming Conventions


22.1.2
Versioning Scheme


32.1.3
URI, URL, File, and Directory Structure


32.2
Core Components


32.2.1
Metadata essential for XML syntax


32.2.1.1
Data Types


42.2.1.2
Aggregate Items


52.2.1.3
Spreadsheet Organization and Columns


62.2.1.4
Analysis Orientation


62.2.2
Core Component Naming Conventions


62.3
Best Practices


62.3.1
General Design Considerations


62.3.2
Schema vs. DTD


72.3.3
Use of Elements vs. Attributes


102.3.4
Element vs. Type


152.3.5
Hide vs. Expose Namespaces


182.3.6
Local vs. Global


212.3.7
Namespaces - Zero, One or Many


232.3.8
Variable Content Containers


242.3.9
Nulls, Zeroes, Spaces, and Absence of Data


252.3.10
Other Considerations


253
XML Schema Development Roadmap


254
Implementation Recommendations


264.1
Message Handling


264.2
Security


264.3
Registries and Repositories


264.4
Electronic Trading Partner Agreements


265
Reference Documents & Standards


265.1
Terms


275.2
Abbreviations




i

ii

Development of the XML Technical Specification

[image: image2.png]
This specification is an output of the Technology Work Group of the XML Forum for Education.  First organized in August 2000 on the recommendation of a PESC study group, the XML Forum has as its mission the establishment of extensible markup language (XML) standards for the education community through collaboration.  The Technology Work Group was charged with performing research on existing XML specifications and best practices and providing technical guidance to XML developers in the education space.  This document is the result of its efforts over the past nine months.  It will be updated periodically as national and international XML standards are established.

Michael Rawlins, Principal Consultant of Rawlins EC Consulting, collaborated with the Technology Work Group, adding to the process his experience in standards-setting bodies and knowledge of XML.  Mike has over 15 years of experience as a technical consultant in information systems.  He is vice chair of ANSI ASC X12 Subcommittee C on Communications and Controls and co-chairs X12C’s Future Architecture Task Group which is responsible for technical aspects of X12’s work on XML.  He participated in the ebXML effort, serving on the steering committee and leading  the Requirements Project Team.  Mike has a masters of science degree in Computer Science from the University of Texas at Dallas.

Although representatives of the IMS, University of Wisconsin-Madison, Miami-Dade Community College, and the US Department of Education were important members of the work group, several work group members deserve special recognition for their contributions to this document.  Karl Van Neste of the College Board has served as the chair of the Technology Work Group and provided leadership and expertise to this effort.  Steve Margenau of Great Lakes Higher Education Guaranty Corporation provided research and recommendations for key sections of the document.  Richard Driscoll and others at Datatel provided review and editorial assistance in the publication of the document. 

The Postsecondary Electronic Standards Council

One Dupont Circle, NW, Suite 520

Washington, DC 20036

(202) 293-7383

http://ww.StandardsCouncil.org

( September 2001

iii

iv

1 Introduction

This specification was developed by members of the XML Forum for Education’s Technology Work Group in consultation with its technical advisor.  The purpose of this specification is to help guide the work of the XML Forum, providing recommendations to inform decisions that face the following groups: 

· the Core Components Work Group in the development and maintenance of a data dictionary and data models in conjunction with the Technology Work Group

· the Technology Work Group in the development of schema based on the data models

· the XML Forum, as an organization, as its structure changes to meet the needs of the education community

· the higher education community as it implements XML message data  exchanges

This specification is a living document – it is expected to change and evolve with XML and its related standards.

The development of this specification served to clarify, for the XML Forum, the most efficient work processes and the ultimate deliverables of the standing and ad hoc work groups of the XML Forum.

Every effort was made to build on the experience and work done previously by other standards organizations within and outside of Higher Education:  W3C, ebXML, IFX, X12, CommonLine, IMS, IEEE, and ISO, among others.

Keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in the Internet Engineering Task Force (IETF) Request for Comments (RFC) 2119.

1.1 Purpose and Scope

The purpose of this document is to provide guidance in the development and maintenance of a data dictionary and XML Schema.  The scope of this specification includes the data which institutions and their partner’s exchange in support of the existing business processes within Higher Education like administrative applications for student financial aid, admissions, and registrar functions.  

1.2 Intended Audience

The internal audience of this document is the members of the XML Forum for Education as well as the technical members of the education community at large wishing to use XML in their data exchanges.

2 XML Forum Work Products

2.1 General Guidelines

2.1.1 General Naming Conventions

The following are recommendations by the XML Forum’s Technology Group for general conventional standards are used whenever possible.

· Lower camel case (LCC) SHALL be used. LCC style capitalizes the first character of each word except the first word, and compounds the name following the conventions of the ebXML Technical Architecture v1.0.4, section 4.3:

· Acronyms SHOULD be avoided, but in cases where they are used, the capitalization SHALL remain.

(example:
XMLSignature).

· Underscore ( _ ), periods ( . ) and dashes ( - ) MUST NOT be used. 

(examples:
use headerManifest, 
not header.manifest; 


use stockQuote5, 
not stock_quote_5; 



use commercialTransaction 
not commercial-transaction.)

· XML "type" names SHALL have "Type" appended to them.

(example:
type=”nameType”

· Schema names adhere to the following conventions.

1. Schema document names (the root element of a schema) SHALL be based on the business purpose of the document.

2. Schema names that support the data dictionary SHALL be based on the category of definitions in that Schema

3. Schema physical file names SHALL be the same as the schema name, with a ".xsd" extension.

4. Schema names SHALL remain constant across all versions.

NOTE:  A list of acronyms used in this document can be found in section 5.2.

