
[image: image1.png]OASIS

Position Paper: Code Lists

Proposal 06, 1 May 2002

Document identifier:

p-maler-codelists-06 @@(PDF, Word)

Location:

http://www.oasis-open.org/committees/ubl/ndrsc/pos
Author:

Eve Maler, Sun Microsystems <eve.maler@sun.com>

Abstract:

This position paper outlines several options for handling code lists in the UBL library and customizations of that library.

Status:

This is V06 of the code lists position paper intended for consideration by the OASIS UBL Naming and Design Rules subcommittee and other interested parties.

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

31
Guidance to the UBL Modeling Process

32
Requirements on a Schema Solution for Code Lists

43
Contenders

43.1
Current UBL Method

43.1.1
Instance

43.1.2
Schema Definitions

53.1.3
Derivation Opportunities

53.1.4
Assessment

73.2
QName in Content Method

73.2.1
Instance

73.2.2
Schema Definitions

83.2.3
Derivation Opportunities

83.2.4
Assessment

93.3
Namespaced Element Method

93.3.1
Instance

93.3.2
Schema Definitions

93.3.3
Derivation Opportunities

93.3.4
Assessment

103.4
Enumerated List Method

103.4.1
Instance

103.4.2
Schema Definitions

103.4.3
Derivation Opportunities

103.4.4
Assessment

113.5
Instance Extension Method

113.5.1
Instance

113.5.2
Schema Definitions

113.5.3
Derivation Opportunities

113.5.4
Assessment

114
Summary of Strengths and Weaknesses

125
Recommendation

13Appendix A. Notices

1 Guidance to the UBL Modeling Process

Where possible, external code lists should be used in preference to internal code lists in the design of UBL. Potential reasons for designing an internal code list include the need to combine multiple existing external code lists, or the lack of any suitable external code list. The lack of “easy-to-read” or “easy-to-understand” codes in an otherwise suitable code list is not sufficient reason to define an internal code list. We anticipate that internal code lists should (almost) never be created.

The UBL documentation must identify, for each UBL construct containing a code, the one or more code lists that must be minimally supported when the construct is used.

2 Requirements on a Schema Solution for Code Lists

Here are criteria for measuring potential code list schemes. Note that compactness is the least important; the others are roughly equal in importance.

· Semantic clarity: The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that is referenced by the XML form.

· Interoperability: The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is less interoperable, since there are fewer penalties for private arrangements. This requirement is related to, but distinct from, validatability and context rules friendliness.

· External maintenance: The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without manual modification. Some standards bodies are already starting to do this, though we recognize that others may never choose to create such modules.

· Validatability: The ability to use XSD to validate that the code used is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for ad hoc applications to do validation.

· Context rules friendliness: The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists.

· Upgradability: The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used.

· Compactness: A representation in the XML instance that is not excessively large or cumbersome. This is a subjective measurement.

3 Contenders

The methods proposed so far for handling code lists are as follows:

· The current UBL method, involving supplying attributes for the supplementary components values directly on the element containing the code

· The QName in content method, involving the use of XML Namespaces-based “qualified names” in the content of elements, where the namespace URI is associated with the supplementary components

· The namespaced element method, where each element containing a code is qualified with a namespace according to the precise list from which that code came

· @@Do we need to examine a type-based UCC-style method?

· The enumerated list method, using the classic method of statically enumerating the valid codes in a type corresponding to a code list internally in UBL (which we’re rejected)

· The instance extension method, involving the ability to declare new code lists directly in an instance

Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style derivation. Each method is assessed to see which requirements it satisfies.

3.1 Current UBL Method

The current UBL method is a result of a perl script running over the Library Content SC’s modeling spreadsheet. The script makes use of our decision to use attributes for supplementary components of a CCT and elements for everything else.

3.1.1 Instance

The current UBL method results in instance documents with the following structure.

<LocaleCode

 CodeListIdentifier=”token”

 CodeListAgencyIdentifier=”token”

 CodeListVersionIdentifier=”token”

 CodeName=”string”

 LanguageCode=”language”>

token

</LocaleCode>

3.1.2 Schema Definitions

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements).

<xs:simpleType name="CodeContentType" id="000091">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListAgencyIdentifierType" id="000093">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListIdentifierType" id="000092">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListVersionIdentifierType" id="000099">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeNameType" id="000100">

 <xs:restriction base="string"/>

</xs:simpleType>

<xs:simpleType name="LanguageCodeType" id="000075">

 <xs:restriction base="language"/>

</xs:simpleType>

<xs:complexType name="CodeType" id="000089">

 <xs:simpleContent>

 <xs:extension base="cct:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType">

 </xs:attribute>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType">

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode" type="cct:CodeType"

 id="UBL000016"

 minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

3.1.3 Derivation Opportunities

While it is possible to derive new simple types that restrict types (including built-in types such as xs:token), it is not possible to use them directly in a UBL attribute such as CodeListVersionIdentifier without defining a whole new element structure. This is because you would need to use the xsi:type attribute to “swap in” the new type, and you can’t put an attribute on an attribute. Thus, an XSD derivation approach to creating contextualized UBL schemas would be awkward at best. A TAAT approach might work better, but this is as yet unproven.

