Position Paper: Code Lists

Author: Eve Maler (eve.maler@sun.com)

Date: 27 February 2002

Filename: draft-maler-codelists-04.doc

1Position Paper: Code Lists

21
Code Lists

21.1
Design Principles

31.2
Criteria for Choosing and Defining Code Lists

31.3
Documenting UBL Use of External Code Lists

41.4
Code List Schema Framework

51.5
Creating and Using Code List Extensions and Subsets

Code Lists

As defined in the Core Components specification, V1.8, a code is:

“A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute. Codes usually are maintained in code lists per attribute type (e.g. colour).”

It has the core component type Code. Type; however, this type assignment does not require it to be handled in any particular way in syntax bindings, such as in XSD by an enumeration of strings.

A code list, for our purposes, is a closed set of codes (possibly with a provision for indicating custom codes) that is defined and maintained by an organization along with documentation of the meaning of each code.

An external code list, for our purposes, is a code list that is maintained by an organization other than the UBL SC and incorporated into UBL by reference. An internal code list, for our purposes, is a code list that is defined in the body of the UBL set of specifications. Thus, a code list that is considered internal from the perspective of ANSI X12 might be considered external from the perspective of UBL.

On 13 February 2002, the NDR SC agreed to the following proposal:

“We should use external code lists as much as possible, and in those cases leave validation and subsetting up to the application (except perhaps for pattern matching). We should create our own validatable code lists sparingly. This is a short-term solution. In the long term, we would have the option to use validatable forms of the external code lists provided by external organizations.”

This position paper proposes a specific formulation of this solution that is designed to be suitable for use in the NDR document.

Note: All naming and markup design in examples in this paper is ad hoc and does not necessarily adhere to the NDR rules developed to date.

1.1 Design Principles

The definition and management of code lists in UBL adheres to the following design principles:

· Semantic clarity

It must be possible to interpret the meaning of any non-custom code (and also, ideally, any custom code as well) accurately and consistently. Thus, it must be possible to uniquely identify the relevant code list for each UBL markup construct that contains a code, and as a corollary, it must be possible to distinguish between different versions of the “same” code list in case of backwards-incompatible changes. We should encourage documentation of custom codes to the extent possible.

· Management of code list maintenance costs

It is expensive to maintain internal versions of code lists that already exist externally. Also, it is expensive to develop new code lists. UBL should try to leverage existing work where possible.

· Validation

It should be possible to validate that a legitimate code from a code list is being used, but some or all of this validation may happen at run time, using application-specific means.

· Subsetting

It should be possible to restrict the legitimate codes available.

· Extension

It should be possible to add to the universe of possible codes that can be used in a UBL construct, but the new codes should be given semantic clarity.

1.2 Criteria for Choosing and Defining Code Lists

Where possible, external code lists should be used in preference to internal code lists in the design of UBL. Potential reasons for designing an internal code list include the need to combine multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list.

1.3 Documenting UBL Use of External Code Lists

UBL must document the following items related to code lists:

· For a specific version of each internal and external code list used by UBL: A URI reference (in the style of XML namespace names) that UBL will use to refer to that list

Since most external standards bodies have not defined such a URI reference for the code lists under their purview, in these cases UBL must define its own URI references to stand for these lists.

· The requirements that UBL extensions must follow in documenting code lists of their own invention

· For each UBL element or attribute containing a code: An indication (by mention of the corresponding URI references) of the one or more code lists that must be minimally supported when the construct is used, and, if necessary, the specific version of the code list associated with this version of UBL

If an external code list is updated without a corresponding update to UBL and new codes have been added to the list, these new codes may legitimately be used in UBL documents (with an expectation that document recipients may not be configured to handle them). However, existing codes are to be interpreted strictly as in the version of the code list identified in the UBL documentation. If any codes change in a backwards-incompatible fashion, it is an error to interpret a code in the sense defined by the new version until UBL itself is updated.

