Position Paper: Definition of Elements, Attributes, and Types

Authors: Mark Crawford (mcrawford@lmi.org), Arofan Gregory (arofan.gregory@commerceone.com), Eve Maler (eve.maler@sun.com)

Date: 16 March 2002

Filename: draft-arofan-tagspec-03.doc

Status: Unreviewed by the Naming and Design Rules SC in its V03 form but deemed ready for external review regardless.

1Position Paper: Definition of Elements, Attributes, and Types

21
Definition of Elements, Attributes, and Types

21.1
Relation of XML Constructs to ISO 11179 and ebXML Core Components

21.2
UBL Documentation

31.2.1
Naming Rules for Dictionary Full Names

31.2.2
Contents of Dictionary Entries

31.2.3
Contents of Other UBL Documentation

31.3
XML Constructs in UBL

41.3.1
General Naming Rules for XML Constructs

51.3.2
Naming and Definition of Top-Level Elements

51.3.3
Naming and Definition of Lower-Level Elements

61.3.4
Naming and Definition of Attributes

71.3.5
Naming and Definition of Types

Definition of Elements, Attributes, and Types

In W3C XML Schema (known as XSD), elements are defined in terms of complex or simple types and attributes are defined in terms of simple types. The rules in this section govern the consistent naming and structuring of these constructs and the manner of unambiguously and thoroughly documenting them.

1.1 Relation of XML Constructs to ISO 11179 and ebXML Core Components

These rules refer to the following concepts taken from ISO 11179 and used subsequently in the ebXML Core Components work: (TBD: need formal references)
· Object Class

· Property Term

· Qualifier

· Representation Term (RT)

· Core Component Type (CCT)

In XSD, elements are declared to have types, and most types (those complex types that are defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is the parent type of Element A and where Type 2 is the parent type of Element B and the type bound to Element A):

· Type 1

· Element A

· Type 2

· Element B…

In UBL, types are all named and therefore “top-level”, whereas most elements are declared locally inside complex types and are therefore “lower-level”. In terms of ebXML Core Components, UBL complex types are Object Classes, subelements declared within them are Properties of those Object Classes, and the types bound to those subelements are themselves Object Classes which have their own Properties.

Rules are given below on documenting XML constructs to indicate the unambiguous relationship of each construct to its corresponding Core Component-based semantic representation.

1.2 UBL Documentation

The primary component of the UBL documentation is its dictionary. The entries in the dictionary fully define the pieces of information available to be used in UBL business messages. Each dictionary entry has a full name that ties the information to its standardized semantics, while the name of the corresponding XML element or attribute is only a shorthand for this full name. The rules for element and attribute naming and dictionary entry naming are different.

Each dictionary entry defines one fully qualified path (FQP) for an element or attribute. The fully qualified path anchors the use of that construct to a particular location in a business message. The dictionary definition identifies any semantic dependencies that the FQP has on other elements and attributes within the UBL library that are not otherwise enforced or made explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also serves some of the functions of traditional implementation guides in this way.

Additional components of the UBL documentation include definitions of:

· XSD complex and simple types in the UBL library, including whether and how that type maps to a core component type

· The top-level elements in UBL that contain whole UBL messages

· Global attributes

· (TBD: possibly others, including summaries of code lists, UBL-specific core component types, and UBL-specific representation terms; for RTs, we’re supposed to start with the official CC list and liaise with UN/CEFACT in proposing new ones that we need to add for our own purposes)

The UBL documentation should be automatically generated to the extent possible, using embedded documentation fields in the structural definitions.

(Note: Throughout this paper, the rules for using the xsd:documentation element’s source attribute are incorrect; it is supposed to be a URI, not a keyword. This will be corrected in the next version.)

1.2.1 Naming Rules for Dictionary Full Names

The fully qualified path for an element or attribute is constructed as follows:

(TBD)

1.2.2 Contents of Dictionary Entries

(TBD)
1.2.3 Contents of Other UBL Documentation

(TBD)
1.3 XML Constructs in UBL

These rules distinguish the following constructs within the structural definitions of messages and their component parts. Note that some of these distinctions are specific to UBL and are not part of the formal definition of XML or XSD.

· Elements:

· Top-level elements: Globally declared root elements, functioning at the level of a whole business message.

· Lower-level elements: Locally declared elements that appear inside a business message.

· Intermediate elements: Elements not at the top level that are of a complex type, only containing other elements and attributes.