2.1.2 Versioning Scheme

The initial approved set of XML Forum schemas SHALL be designated 1.0.  New versions, developed primarily for maintenance purposes or the inclusion of new documents, SHALL be deemed minor releases and incremented by .1.   Major releases SHALL be incremented by 1.0.  Major releases SHALL be designated under such circumstances as:

· Several new documents are developed

· Major additions are made to the data dictionary

· Changes to file, URL, or namespace schemes

· Changes in schema design approach

The version SHALL be named by a four-character string formed by two digits indicating the major version followed by two digits for the minor version, using leading zeroes.  Separate URLs, URIs, and directories SHALL be used for each version.  Each schema SHALL have an attribute in the root element of PESCXMLVersion. 

2.1.3 URI, URL, File, and Directory Structure

The base URI for namespaces in XML Forum schemas SHALL be http://schemas.PESCXML.org.   This URI SHALL also be valid as the base URL for the network location of the XML Forum schemas and associated files.   The version string MUST be appended to this base URI to form the URI relevant to the version.  For example, the Version 1.0 has the URI http://schemas.PESCXML.org/0100.

In the initial storage organization, there SHALL be a main directory for the document schemas and a subdirectory for supporting schemas of the data dictionary. Each business document SHALL have a unique file for its schema.   These schema files SHALL be located in the main directory for the XML Forum version.   The data dictionary SHALL be divided into several categories (of related definitions) as determined by the Core Components team.   Each category SHALL be stored in a separate schema file.  These schema files SHALL be stored in a subdirectory named DataDictionary.

2.2 Core Components

2.2.1 Metadata essential for XML syntax

To facilitate creation of schemas, the following metadata items SHALL be recorded, but is not limited to, in the data dictionary for each element.

· Aggregate object name

· Element name

· Cardinality rules

· Element description

· Element equivalence in other transaction(s)

· Representation type (name, code, identifier, quantity, etc.)

· Data type (string, date, number, etc)

· Minimum length

· Maximum length

· Values of code elements

2.2.1.1 Data Types

The following simplified list of datatypes SHALL be used for core component analysis, instead of the full set supported by XML schema.  Each type has several OPTIONAL attributes that MAY be specified, as needed, for a particular data item.

· Number - precision (number of decimal places), minimum value, maximum value

· String (as defined by the W3C in XML Schema Part 2: Datatypes) - min length, max length, and pattern facets (such as NNN-NN-NNNN for Social Security Numbers).  Patterns, if used, MUST be specified using a regular expression language as defined by the W3C in XML Schema Part 2: Regular Expressions.  If an element contains a member of a list, all potential list values MUST be specified (this resolves the issue with coded fields).  

NOTE:  If a string item is specified as mandatory in an aggregate item, it is RECOMMENDED to have a minimum length of 1.

· Date

· Time

· DateTime

· Boolean  - 0,1,true,false

When a data item is defined, it MUST be assigned a type from this set.  The attributes listed SHOULD be used to place restrictions on the allowed values.  If the attributes are not listed in the data item’s definition, then there are no restrictions beyond the general restrictions implied by the datatype.

2.2.1.2 Aggregate Items

2.2.1.2.1 Specification of Aggregates

Aggregate data items are composed of two or more data items.  For aggregates the following MUST be specified:

· The included elements, in sequence

· The cardinality (i.e., how many times it can occur), SHALL be expressed as l..u where l is the lower number of occurrences and u is the upper number of occurrences.  A wild card of "*" SHALL be used to indicate no upper limit.  (For example,  a cardinality of 1..1 means that the data item is mandatory in the aggregate and can occur only once.  0..1 means that the data item is OPTIONAL, and can occur no more than once.  0..* means that it is OPTIONAL and if it does occur there are no limits on how many times it can occur. )

NOTE:  It is RECOMMENDED that before specifying an item as mandatory, an aggregate (minimum cardinality of 1) SHOULD be carefully considered and done so judiciously.

2.2.1.2.2 Issues Concerning Aggregates

The following recommendations are made for addressing issues regarding aggregates:

· Over-riding the cardinality of an item in an aggregate on a per document basis
(example:
a street address is mandatory in a reissue but is not mandatory in an adjustment.)

It is RECOMMENDED this type of definition not be supported (at least in Version 1) since it makes defining reusable aggregates more complex.  A RECOMMENDED approach is to define street address with a cardinality 0..2 in an "address" aggregate, but define address 1..1 in the reissue and 0..1 in the adjustment.

· Conditional use of items in an aggregate – As in the case of X12 EDI, these are the relational conditions often imposed on elements in segments.  

(examples:
Use "a" or "b" but not both; 


if "a" then use "b", else use "c".)

It is RECOMMENDED that conditionals not be supported in Version 1 since it adds complexity to the analysis and construction of the schemas.   Use of such conditional restrictions and edits, not being supported in the schemas, SHALL be the responsibility of the business applications that use the data.

2.2.1.3 Spreadsheet Organization and Columns

2.2.1.3.1 Organization

Analysis spreadsheets SHOULD be organized as follows:

· Basic
A simple data item.

· Aggregates
A group of basic items or other aggregates, specified in sequence.  If a basic item is not re-used, the full specification MAY appear within the aggregate rather than being specified on a separate line.

· Category
A group of related basic (simple) or related aggregate items.  These categories MAY be used as the basis for dividing the data dictionary into a number of separate schema files.

2.2.1.3.2 Columns

Columns SHOULD be organized as follows:

· Aggregate Name.  