3.1.4 Assessment

Here is how the current UBL method ranks against the requirements.

	Requirement
	Rank

	Semantic clarity
	High

The various supplementary components for the code are provided directly on the element that holds the code, allowing the code to be uniquely identified and looked up.

	Interoperability
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	Low

There is no particular XSD formalism provided for encoding the details of a code list; thus, there is no way for external organizations to create a schema module that works smoothly with the UBL library. However, there are no barriers to creating a code list (in some other form) for use in any code-based UBL element.

	Validatability
	Low

There is no XSD structure for testing the legitimacy of any particular codes. All validation would have to happen at the application level (where the application uses the attribute values to find some code list in which it can do a lookup of the code provided).

	Context rules friendliness
	Low?

If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	High

A document creator could merely change the CodeListVersionIdentifier value and supply a code available only in the new version.

	Compactness
	Medium to high

The code is accompanied by “live” supplementary components in the instance, which does swell the instance. However, the latter are in attributes, which is a more efficient way of providing that metadata than elements, which would require end-tags that essentially duplicate the start-tags.

3.2 QName in Content Method

The QName method was proposed in V04 of the code lists paper.

3.2.1 Instance

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which could have been on any ancestor element).

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

iso3166:US

</LocaleCode>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired.

The namespace URI shown here is just an example. However, it is likely that the UBL library itself would have to define a set of common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used as a code list namespace name.

3.2.2 Schema Definitions

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL should make reference to a UBL type based on QName wherever a code is allowed to appear, so that this particular use of QNames in UBL can be isolated and documented. For example:

<xs:simpleType name=”CodeType”>

 <xs:restriction base=”QName”/>

</xs:simpleType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode"

 type="cct:CodeType" id="UBL000016" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

The documentation for the LocaleCode element should indicate the minimum set of code lists that are expected to be used in this attribute. However, the attribute can contain codes from any other code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

3.2.3 Derivation Opportunities

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in nature) are not a sure bet for controlling values.

3.2.4 Assessment

Here is how the QName method ranks against the requirements.

	Requirement
	Rank

	Semantic clarity
	Low to medium

You have to go through a level of indirection, and a complicated one at that (because QNames in content are pseudo-illegitimate and are not supported properly in many XML tools), in order to refer back to the namespace URI. Further, the namespace URI might not resolve to any useful information. However, in cases where the URI is meaningful or sufficient documentation of the code list exists (something we could dictate by fiat), clarity can be achieved.

	Interoperability
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	Low

There is no good way to define a schema module that controls QNames in content.

	Validatability
	Low

All validation is pushed off to the application.

	Context rules friendliness
	Low?

This method is similar to the current UBL method in this respect. If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the downstream application, there is no need to do anything at all.

	Upgradability
	High

You need to have a different URI for each version of a code list, but if you do this, using a new version is easy: You just use a prefix that is bound to the URI for the version you want. However, there is no magic in namespace URIs that allows version information to be recognized as such; the whole URI is just an undifferentiated string.

	Compactness
	High

The representation is extremely compact because the supplementary component details are deferred to another place (and format) entirely.

3.3 Namespaced Element Method

My understanding is that the namespaced element method is used in the UCC ebXML-based schemas. The idea is that each list is associated with a unique namespaced element, whose content is a code from that list

3.3.1 Instance

The namespaced element method results in instance documents with the following structure.

<LocaleCode>

<iso3166:Code

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>code</iso3166:Code>

</LocaleCode>

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement that is dedicated to codes from a particular list. If codes from multiple lists are allowed here, the element could contain any one of a choice of subelements, each dedicated to a different code list.

Just as in Section 3.2, the namespace URI shown is just an example, but it’s possible that the UBL library would have to maintain some URIs even for external code lists.

3.3.2 Schema Definitions

The schema definitions to support the content of LocaleCode might look as follows. Here, three code list options are offered for a locale code. The namespace declarations for the “iso3166”, “xxx”, and “yyy” prefixes are not shown here.

<xsd:complexType name=”LocaleCodeType” id=”. . .”>

 <xsd:choice>

 <xsd:element name=”iso3166:Code”/>

 <xsd:element name=”xxx:Code”/>

 <xsd:element name=”yyy:Code”/>

 </xsd:choice>

</xsd:complexType>

<xsd:complexType name="LanguageType" id="UBL000013">

 <xsd:sequence>

 <xsd:element name="IdentificationCode" . . .></xsd:element>

 <xsd:element name="Name" . . .></xsd:element>

 <xsd:element name="LocaleCode"

 type="cct:LocaleCodeType" id="UBL000016" minOccurs="0">

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

The schema definition of the types governing the iso3166:Code element might look like this – one of many possibilites:

<xs:simpleType name=”iso3166:CodeContentType”>

 <xs:extension base=”token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 </xs:extension>

</xs:simpleType>

<xsd:complexType name=”iso3166:CodeType”>

 <simpleContent >

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType"

 fixed=”xxx”>

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType"

 fixed=”yyy”>

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType"

 default=”1.0”>

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType"

 fixed=”zzz”>

 </xs:attribute>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType"

 fixed=”aaa”>

 </xs:attribute>

 </simpleContent>

</xsd:complexType>

Such a definition does several things:

· Enumerate the possible values of the code itself. An alternative would be just to allow the code to be a string or token.

