
Normalization

Submitted by Tim McGrath

In relational database design, normalization is the process of organizing data to minimize redundancy. Normalization usually involves dividing a database into two or more tables and defining relationships between the tables. The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database via the defined relationships.

There are three main normal forms, each with increasing levels of normalization:

 First Normal Form (1NF): Each field in a table contains different information. For example, in an employee list, each table would contain only one birthdate field.

 Second Normal Form (2NF): No field values can be derived from another field. For example, if a table already included a birthdate field, it could not also include a birth year field, since this information would be redundant.

 Third Normal Form (3NF): No duplicate information is permitted. So, for example, if two tables both require a birthdate field, the birthdate information would be separated into a separate table, and the two other tables would then access the birthdate information via an index field in the birthdate table. Any change to a birthdate would automatically be reflect in all tables that link to the birthdate table.

The underlying ideas in normalization are simple enough. Through normalization we want to design for our relational database a set of files that (1) contain all the data necessary for the purposes that the database is to serve, (2) have as little redundancy as possible, (3) accommodate multiple values for types of data that require them, (4) permit efficient updates of the data in the database, and (5) avoid the danger of losing data unknowingly.

Normalization can be viewed as a series of steps (i.e., levels) designed, one after another, to deal with ways in which tables can be "too complicated for their own good". The purpose of normalization is to reduce the chances for anomalies to occur in a database. The definitions of the various levels of normalization illustrate complications to be eliminated in order to reduce the chances of anomalies. At all levels and in every case of a table with a complication, the resolution of the problem turns out to be the establishment of two or more simpler tables which, as a group, contain the same information as the original table but which, because of their simpler individual structures, lack the complication.

To explain this concept we will use a typical business set of data – that commonly found in the shipment of goods.

The shipment of goods between a consignee (who gets the goods) and a consignor (who sends them) is also known as consignment, delivery, movement or transport of goods. It typically involves a third party organization who takes on the role of the freight forwarder. They manage the scheduling of the required transport (ship, plane, train, truck, etc.) and may supply the equipment necessary for efficient carriage of the goods. For example, customized containers for the holds of aircraft or refrigerated sea containers for carrying perishable goods. The contract of a shipment between the carrier and either the consignee or the consignor is often established by a document known as a shipping or forwarding instruction or a bill, waybill or bill of lading.

The following table (Table 1) gives three sample instances of data that may typically be used for shipping. The first two rows refer to a consignment of goods being shipped by sea and then road in a shipping container using two carriers. The third row relates to a separate air freight shipment.

	ContractID

	Transport Mode

	CarrierID

	EquipmentID

	SizeTypeCode

	SealNumber

	SealIssuer

	PONL40078678
	Sea
	P&ONL
	PONL12345

PONL34567
	4040

4020
	ABX123456

ABX123457
	ABC

ABC

	TNT9439287-5
	Road
	TNT
	PONL34567
	4020

	ABX123457

GGDFG99
	ABC

Customs

	180-1234567
	Air
	KE-Korean Air Cargo
	KAL12345
	747-K10
	XXX664
	

Table 1 Shipment Table
We shall use this set of data to demonstrate the principles of normalization.

Of course, we can present this data in any number of formats. Here is an XML instantiation of the same data.