· Name of included item.  If an aggregate is included within an aggregate, only the name of the aggregate SHOULD be listed - not the names of all of its children.

· Cardinality - The number of times the included item can appear in the aggregate

· For each basic item:

· Description

· Datatype

· Minimum value - OPTIONAL (Number only)

· Maximum value  - OPTIONAL (Number Only)

· Minimum length  - OPTIONAL (String Only)

· Maximum length  - OPTIONAL (String Only)

· Pattern  - OPTIONAL (String Only)

· List of values  - OPTIONAL (String Only)

· Comments - Example: Code sets

NOTE: some reusable basic items MAY not have an aggregate name. 

2.2.1.4 Analysis Orientation

It is RECOMMENDED that the data dictionary use the core components as "abstract" items or types rather than the full set of all particular items.  

(example
a general "party" is defined rather than specifying "student", "lender", or "guarantor" separately.)

This approach enhances reusability and simplifies maintenance.

2.2.2 Core Component Naming Conventions

ebXML core component naming conventions (based on ISO 11179) SHALL be used for a XML Forum logical component.  Names for elements MAY be modeled after the IFX Forum's name fragment combinations for XML tags.  The IFX Forum's name fragments SHOULD be used wherever an appropriate match exists with an XML Forum element name.  Where a match does not exist, the necessary fragments SHALL be created by the XML Forum team responsible for the data dictionary.

2.3 Best Practices

2.3.1 General Design Considerations

The XML Forum schemas are oriented primarily toward data interchange. This does not preclude designing schemas that has another primary orientation, such as for presentation, but the primary focus is for data exchange.  The schemas are therefore data oriented, although in some cases they may mirror paper business documents.   For these reasons, the content model is oriented toward semantics (or “content”) rather than presentation or structure (content model contains some degree of presentation orientation mixed with semantics). 

2.3.2 Schema vs. DTD

XML Schema SHALL be used to describe data instead of DTDs or BizTalk Schema (by Microsoft).  

XML Schema SHALL be used for the following reasons:

1. XML Schema are supported by the W3C, ebXML, and other organizations;

2. XML Schema support greater content and data type validation than DTDs;

3. XML Schema are stable and have reached the W3C Recommendation status as of May 2, 2001.

4. XML Schema support open-ended data models (allow vocabulary extensions and inheritance); DTDs do not;

5. XML Schema provide a rich core of base data types; DTDs do not.

6. XML Schema support data types and data type reuse via object-oriented-like mechanisms; DTDs provide only limited support.

7. XML Schema are well-formed XML documents; DTDs require an understanding of the SGML syntax.  

Well-developed XML Schema can perform content checking that is largely unavailable in DTDs.  Since content or data checking is a large component of many software development efforts, these efforts can be reduced with XML Schema.    

Tools like XML Spy (from Altova, www.xmlspy.com) support XML Schema and DTDs.  A user can generate a “first cut” at an XML Schema based on a DTD and continue to maintain the content model.  A user cannot maintain the content model when converting an XML Schema to a DTD, due to the advanced type definitions that are available in XML Schema.  

BizTalk Schema (framework) works only with the BizTalk Server product.  It uses a proprietary schema syntax (XDR) that is incompatible with W3C XML Schema.  Microsoft has promised to eventually support W3C XML Schema.

2.3.3 Use of Elements vs. Attributes

In the majority of circumstances, elements SHALL be used in the design of XML Schema that supports data exchange in the PESC realm.

XML Forum Schemas are oriented towards data exchange in the support of existing and future transaction families and their accompanying data structures.  Elements provide a method for defining and expressing structure within a document via the containment of child elements.  They also provide a means for validating the document's structure.  Additionally, a structure composed of elements is more extensible in the face of future changes; i.e., elements are supportive of change.  

Attributes MAY be used when defining information that is intrinsic to an element, but not a part of that element.  Attributes are akin to metadata; they are useful for information that describes an element, such as ID numbers, URLs, types, and other references.  Attributes cannot be hierarchical, they cannot contain child attributes or elements, their order cannot be controlled and therefore, cannot provide structure.

To illustrate the appropriate use of elements and attributes, consider an office building with multiple floors.  Each floor has multiple tenants.  Example-1.xml and Example-1.xsd illustrate an XML document representing that structure, using elements to represent the building (Building), floors (Floor), and tenants (Tenant).  An attribute (levelNumber) is used to identify each floor.

Example-1.xml - (Use of Elements vs. Attributes)

<?xml version="1.0"?>

<PESCXML:building

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-1.xsd">

   <floor levelNumber="1">

      <tenant>Smith</tenant>

      <tenant>Jones</tenant>

      <tenant>Zoltan</tenant>

   </floor>

   <floor levelNumber="2">

      <tenant>North</tenant>

      <tenant>South</tenant>

      <tenant>East</tenant>

      <tenant>West</tenant>

   </floor>

   <floor levelNumber="3">

      <Tenant>Wealthy</tenant>

   </floor>

</PESCXML:building>

Example-1.xsd - (Use of Elements vs. Attributes)

<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="building">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="floor" type="floorType"

               maxOccurs="unbounded"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="floorType">

      <xsd:sequence>

         <xsd:element name="tenant" type="xsd:string"

            maxOccurs="unbounded"/>

      </xsd:sequence>

      <xsd:attribute name="levelNumber" use="required"/>

   </xsd:complexType>

</xsd:schema>

While it is possible to represent the same structure using only elements (Example-2.xml and Example-2.xsd), the document structure is more complex and a more difficult to understand.  It makes a clearer design to have the levelNumber an attribute of Floor, rather than a child of Floor.