· Leaf elements: Elements containing only character data (though they may also have attributes). Note that, because of the XSD mechanisms involved, elements that contain only character data but also have attributes must be declared with complex types, but such elements with no attributes may be declared with simple types or complex types.

· Mixed-content elements: Elements that allow both element content and data in their content models, and which may have attributes.

· Empty elements: Elements that contain nothing (though they may have attributes).

· Attributes:

· Global attributes: Attributes that have common semantics on the multiple elements on which they appear. These might be fixed attributes expressing an XML architectural form, attributes for assigning a unique element identifier, or attributes containing natural-language information (such as xml:lang).

· Local attributes: Attributes that are specific to the element on which they appear. Most attributes are local.

· Types: Complex or simple XSD types. Note that UBL has no anonymous types; all types are assigned a name in their definition. In the UBL structural definitions, all complex type definitions should be grouped together, and all simple types similarly grouped together, for ease of reference.

The following sections define the naming and usage rules of these constructs.

1.3.1 General Naming Rules for XML Constructs

Following are the naming rules that apply to all names of XML constructs in UBL:

1. Names MUST use Oxford English.

2. (TBD: Tentative; needs more Library Content SC input) Names of XML constructs MUST NOT use non-alphabetic delimiters.

3. Names MUST NOT use acronyms, abbreviations, or other word truncations, with the following exceptions:

· The Representation Term Identifier MUST be represented in XML names as ID.

· (More TBD)

4. Names MUST NOT contain non-letter characters unless required by language rules. (More TBD)
5. Names MUST be in singular form unless the concept itself is plural (example: Goods).

6. Names for XML constructs MUST use “camel-case” capitalization, such that each internal word in the name begins with an initial capital followed by lowercase letters (example: AmountContentType). As noted below, all XML constructs other than attributes use “upper camel-case”, with the first word initial-capitalized, while attributes use “lower camel-case”, with the first word all in lowercase. Exceptions are as follows:

· DUNS for Dun & Bradstreet numbers

· (More TBD; should these be enumerated, or can a more general rule be stated or referred to?)

1.3.2 Naming and Definition of Top-Level Elements

Each UBL business message has a single root element that is a UBL top-level element. This element MUST be globally declared in a UBL root schema (which MAY contain definitions of additional root elements for other related messages in a functional area; see the Modularity, Namespaces, and Versioning paper) with a reference to a named type definition. Only top-level elements are declared globally.

Top-level elements are named according to the portion of the business process that they initiate. (Note: This rule is proposed, but has not yet been decided as a recommendation of the Naming and Design Rules SC.)
Example: Order, AdvanceShipNotice.

1.3.3 Naming and Definition of Lower-Level Elements

Lower-level elements (as well as attributes) are considered Properties of the Object Class represented by their parent type. Lower-level elements MUST be locally declared as namespace-unqualified elements by reference to a named type, whether complex or simple, and be accompanied by documentation in the form of an xsd:annotation element with an xsd:documentation element that has a source attribute value of “Use”. The documentation specifies the use of the element within its parent type.

There are several kinds of lower-level elements, each with distinct naming rules. (TBD: Our future work on role models may end up modifying these rules. E.g., right now we assume implicitly that the type bound to the element is used somehow in the property term name, but this need not be the case.)
The names of intermediate elements MUST contain the Property Term describing the element and MAY be preceded by an appropriate Qualifier term as necessary to create semantic clarity at that level. The Object Class MAY be used as a qualifier.

[Qualifier] + PropertyTerm

Example: (TBD).

Leaf elements are named as follows:

[Qualifier] + PropertyTerm + RepresentationTerm

The naming of leaf elements follows these exceptions:

· The Representation Term Text is always removed.

· Leaf elements with substantially similar Property Terms and Representation Terms MUST remove the Property Term.

· (More TBD)

Examples: If the Object Class is Goods, the Property Term is DeliveryDate, and the Representation Term is Date, the element name is truncated to
GoodsDeliveryDate; the element name for an identifier of a party PartyIdentificationIdentifier is truncated to PartyIdentifier – and then to PartyID because of the truncation rule.

Mixed-content elements are considered to be leaf elements with a Representation Term of Prose. (Note: This rule is proposed, but has not yet been decided as a recommendation of the Naming and Design Rules SC.)
Empty elements are named as follows:

(TBD)

Example: (TBD).

 (TBD: Rules governing elements of the same name and their respective types.)