· Provide a default value for the version of the code list being used, with the possiblity that the default could be overridden in an instance of a UBL message to provide a different version (though, since the codes are enumerated statically, if new codes were added to a new version they could not be used with this element as currently defined). Some alternatives would be to fix the version and to require the instance to set the version value.

· Fix the values of the code list identifier, code list agency identifier, code name, and language code for the code list, such that they could not be changed in an instance of a UBL message. Some alternatives would be to provide changeable defaults and to require that the instance set these values.

3.3.3 Derivation Opportunities

Because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful. A derived type could be created that does any of the following:

· Restricts or adds to the enumerated list of values [@@test – is this right?]

· Adds defaults where there were none before

· Adds fixed values where there were none before

In addition, the element containing the dedicated code list subelement can be modified to allow the appearance of additional code list subelements.

3.3.4 Assessment

Here is how the namespaced element method ranks against the requirements. Note that an “Other” section has been added.

	Requirement
	Rank

	Semantic clarity
	High

The supplementary components are always accessible to the parser, either through the instance or (through defaulting or fixing of values) the schema.

	Interoperability
	High

Each code-containing construct in UBL can indicate, through schema constraints, exactly what is expected to appear there.

	External maintenance
	High

External organizations can freely create schema modules that define elements dedicated to their particular code lists, and can even make the constraint rules as flexible or as draconian as they want.

	Validatability
	High

The constraint rules can range from very tight to very loose, and anyone who wants to subset or extend the valid values can express this in XSD terms fairly easily.

	Context rules friendliness
	High

Since there is a dedicated element for a code, it can be added or subtracted like a regular element – something that is already assumed to be part of the power of the context rules language.

	Upgradability
	Medium to high

Depending on how the constraint rules have been set up, it might be required to define a new (possibly derived) type to allow for a new version of a code list. However, in many cases, the organization maintaining the code list might design the schema module in such a way as to avoid the need for this.

	Compactness
	Medium to high

Other than the namespace declaration, all the supplementary information is pushed off to some other location, away from the instance. However, additional tags for the inner subelement must be provided.

	Other
	We had previously decided to allow only local unqualified elements inside a UBL message’s top level. Namespace-qualified elements make it more complicated to (for example) construct and maintain XPaths into the information. We need to assess the risk of these sorts of problems.

3.4 Enumerated List Method

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML. In involves creating a type that literally lists the allowed codes.

3.4.1 Instance

The enumerated list method results in instance documents with the following structure.

<LocaleCode>code</LocaleCode>

3.4.2 Schema Definitions

The schema definitions to support this might look as follows.

@@

3.4.3 Derivation Opportunities

@@

3.4.4 Assessment

Here is how the enumerated list method ranks against the requirements.

	Semantic clarity
	@@

	Interoperability
	@@

	External maintenance
	@@

	Validatability
	@@

	Context rules friendliness
	@@

	Upgradability
	@@

	Compactness
	@@

3.5 Instance Extension Method

The instance extension method is apparently used in the ACORD DTDs.

3.5.1 Instance

The instance extension method results in instance documents with the following structure.

@@

3.5.2 Schema Definitions

The schema definitions to support this might look as follows.

@@

3.5.3 Derivation Opportunities

@@

3.5.4 Assessment

Here is how the instance extension method ranks against the requirements.

	Semantic clarity
	@@

	Interoperability
	@@

	External maintenance
	@@

	Validatability
	@@

	Context rules friendliness
	@@

	Upgradability
	@@

	Compactness
	@@

4 Summary of Strengths and Weaknesses

Here is a summary of the strengths and weaknesses of the different methods.

	Requirement
	Current UBL
	QName in Content
	Namespaced Element
	Enumerated List
	Instance Extension

	Semantic clarity
	High
	Low to medium
	High
	
	

	Interoperability
	Low
	Low
	High
	
	

	External maintenance
	Low
	Low
	High
	
	

	Validatability
	Low
	Low
	High
	
	

	Context rules friendliness
	Low?
	Low?
	High
	
	

	Upgradability
	High
	High
	Medium to high
	
	

	Compactness
	Medium to high
	High
	Medium to high
	
	

	Other
	
	
	Complicated XPaths, other processing difficulties?
	
	

5 Recommendation

@@So far, my recommendation is the namespaced element method. I think code lists are a special enough case, given that we want external organizations to maintain their own schema modules, for us to allow namespace-qualified prefixed elements into UBL. Also, these elements are always – by definition – at the leaf level, so XPaths needing to point to them will usually be able to isolate the difficulties to the last portion.

Appendix A. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

PAGE
15