Example-2.xml - (Use of Elements vs. Attributes)

<?xml version="1.0"?>

<PESCXML:building

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation=

      "http://schemas.pescxml.org Example-2.xsd">

   <floor>

      <levelNumber>1</levelNumber>

      <tenant>Smith</tenant>

      <tenant>Jones</tenant>

      <tenant>Zoltan</tenant>

   </floor>

   <floor>

      <levelNumber>2</levelNumber>

      <tenant>North</tenant>

      <tenant>South</tenant>

      <tenant>East</tenant>

      <tenant>West</tenant>

   </floor>

   <floor>

      <levelNumber>3</levelNumber>

      <tenant>Wealthy</tenant>

   </floor>

</PESCXML:building>

Example-2.xsd - (Use of Elements vs. Attributes)

<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="building">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="floor" type="floorType"

               maxOccurs="unbounded"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="floorType">

      <xsd:sequence>

         <xsd:element name="levelNumber" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>
         <xsd:element name="tenant" type="xsd:string"

            maxOccurs="unbounded"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

2.3.4 Element vs. Type

Core components SHALL be defined as types and elements SHALL be created from those types.  Types allow for the re-use of a single definition of an element or group of elements.  A type definition, including its contents, can be re-used by other element definitions, including an element definition with the same name (See Example-3.xml and Example-3.xsd).  Reusing element definitions in different documents assists in eliminating confusion as to the format of a data item and its allowable contents.  The question "Are these the same or not?" is eliminated.

Example-3.xml - (Element vs. Type)
<?xml version="1.0"?>

<PESCXML:directions

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-3.xsd">

   <location>

      <houseNumber>2334</houseNumber>

      <firstStreet>PO BOX 1400</firstStreet>

      <secondStreet>Dayton</secondStreet>

      <cityName>Madison</cityName>

      <state>WI</state>

      <zipCode>53704</zipCode>

   </location>

   <destination>

      <houseNumber>1610</houseNumber>

      <firstStreet>RT 2</firstStreet>

      <secondStreet>Chicken Farm Road</secondStreet>

      <cityName>Maxwell</cityName>

      <state>MI</state>

      <zipCode>53786</zipCode>

   </destination>

   <position>

      <houseNumber>1220</houseNumber>

      <firstStreet>PO Box 724</firstStreet>

      <secondStreet>15 St</secondStreet>

      <cityName>Bowler</cityName>

      <state>IL</state>

      <zipCode>53111</zipCode>

   </position>

</PESCXML:directions>

Example-3.xsd - (Element vs. Type)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="directions">

      <xsd:complexType>


         <xsd:sequence>

            <xsd:element name="location" type="addressType"/>

            <xsd:element name="destination" type="addressType"/>

            <xsd:element name="position" type="addressType"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="addressType">

      <xsd:sequence>

         <xsd:element name="houseNumber" type="xsd:string"/>

         <xsd:element name="firstStreet" type="xsd:string"/>

         <xsd:element name="secondStreet" type="xsd:string"/>

         <xsd:element name="cityName" type="xsd:string"/>

         <xsd:element name="state" type="xsd:string"/>

         <xsd:element name="zipCode" type="xsd:string"/>

      </xsd:sequence>
   </xsd:complexType>

</xsd:schema>

New types MAY be derived from existing types providing the capability to extend an element definition within the original type (See Example-4.xml and Example-4.xsd).  Derived types can be useful for organizations whose requirements for a data item differ from requirements established within the PESC XML Forum realm.

Example-4.xml - (Element vs. Type)
<?xml version="1.0"?>

<PESCXML:directions

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-4.xsd">

   <location>

      <houseNumber>2334</houseNumber>

      <firstStreet>PO BOX 1400</firstStreet>

      <secondStreet>Dayton</secondStreet>

      <cityName>Madison</cityName>

      <state>WI</state>

      <zipCode>53704</zipCode>

   </location>

   <destination>

      <houseNumber>1610</houseNumber>

      <firstStreet>RT 2</firstStreet>

      <secondStreet>Chicken Farm Road</secondStreet>

      <cityName>Maxwell</cityName>

      <state>MI</state>

      <zipCode>53786</zipCode>

      <countryCode>CA</countryCode>

      <postalCode>POP 1K0</postalCode>
   </destination>

   <position>

      <houseNumber>1220</houseNumber>

      <firstStreet>PO Box 724</firstStreet>

      <secondStreet>Southwest Way</secondStreet>

      <cityName>Bowler</cityName>

      <state>IL</state>

      <zipCode>53111</zipCode>

   </position>

</PESCXML:directions>

Example-4.xsd - (Element vs. Type)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="directions">

      <xsd:complexType>


         <xsd:sequence>

            <xsd:element name="location" type="addressType"/>

            <xsd:element name="destination"

               type="internationalAddressType"/>
            <xsd:element name="position" type="addressType"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="addressType">

      <xsd:sequence>

         <xsd:element name="houseNumber" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="firstStreet" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="secondStreet" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="cityName" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="state" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="zipCode" type="xsd:string"

               minOccurs="1" maxOccurs="1"/>

      </xsd:sequence>

   </xsd:complexType>

   <xsd:complexType name="internationalAddressType">

      <xsd:complexContent>

         <xsd:extension base="addressType">

            <xsd:sequence>

               <xsd:element name="countryCode" type="xsd:string"/>

               <xsd:element name="postalCode" type="xsd:string"/>

            </xsd:sequence>

         </xsd:extension>

      </xsd:complexContent>

   </xsd:complexType>
</xsd:schema>

In addition, when defined as a type, an item's requirements MAY vary between Nillable and non-Nillable.  Nil provides a way to specify that an element has no value in an individual document instance (see Example-5.xml and Example-5.xsd).  The examples use “null” rather than “nil”, but the W3C has recently changed the Schema specification from “null” to “nil” and “nullable” to “nillable”.  Not all parsers have been updated to reflect these changes.