The following extended example shows a complex type that locally declares two lower-level elements:

<xsd:complexType name=”…”>

 <xsd:sequence>

 <xsd:element name=”Name” type=”NameType”

 minOccurs=”1” maxOccurs=”1”>

 <xsd:annotation>

 <xsd:documentation source=”Use”>

The name information for an entity.

 <xsd:documentation>

 </xsd:element>

 <xsd:element name=”Address” type=”AddressType”

 minOccurs=”0” maxOccurs=”1”>

 <xsd:annotation>

 <xsd:documentation source=”Use”>

The address information for an entity.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

Following is another extended example of the documentation fields for the locally declared elements within their parent type:

<xsd:complexType name=”…”>

 <xsd:sequence>

 <xsd:element name=”PartyID” type=”IdentifierType”

 minOccurs=”1” maxOccurs=”1”>

 <xsd:annotation>

 <xsd:documentation source=”Use”>

A standard identification of an entity doing business as assigned

By a standards agency.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name=”MDFBusiness” type=”xsd:Boolean”

 minOccurs=”1” maxOccurs=”1”>

 <xsd:annotation>

 <xsd:documentation source=”Use”>

An indicator of whether the party is a minority, disadvantaged,

or female owned business.

 </xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 …

 </xsd:sequence>

</xsd:complexType>

1.3.4 Naming and Definition of Attributes

Attributes, like lower-level elements, are Properties of the Object Class represented by their parent type. They are named identically to leaf elements, except that they use lower camel-case rather than upper camel-case.

Example: amountCurrencyIDCode. (TBD: Is this a good example?)

(TBD: Do global attributes have any differences in naming or declaration from regular local attributes?)

1.3.5 Naming and Definition of Types

Complex XSD types in UBL declare (usually) a set of local elements and (possibly) some attributes. These types correspond to Object Classes, with the local elements and the attributes corresponding to Properties of that Object Class. (TBD: There may be a few exceptions for complex types that serve merely as convenient XML “containers” and do not correspond in a semantically significant way to Object Classes. We have not identified any of these yet.)
All types MUST have names (that is, they are not anonymous) and MUST appear as top-level constructs in UBL schema modules (that is, they are not embedded within element or attribute declarations). The type name is the Object Class name, with “Type” appended and with a Qualifier optionally prepended:

[Qualifier] + ObjectClass + “Type”

Example: CodeNameType.

(TBD: How should the naming of simple types, and complex types that contain simpleContent, differ from regular complex types? For example, are Representation Terms used?)

The definition MUST contain a structured set of XSD annotations in an xsd:annotation element with xsd:documentation elements that have source attribute values indicating the names of the documentation fields below:

[TBD: We need to specify which sets of values are used for Contexts (reference to the official UBL list), and we also need to present the controlled lists of Representation Terms. Finally, we need to reference an official version of the Core Components Library, if possible, so that the UIDs can be resolved.]

· UBL UID: The unique identifier assigned to the type in the UBL library.

· UBL Name: The complete name (not the tag name) of the type per the UBL library.

· Object Class: The Object Class represented by the type.

· Property Term: The Property Term of the type. (TBD: Won’t this always be NA?)
· Representation Term: The representation term of the type.

· Core Component Type: The CCT per the UBL list.

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component.

· Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

· Core Component UID: The UID of the Core Component on which the Type is based.

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”.

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

Following is an extended example of the documentation fields for the type:

<xsd:complexType name=”PartyType”>

 <xsd:annotation>

 <xsd:documentation source=”UBL UID” xml:lang=”en”>PS1

 </xsd:documentation>

 <xsd:documentation source=”xCBL Name” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”Object Class” xml:lang=”en”>Party

 </xsd:documentation>

 <xsd:documentation source=”Property Term” xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Representation Term”

 xml:lang=”en”>Details

 </xsd:documentation>

 <xsd:documentation source=”Core Component Type”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”UBL Definition”

 xml:lang=”en”>

 </xsd:documentation>

 <xsd:documentation source=”Code Lists/Standards”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Core Component UID”

 xml:lang=”en”>[None]

 </xsd:documentation>

 <xsd:documentation source=”Business Process Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Geopolitical/Region Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Official Constraints Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Product Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Industry Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”Supporting Role Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 <xsd:documentation source=”System Capabilities Context”

 xml:lang=”en”>NA

 </xsd:documentation>

 </xsd:annotation>

 …

</xsd:complexType>
