Use of XSD Elements, Attributes, and Types

[QUERY: Are we going to address the namespace-root schema issue in the discussion of namespaces? I am assuming so, and it is thus not addresses here. Do we need to discuss?]

[NOTE: We should compare all of the voted-on resolutions from the last Face-to-face meeting to make sure all of the relevant ones not still under discussion are included here.]

UBL Dictionary Entries

UBL defines a set of fully-defined semantic constructs to be used in XML business documents. Each construct has both a “tag name,” which is the short form found in the XML schemas and XML instances, and the documentation referring to those artifacts, and also has a full name, or dictionary entry name. The rules for naming and use of “tags” and dictionary entries are different, although there is a direct correspondence between them.

The dictionary entry provides a set of information about each use of each type, in each business document defined. The dictionary entries can be seen as a set of fully-qualified paths for each element, attribute, and type that exists within the UBL component library. [QUERY: Do we provide type definitions within the dictionary? Or just attributes and elements?] Each carries with it a complete definition of its semantics, and a discussion of what semantic dependencies it has with other elements and attributes within the UBL library, that may not be enforced or made explicit in its structural definition. The dictionary serves as a traditional datat dictionary, and also serves some of the functions of traditional implementation guides in this way.

[ADD: The set of properties which describe a dictionary entry, including whether or not it functions as a top-level “message” structure.]

[ADD: Naming rules for dictionary entries.]

UBL Tag Constructs and Distinctions

A distinction is made between several distinct constructs within the structural definitions of messages and their component parts:

[NOTE: These definitions need to be re-worked!]

· Attributes:

· Leaf attributes – These are attributes that directly contain business data, used at the ‘leaf’ level as defined below.

· General attributes – These are attributes that are found at many levels of the document, providing meta-data about relevant corresponding taxonomies and similar things. Typically, these are fixed attributes expressing an XML architectural form.

· Elements:

· Top-level elements – Globally declared root elements, functioning at the level of a business message.

· Locally declared elements:

· Intermediate elements – Elements not at the top level that are of a complex type, only containing other elements and attributes.

· Leaf elements – Elements that directly contain data, of a simple type, whether a primitive data type or a custom data type.
· Empty elements - Elements that may have attributes, but have no data or element content.

· Mixed-content elements - Elements that contain both element content and data in their content models, and which may have attributes.

· Types:
· Complex types – Globally declared type declarations, showing the use of locally-declared elements and attributes.

· Simple types – Type declarations providing the valid data for elements or attributes of that type. These may be custom datatypes, or may exist in the XML Schema language as primitives.

Note that many of these distinctions are formally defined in the XML and XSD specifications [NOTE: Add formal references] , but some are distinctions not formally recognized by those specifications. These additional distinctions are required for clarity within the naming and use rules for UBL.

General Naming Rules Information

1. All UBL names for the constructs discussed here will be in Oxford English (That’s the “King’s English” to all you colonials, imperials, and provincials, and “Harmut English” to all you standards geeks…)

2. Naming rules specific to certain of the UBL/XSD constructs discussed below will be provided where the use of those constructs is discussed. The examples provided will illustrate both use and naming rules.

3. The UBL naming rules refer to a set of concepts taken from ISO 11179 and its use in ebXML Core Components, but further to restricted to accommodate their specific use in UBL. These terms, and their UBL-specific use, are:

a. Object Class [PROVIDE DEFINITION]
b. Property Term [PROVIDE DEFINITION]
c. Qualifier [PROVIDE DEFINITION]
d. Representation Term [PROVIDE DEFINITION]
e. Core Component Type [PROVIDE DEFINITION]
4. All UBL names for these constructs that appear in the UBL schemas or document instances (but not dictionary entry names, which see) will use “camel case” such that each word will begin with an initial capital, followed by lower-case letters. Those abbreviations sanctioned for use in such names will be an exception to this rule, appearing as all-capitals, or in whatever form that abbreviation typically takes in common usage, as specified in the official sanctioning of that abbreviation.

5. Required abbreviations include:

a. “ID” in place of “Identification”

6. [NOTE: Fill in rule about two Object or Property terms that are the same]

Use of Attributes

[NOTE: TBD, but we know that this includes some decision on data representation, and also a piece on top-level attributes and/or architectures.]

Naming Rules for Attributes:

Example:

1.

[NOTE: Include example (from Gunthers doc?) when agreement is reached.]
Use of XSD Top-Level Elements

The use of global, qualified [QUERY: Is “qualified” correct?] elements will be restricted to those constructs that are top-level constructs designed to be used as business messages. These elements will include references to the matching top-level type declaration.

Naming Rules for Top-Level Elements:

1. [NOTE: This is TBD]

Example:

[NOTE: Include example when available.]

Use of XSD Local Elements

The following applies to all Leaf and Intermediate constructs which are elements:

1. They shall be locally declared within a named complexType

2. They shall be unqualified

3. If of a complexType, they shall indicate this by referring to a globally-declared, named complexType

4. All locally-declared elements will contain documentation, in the form of an XSDAnnotation element, containing an XSD Documentation element with a Source attribute value of “Use”. The documentation here will specify the use of the element within the Global type in which itr is declared.