Example-5.xml - (Element vs. Type)
<?xml version="1.0"?>

<PESCXML:directions

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-5.xsd">

   <location>

      <houseNumber>1220</houseNumber>

      <streetAddress>



         <firstStreet>Mississauga Avenue</firstStreet>

         <secondStreet xsi:null="true"></secondStreet>

         </streetAddress>



         <cityName>Auckland</cityName>

         <state>NJ</state>

         <zipCode>06743</zipCode>

   </location>

</PESCXML:directions>

Example-5.xsd - (Element vs. Type)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="directions">

      <xsd:complexType>


         <xsd:sequence>

            <xsd:element  name="location" type="addressType"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="addressType">

      <xsd:sequence>

         <xsd:element name="houseNumber" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="streetAddress" nullable="true"

            type="streetAddressType"/>
         <xsd:element name="cityName" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="state" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>

         <xsd:element name="zipCode" type="xsd:string"

            minOccurs="1" maxOccurs="1"/>  



      </xsd:sequence>

   </xsd:complexType>

   <xsd:complexType name="streetAddressType">

      <xsd:sequence>

         <xsd:element name="firstStreet" type="xsd:string"/>

         <xsd:element name="secondStreet" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>
</xsd:schema>

2.3.5 Hide vs. Expose Namespaces

Schemas SHALL be designed to hide Namespaces.  Hiding Namespaces provides for XML instance documents that are relatively easy to read and understand, most notably when Schemas import definitions from another namespace.  (See Example-6.xml, Example-6.xsd, BorrowerData_6.xsd, and StudentData_6.xsd - An XML Document and Schema with Namespaces hidden, and Example-7.xml, Example-7.xsd, BorrowerData_7.xsd, and StudentData_7.xsd - An XML Document and Schema with Namespaces exposed.)  Hiding namespaces moves the complexity of a document's framework to the Schema level.

Additionally, maintenance is easier as it is possible to change a Schema without impact to instance documents.  Take, for example, the case of a Schema that imports component definitions from another namespace.  If the imported definitions are moved to within the Schema that had been importing those definitions, or an additional Schema is added to those Schemas already supporting the instance document, every instance document requires updating with those changes. 

Example-6.xml - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<PESCXML:borrowerInfo 

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-6.xsd">

   <borrower>

      <name>Jack Spratt</name>

      <SSN>472-31-4598</SSN>

   </borrower>

   <enrollment>

      <type>Full Time</type>

   </enrollment>

</PESCXML:borrowerInfo>
Example-6.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?> - (Hide vs. Expose Namespaces)
<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   xmlns:borrowerData="http://www.lenderdata.com"

   xmlns:schoolData="http://www.schooldata.edu"

   elementFormDefault="unqualified">

   <xsd:import namespace=http://www.lenderdata.com

      schemaLocation="BorrowerData_6.xsd"/>

   <xsd:import namespace=http://www.schooldata.edu

      schemaLocation="StudentData_6.xsd"/>
   <xsd:element name="borrowerInfo">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="borrower"

               type="borrowerData:borrowerType"/>

            <xsd:element name="enrollment"

               type="schoolData:enrollmentType"/>
         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

</xsd:schema>

BorrowerData_6.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://www.lenderdata.com"

   xmlns="http://www.lenderdata.com"

   elementFormDefault="unqualified">

   <xsd:complexType name="borrowerType">

      <xsd:sequence>

         <xsd:element name="name" type="xsd:string"/>

         <xsd:element name="SSN" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

StudentData_6.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://www.schooldata.edu"

   xmlns="http://www.schooldata.edu"

   elementFormDefault="unqualified">
   <xsd:complexType name="enrollmentType">

      <xsd:sequence>

         <xsd:element name="type" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

Example-7.xml - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<borrowerInfo

   xmlns="http://schemas.pescxml.org"

   xmlns:borrowerData="http://www.lenderdata.com"

   xmlns:schoolData="http://www.schooldata.edu"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-7.xsd">
   <borrower>

      <borrowerData:Name>Jack Armstrong</borrowerData:Name>

      <borrowerData:SSN>472-31-4598</borrowerData:SSN>
   </borrower>

   <enrollment>

      <schoolData:Type>Full Time</schoolData:Type>

   </enrollment>

</borrowerInfo>

Example-7.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   xmlns:borrowerData="http://www.lenderdata.com"

   xmlns:schoolData="http://www.schooldata.edu"

   elementFormDefault="qualified">

   <xsd:import namespace=http://www.lenderdata.com

      schemaLocation="BorrowerData_7.xsd"/>

   <xsd:import namespace=http://www.schooldata.edu

      schemaLocation="StudentData_7.xsd"/>
   <xsd:element name="borrowerInfo">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="borrower"

               type="borrowerData:borrowerType"/>

            <xsd:element name="enrollment"

               type="schoolData:enrollmentType"/>
         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

</xsd:schema>

BorrowerData_7.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://www.lenderdata.com"

   xmlns="http://www.lenderdata.com"

   elementFormDefault="qualified">
   <xsd:complexType name="borrowerType">

      <xsd:sequence>

         <xsd:element name="name" type="xsd:string"/>

         <xsd:element name="SSN" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

StudentData_7.xsd - (Hide vs. Expose Namespaces)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://www.schooldata.edu"

   xmlns="http://www.schooldata.edu"

   elementFormDefault="qualified">
   <xsd:complexType name="enrollmentType">

      <xsd:sequence>

         <xsd:element name="type" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

2.3.6 Local vs. Global

XML development effort SHOULD use xFront’s Venetian Blind Design paradigm.  This design paradigm, which is well described on xFront’s web site (http://www.xfront.com/GlobalVersusLocal.html accessed on June 5, 2001), supports reuse of type definitions and namespace hiding.  xFront’s Venetian Blind Design paradigm focuses on the development of types, which are then used as components for the main element.  