1.4 Code List Namespaces

Issue: Do we need to recommend a basic style of URI reference for external code lists? Example URIs are used below, but they are not normative. Who invents these? Who maintains the list? Where does the list appear in the documentation?

1.5 Code List Schema Framework

The mechanism for handling all appearances of codes in UBL markup is the same, whether the code is internal or external. The code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName, where “baskin” is the namespace prefix and “Chocolate” is the local part:

baskin:Chocolate

QNames are defined by the built-in XSD simple type called QName. The schema definition of UBL must make reference to a UBL type based on QName wherever a code is allowed to appear, rather than enumerating a closed set of value options. For example:

<xsd:simpleType name=”UBLCodeType”>

 <xsd:restriction base=”xsd:QName”/>

</xsd:simpleType>

…

<xsd:element name=”IceCream”>

 <xsd:attribute

 name=”IceCreamFlavorCode” type=”UBLCodeType” use=”required”/>

</xsd:element>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired. Following is an example of a mapping of the “baskin” prefix to Version 1.0 of a Baskins-Robbins ice cream flavor namespace, assuming that UBL has had to define its own URI reference for this namespace:

<IceCream

 xmlns:baskin=”http://www.oasis-open.org/committees/ubl/codelists/BR31-V1.0”

 IceCreamFlavorCode=”baskin:Chocolate”/>

As noted in Section 1.3, the documentation for the IceCreamFlavorCode attribute must indicate the minimum code lists that are expected to be used in this attribute. However, the attribute is allowed to contain codes from additional code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

1.6 Creating and Using Code List Extensions and Subsets

If it is desired to supply a code that is not in any of the code lists identified as being minimally supported for a particular field, but the desired code is in a code list that is already defined with a namespace, the creator of the UBL document need only supply the corresponding QName. For example:

<IceCream

 xmlns:un=”http://www.oasis-open.org/committees/ubl/codelists/UN-icecream”

 IceCreamFlavorCode=”un:ChocolateChocolateChip”/>

If it is desired to supply a code that is neither in the minimally supported code lists for the field nor in any other code lists already defined, an extension designer must create a new external code list in a new namespace. For example:

<IceCream

 xmlns:my=http://www.example.com/codes/icecream/V1.3”

 IceCreamFlavorCode=”my:DragonflyRipple”/>

There is no need for this usage to be associated with XSD code. It is not necessary to use the context methodology to indicate where such custom code lists are expected to be used.

Issue: Should we recommend/require the use of the context methodology for doing this? Even if not, there is an issue of how it would accommodate such a thing even on a volunteer basis.

As noted in Section 1.3, it is intended that the extension namespace (code list) be documented sufficiently by the extension designer to provide semantic clarity when the codes from this list are used.

If it is desired to define an explicit subset of an existing code list, rather than building an implicit understanding of subsets into applications, a subset designer may create a new external code list in a new namespace that contains the desired subset. In this case, it is critical that the documentation of the namespace (code list) include a mapping back to the codes on which it is based.

1.7 Code List Validation Futures

The QName solution is considered short-term. In the future, if any of the organizations that maintain UBL-referenced code lists choose to offer a schema-based representation of the code lists that can be incorporated into UBL for greater validation, UBL may consider incorporating them.

However, for maximum flexibility with maximum semantic clarity in the long term, the ideal solution might be for QNames to be able to be validated according to, respectively, the namespace URI and the local part, not the namespace prefix and the local part. The reason for this is that the prefix is merely an indirection mechanism to get to the URI reference, and is insignificant – and potentially variable – all by itself.

Thus, until such time as this type of validation becomes an option in XSD validation, schema modules that are non-QName-based (for example, enumerated lists of non-prefixed codes or codes with hard-wired namespace prefixes) may not be very helpful to any version of UBL that uses the QName solution. And unfortunately, schema modules that are QName-based offer just as little “early validation” as the solution proposed here.

PAGE
6