5. If elements share the same name they must share the same type. If they can’t share a type because they are different structurally they must have different names except in the following cases. The ones currently mandated are fields containing status codes, purpose codes, action codes. [NOTE: Still under discussion – does this also apply to Message-level elements? Also, fix wording to be normative.]

Naming Rules for Local Elements:

Element names at the Intermediate level must be comprised of the Property Term and may be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that level. The Object Class may be used as a qualifier.

Example:

In this example, it is assumed that there is a global type declaration for each one referenced by the elements shown.

<xsd:sequence>

<xsd:element name="Name" type="NameType" minOccurs="1" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">The name information for an entity.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="Address" type="AddressType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">The address information for an entity.</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>
Use of XSD complexTypes

1. All Intermediate and Top-Level XML structural components within UBL will be expressed as global, named, qualified, complexType declarations, to make them easily available for re-use.

2. All complexTypes will be documented using a set of XSD Annotation elements, providing a set of information about the Type. These documentation fields will each be contained within an XSD Documentation element, with the value of the Source attribute being the name of the documentation field as it appears below.

[NOTE: We need to specify which sets of values are used for Contexts (reference to the official UBL list; and also we need to present the controlled lists of terms in the definitions appearing above. Also, we need to reference an official version of the Core Components Library so that the UIDs can be resolved – or should we just make reference to “the elusive Ark of ebXML Mythology”?]

· UBL UID: The unique identifier assigned to the type in the UBL library

· UBL Name: The complete name (not the tag name) of the type per the UBL library

· Object Class: The Object Class of the type

· Property Term: The Property term of the type

· Representation Term: The representation term of the type

· Core Component Type: The CCT per the UBL list

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component

· Code Lists/Standards: A list of potential standard codelists or other relevant standards that could provide definition of possible values not formally expressed in the XSD schema

· Core Component UID: The UID of the Core Component on which the Type is based

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”.

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

Naming Rules for complexTypes:

The type name as it appears in the UBL schema shall consist of an optional Qualifier followed by the object class, followed by the suffix “Type”.

Example:

<xsd:complexType name="PartyType">

<xsd:annotation>

<xsd:documentation source="UBL UID" xml:lang="en">PS1</xsd:documentation>

<xsd:documentation source="xCBL Name" xml:lang="en">Party</xsd:documentation>

<xsd:documentation source="Object Class" xml:lang="en">Party</xsd:documentation>

<xsd:documentation source="Property Term" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Representation Term" xml:lang="en">Details</xsd:documentation>

<xsd:documentation source="Core Component Type" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="UBL Definition" xml:lang="en"></xsd:documentation>

<xsd:documentation source="Code Lists/Standards" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Core Component UID" xml:lang="en">[None]</xsd:documentation>

<xsd:documentation source="Business Process Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Geopolitical/Region Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Official Constraints Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Product Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Industry Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Role Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="Supporting Role Context" xml:lang="en">NA</xsd:documentation>

<xsd:documentation source="System Capabilities Context" xml:lang="en">NA</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="PartyID" type="IdentifierType" minOccurs="1" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">A standard identification of an entity doing business as assigned by a standards agency.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="MDFBusiness" type="boolean" minOccurs="1" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">An indicator of whether the party is a minority, disadvantaged, or female owned business.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="LanguageDependency" type="boolean" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">Defines whether any data is language dependent or not.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="Language" type="LanguageType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">Used to provide information about the language which text relating to this party is written in.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="NameAddress" type="NameAddressType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">The name and the address information for the Party.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="ReceivingContact" type="ContactType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">The means for contacting a person or department responsible for receiving of goods or services.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="ShippingContact" type="ContactType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">Contains the means for contacting a person or department responsible for transporting goods.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="OrderContact" type="ContactType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">Contains the means for contacting a person or department responsible for managing orders.</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="OtherContacts" type="ContactListType" minOccurs="0" maxOccurs="1">

<xsd:annotation>

<xsd:documentation source="Use">Contains the means for contacting a person or department for other aspects of the Party.</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:sequence>

</xsd:complexType>
Use of simpleTypes

[NOTE: We have not yet discussed this issue – one assumes that simpleType names are just like other types of Types. The only problem would be an element called “CountryCode” that takes a value of “CountryCodeType” ? Is this the desired pattern?

It is a parallel – but not identical – case to what we get when we have element “NameAddress” of “NameAddressType”.]

Naming Rules for simpleTypes:

1. Primitive types that exist within the XML schema language will use the names provided by the XSD specification.

2. The type name as it appears in the UBL schema shall consist of an optional Qualifier followed by the object class, followed by the suffix “Type”.

[QUERY: Eve said she thought that he same naming rules could apply to complex and sinmple types both, but this seems problematic. How does representation term fit in here? We have not discussed this yet.

Example:

[NOTE: Include example when available.]