By comparison, xFront describes two other design paradigms – the Russian Doll Design and the Salami Slice Design.  The Russian Doll Design calls for an XML Schema that mirrors the instance document.  The schema is bundled, like a set of Russian doll containers, one inside the other.  This paradigm is compact but does not allow for type reuse and hence is largely impractical.  

xFront’s Salami Slice Design is entirely opposite of the Russian Doll Design.  In this approach, each component is separately called and joined together in the end, like a salami sandwich.  This approach provides for type reuse but does not allow developers to hide namespace complexities. 

xFront’s Venetian Blind Design paradigm focuses on the development of reusable types which are then used as components for the main element.  The following is a schema example using the Venetian Blind Design paradigm (See Example-8.xml and Example-8.xsd).  In this example, a library is made up of one to many books.  Here, the main element is a “library”, which is made up of the base type “bookRecordType”.  Note that the data types  “emptyType”, “US-StateType”, and “streetAddressExampleType” can be used in many different ways.  They are the building blocks for the main record “bookRecordType”.  

Example-8.xml - (Local vs. Global)
<?xml version="1.0"?>

<PESCXML:library

   xmlns:PESCXML="http://schemas.pescxml.org"

   <xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-8.xsd">

   <book>

      <author>Ron Johnson</author>

      <title>Don't Step in That!</title>

      <cost>35</cost>

      <quantity>50</quantity>

      <state>MD</state>

      <street>1220 North 15 Street</street>

      <USInd></USInd>

   </book>

   <book>

   <author>Mildred Frank</author>

      <title>Golly, If I Only Had a Computer</title>

      <cost>52</cost>

      <quantity>175</quantity>

      <state>VA</state>

      <street>1610 North 11 Street</street>

      <USInd></USInd>

   </book>


</PESCXML:library>

Example-8.xsd (Local vs. Global)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:element name="library">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="book" type="bookRecordType"

               minOccurs="1" maxOccurs="unbounded"/>
         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

   <xsd:complexType name="bookRecordType">

      <xsd:annotation>

         <xsd:documentation>Many records containing book

            data</xsd:documentation>

      </xsd:annotation>

      <xsd:sequence>

         <xsd:element name="author" type="xsd:string"/>

         <xsd:element name="title" type="xsd:string"/>

         <xsd:element name="cost" type="xsd:float" minOccurs="0"/>

         <xsd:element name="quantity" type="xsd:integer"

            minOccurs="0"/>

         <xsd:element name="state" type="US-StateType"/>

         <xsd:element name="street" type="streetAddressExampleType"

            minOccurs="0"/>
         <xsd:element name="USInd" type="emptyType"/>

      </xsd:sequence>

   </xsd:complexType>

   <xsd:complexType name="emptyType">

   </xsd:complexType>

   <xsd:simpleType name="US-StateType">

      <xsd:restriction base="xsd:string">

         <xsd:enumeration value="AK"/>

         <xsd:enumeration value="MD"/>

         <xsd:enumeration value="OH"/>

         <xsd:enumeration value="VA"/>

         <xsd:enumeration value="NC"/>

      </xsd:restriction>

   </xsd:simpleType>

   <xsd:simpleType name="streetAddressExampleType">

      <xsd:restriction base="xsd:string">

         <xsd:minLength value="2"/>

         <xsd:maxLength value="30"/>

      </xsd:restriction>

   </xsd:simpleType>

</xsd:schema>

2.3.7 Namespaces - Zero, One or Many

It is RECOMMENDED by the Technology Work Group that:

· A single, default targetNamespace is used.

· References to components used within a schema (simpleTypes, complexTypes, etc.) from the W3C's XMLSchema definition are qualified with xsd:.

· Schemas for top-level XML documents (assuming a hierarchy of types) provide only a shell for that document.  Components containing types, elements, and attributes will be brought into the top-level document via Include.
· Schemas for components Included in top-level documents will not declare a targetNamespace but will reside in the same namespace as the top-level document(s).

A Schema Include supports the definition of a component type (i.e., name group, address group, etc) just once.  That single definition MAY be used anywhere it is needed by Including its Schema.  Since the Schema of the Included component does not have a targetNamespace, by definition the Included component takes on the namespace of the Schema performing the Include.  While providing maximum flexibility within the XML realm of PESC, this also allows reuse of PESC components outside of that realm making it easier for entities outside of PESC to exchange XML with an entity within the PESC realm.  Example-9.xml, Example-9.xsd, Person_9.xsd, and Enrollment_9.xsd below) comprise an example of this model.

Example-9.xml - (Namespaces - Zero, One or Many)
<?xml version="1.0"?>

<PESCXML:borrowerInfo

   xmlns:PESCXML="http://schemas.pescxml.org"

   xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

   xsi:schemaLocation="http://schemas.pescxml.org Example-9.xsd">

   <person>

      <name>John Mack</name>

      <SSN>123-45-6789</SSN>

   </person>

   <enrollment>

      <type>Full Time</type>

   </enrollment>

</PESCXML:borrowerInfo>

Example-9.xsd - (Namespaces - Zero, One or Many)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   targetNamespace="http://schemas.pescxml.org"

   xmlns="http://schemas.pescxml.org"

   elementFormDefault="unqualified">

   <xsd:include schemaLocation="Person_9.xsd"/>

   <xsd:include schemaLocation="Enrollment_9.xsd"/>
   <xsd:element name="borrowerInfo">

      <xsd:complexType>

         <xsd:sequence>

            <xsd:element name="person" type="person"/>

            <xsd:element name="enrollment" type="enrollment"/>

         </xsd:sequence>

      </xsd:complexType>

   </xsd:element>

</xsd:schema>

Person_9.xsd - (Namespaces - Zero, One or Many)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   elementFormDefault="unqualified">

   <xsd:complexType name="person">

      <xsd:sequence>

         <xsd:element name="name" type="xsd:string"/>

         <xsd:element name="SSN" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

Enrollment_9.xsd - (Namespaces - Zero, One or Many)
<?xml version="1.0"?>

<xsd:schema

   xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

   elementFormDefault="unqualified">

   <xsd:complexType name="enrollment">

      <xsd:sequence>

         <xsd:element name="Type" type="xsd:string"/>

      </xsd:sequence>

   </xsd:complexType>

</xsd:schema>

The XML Forum SHOULD NOT use the Redefines option when defining its Schemas.  A Schema Redefine operation performs an implicit Include operation.  All of the components in the Schema that are the object of the Redefine are Included in the Schema performing the Redefine.  However, Redefine takes things farther than Include by allowing the Schema performing the Redefine to extend or restrict components in the Redefined Schema.  Most likely this will not be necessary for the generic PESC definitions.

Use of Redefines, however, MAY be advantageous for use by an organization that has additional requirements for a data item which fall outside the requirements defined in the PESC Schema.  Like Include, Redefines can be used for any Schema that does not have a targetNamespace.  This allows an entity to Redefine (ie., Include) a PESC component schema, but modify that Schema with its own extensions/requirements.

Import allows a Schema to reference a portion of another Schema.  Import is useful when reusing portions of Schemas that resides in another namespace  as the Imported definitions remain in sync with their source.  In situations where a PESC Schema reuses a portion of an existing Schema in another namespace, Import SHOULD be used.

2.3.8 Variable Content Containers

Variable content containers SHALL NOT be supported.

A container is an element that contains other elements.  For example, a Chapter element that contains multiple Paragraph and Illustration elements describes the composition of a particular chapter in a book.

A variable content container accommodates those situations where the number of elements within the container is subject to change (i.e., items can be added to and/or removed from the container description as time goes on), and where the attributes associated with an element may vary from element to element.

The ability of a variable content container to support these requirements is powerful and handy in appropriate situations. Properly implemented, variable content containers lend themselves well to ad-hoc assembly of information units of similar nature.  While useful for information publishing and presentation, variable content containers are beyond the needs of this implementation.

The methods by which these containers are implemented are relatively complex.  Dealing with this complexity is made easier if this method of schema architecture is implemented by a single entity.  In a situation where multiple entities are sharing schema structures, the complexities are too great to be comfortably managed in the same fashion by all participants.

This is in contrast with the intentions of the XML Forum - to keep the initial implementation at a level of simplicity facilitating broad and successful adoption.  For the purposes of moving information formatted as XML from point to point in support of transactions, the complexity of variable content containers is not warranted.

2.3.9 Nulls, Zeroes, Spaces, and Absence of Data

The following rules SHALL apply in designing schemas and interpreting instance documents:

1. Absence of data - If an element is defined as OPTIONAL (minOccurs attribute value of zero) and the element does not occur in an instance document, semantics SHALL NOT be interpreted from the element other than that the originator of the instance document and did not include it.  No default values are to be assumed.   Likewise, if an attribute is declared as OPTIONAL (“use” attribute value of OPTIONAL) and the attribute does not occur in an instance document, semantics SHALL NOT be interpreted from the attribute other than that the originator and did not include it; no default values are to be assumed.  

NOTE:  All string items defined with a minOccurs of one SHALL have a minimum length requirement of one character.

2. Zeroes - Zeroes, when appearing in a numeric element in an instance document, SHALL be interpreted as a zero value.

3. Spaces - Spaces sent as values for elements or attributes (of type string) in instance documents SHALL be interpreted as spaces.  It is RECOMMENDED that leading and trailing spaces be removed, but when they appear they SHALL have semantic significance.  Sending an element with just spaces is not the same as sending a nulled element (see #4 below).

4. Nullability - In certain cases, it MAY be desirable to convey that an element has no value (a null value) rather than indicating that it has a value of spaces or that it is not present in a document.  In these cases, the originator of the instance document SHOULD convey explicitly that an element is null.  An example is an address update for a previously transmitted address.  The previous address had two address lines, whereas the current address has just one line.  The originator of the document indicates that the second address line is removed by indicating that the element is nulled as follows:

<addressLineTwo xsi:nill="true"></addressLineTwo>

To support this the addressLine element in the schema is defined as nullable via:

<xsd:element name="addressLine" type="xsd:string" nillable="true"/> 

When this type of nullable semantics are desired, the "nill" and "nillable" attributes SHALL be used (as opposed to spaces for strings or zeroes for numerics).   The "nillable" attribute SHALL NOT be used in element declarations with a minOccurs of greater than zero.  When there is a requirement that an element be OPTIONAL and not appear in an instance document, the minOccurs attribute with a value of zero SHALL be used in the element declaration.  By default, any element defined in analysis as having a minimum occurrence of zero SHALL be represented in the schemas as nullable.

2.3.10 Other Considerations

· Permissive vs. Restrictive - Schemas SHALL be restrictive, i.e., the “ANY” content model is prohibited.  

Rationale:  Schemas are intended for data interchange, with data content to be fully defined.

· Use of Notation - Notations to define data types or file types SHALL NOT be used.  

Rationale:  Simplicity.  Base XML schema features should provide all necessary functionality.

· Unparsed Entities – Unparsed entities SHALL NOT be supported.  

Rationale:  Simplicity (requires use of Notation).  No present requirement to handle or reference non-XML data sources.

· Mixed Content – Mixed content SHALL NOT be permitted in schema definitions, (i.e., an element with children SHALL NOT also have a text value).

Rationale:  XML Forum schemas are oriented toward data exchange and mixed content is contrary to most established data modeling philosophies.

3 XML Schema Development Roadmap

The roadmap for schema development relies on the interaction of the working groups within the XML Forum.  This section describes the interaction of the the appropriate groups for the development of new XML Schema and the update and maintenance of existing XML Schema

4 Implementation Recommendations

This section will be completed at a later date.

4.1 Message Handling

This section will be completed at a later date.

4.2 Security

This section will be completed at a later date.

4.3 Registries and Repositories

This section will be completed at a later date.

4.4 Electronic Trading Partner Agreements

This section will be completed at a later date.

5 Reference Documents & Standards

http://www.xfront.com/
XML Schema Best Practices as maintained by Roger L. Costello

http://www.w3.org/XML
The current specification for XML Schemas

http://www.ibiblio.org/xml/
XML resources at Ibiblio (Café Con Leche)

http://xml.coverpages.org/sgmlnew.html
Archives of Robin Cover's XML Cover Pages at OASIS  (the Organization for the Advancement of Structured Information Standards

http://www.ietf.org/rfc/rfc2119.txt?number=2119
Key words for use in RFCs to indicate requirement levels - Internet Engineering Task Force Request for Comments 2119
5.1 Terms

BizTalk Schema
An XML schema language from Microsoft, released in 1999.

Cardinality
A quantity relationship between data elements. For example, one-to-one, one-to-many and many-to-one express cardinality.  These are referenced as 1..1, 1..u, u..1.

CommonLine
A standard for transmission of FFELP and Alternative Loan student loan data between schools and their varied service providers. 

Namespace
A unique name that identifies an organization that has developed an XML schema. It serves as a prefix so that multiple schemas can be used to define tags in an XML document.  XML namespaces provide a simple method for qualifying element and attribute names used in Extensible Markup Language documents by associating them with namespaces identified by URI references.

XML Type
A definition of an element or group of elements that can be re-used in the definition of other elements.

XML Schema
The definition of the content and structure used in an XML document, written in XML syntax.  Schemas are more verbose than DTDs, but they can be created with many XML tools.

5.2 Abbreviations

ebXML
Electronic Business XML (www.ebxml.org) is a set of specifications that together enable a modular electronic business framework. ebXML enables a global electronic marketplace where enterprises of any size and in any geographical location can meet and conduct business with each other through the exchange of XML-based messages. ebXML is jointly sponsored by the United Nations (UN/CEFACT) and OASIS. 

DTD
Document Type Definition.  A language that describes the contents of an SGML or XML document, consisting of a set of mark-up tags and their interpretation. 

EDI
Electronic Data Exchange. The exchange of standardized document forms between computer systems for business use.

IEEE
The global association of engineers, scientists and allied professionals (www.ieee.org)

IFX
Interactive Financial Exchange (www.ifxforum.org)

IMS
The IMS Global Learning Consortium (www.imsproject.org) is an organization developing and promoting open specifications for facilitating online distributed learning activities such as locating and using educational content, tracking learner progress, reporting learner performance, and exchanging student records between administrative systems.

ISO
The International Organization for Standardization.  A network of national standards institutes from 140 countries working in partnership with international organizations, governments, industry, business and consumer representatives (www.iso.ch/iso/en/ISOOnline.openerpage)

LCC
Lower Camel Case.  A capitalization scheme for compound names which capitalizes the first character of each word, except for the first word in the compound name.

URI
Universal Resource Identifier.  The generic set of all names and addresses that are short strings that refer to objects (typically on the Internet). 

URL
Uniform Resource Locator.  A standard way of specifying the location of an object, typically a web page, on the Internet.

W3C
The World Wide Web consortium - the main standards body for the World-Wide Web. 

X12
Also known as "ANSI X12" and "ASC X12,".  It is a standard from the American National Standards Institute (ANSI) for electronic data interchange (EDI). X12 is the primary North American standard for defining EDI transactions. 

XDR
XML Data Reduced.  An XML schema language from Microsoft, XDR was released in 1999 as a working schema as part of Microsoft's BizTalk initiative.

XML
Extensible Markup Language.  A subset of Standardized Generalized Markup Language aimed at document publishing, XML is an open standard for describing data and defining data elements in business-to-business documents. 

XSD
XML Schema Data

XSL
XML Style Language.  A style sheet format for XML documents. It is the XML counterpart to the Cascading Style Sheets (CSS) language in HTML.

PAGE  