<Shipment>

<ContractId>PONL40078678</ContractId>

<TransportModeId>Sea</TransportModeId>

<CarrierId>P&ONL</CarrierId>

<EquipmentId>PONL12345</EquipmentId>

<EquipmentId>PONL34567</EquipmentId>

<SizeTypeCode>4040</SizeTypeCode>

<SizeTypeCode>4020</SizeTypeCode>

<SealNumber>ABX123456</ SealNumber>

<SealIssuer>ABC</ SealIssuer>

<SealNumber>ABX123457</ SealNumber>

<SealIssuer>ABC</ SealIssuer>

</Shipment>

<Shipment>

<ContractId>TNT9439287-5</ContractId>

<TransportModeId>Road</TransportModeId>

<CarrierId>TNT</CarrierId>

<EquipmentId> PONL34567</EquipmentId>

<SizeTypeCode>4020</SizeTypeCode>

<SealNumber>ABX123457</ SealNumber>

<SealIssuer>ABC</ SealIssuer>

<SealNumber>GGDFG99</ SealNumber>

<SealIssuer>Customs</ SealIssuer>

</Shipment>

<Shipment>

<ContractId>180-1234567</ContractId>

<TransportModeId>Air</TransportModeId>

<CarrierId>KE-Korean Air Cargo</CarrierId>

<EquipmentId>KAL12345</EquipmentId>

<SizeTypeCode>747-K10</SizeTypeCode>

<SealNumber> XXX664</ SealNumber>

</Shipment>
The first thing to note is that the data present is ‘flat’ – we have one table/container called ‘shipment’ and all attributes or nested elements sit within this one structure. When data is a single flat structure like this, it is known as being in zero normal form (or de-normalized). The purpose of normalization is to put structure or ‘depth’ into the data.

The second thing to be aware of is the primary key (or keys) of our data. Within any set of data, one or more values may be used to uniquely identify a specific instance of an entry. For example, a ContractID may be used to identify precisely one row in the shipment table. So if we have a ContractID of “PONL40078678” then we should find one, and only one, entry with this value.

However, sometimes a single value may not be sufficiently individual to do this. For example, it is possible for different carriers to use the same identification numbers for their contracts. Technically, we could have two “PONL40078678” ContractIDs, one for P&ONL and another for OOCL shipping. There is no business convention to guard against this. So we may need both the CarrierID and the ContractID to be sure of uniqueness. At this stage, this particular issue would add to the complexity of our example, so we will assume that ContractID is good enough on its own as a unique key. However, as always, real business practice should be the guide for these decisions. It should suffice to say that when we talk of keys we mean the ‘entire’ key or set of values that can uniquely identify a single entry in our data.

With this in mind, the first step is to progress our data into First Normal Form.

1.1 First Normal Form

The aim of first normal form data is to ensure that all of the attributes are discrete i.e. can only take a single value. This is achieved by the removal of repeating groups into their own entities. For example, a large Shipment may require several ‘equipments’ or containers. This means we can have repeating EquipmentID, SealNumber and SizeTypeCode values in each cell of our table. First Normal Form says that these should be separated into a separate table as shown in table 2.

	ContractID
	Transport Mode
	CarrierID

	PONL40078678
	Sea
	P&ONL

	TNT9439287-5
	Road
	TNT

	180-1234567
	Air
	KE-Korean Air Cargo

Table 2 Shipment Table - 1NF

	ContractID
	EquipmentID
	SizeTypeCode
	SealNumber
	SealIssuer

	PONL40078678
	PONL12345
	4040
	ABX123456
	ABC

	PONL40078678
	PONL34567
	4020
	ABX123457
	ABC

	TNT9439287-5
	PONL34567
	4020
	ABX123457

GGDFG99
	ABC

Customs

	180-1234567
	KAL12345
	747-K10
	XXX664
	

Table 3 ShipmentEquipment Table - 0NF

A quick glance at the second table will reveal that we have included the ContractID in the second table as well as the first. This is because whenever we move elements into a new table of their own we include the key value of the original, parent table. We must do this to ensure we retain the association between the two pieces of data. In relational modeling this is called the ‘foreign’ key – it’s foreign because its home is in the parent table.

Another longer glance at the second table will show we still have repeating values in elements SealNumber and SealIssuer. This is because a container may have several seals attached, each with its own number. Therefore we need to separate SealNumber and SealIssuer from this new table, into a table of their own. But before we can do this we need to establish the key fields for the new ShipmentEquipment table. On the face of it, EquipmentID would appear sufficiently precise to be unique. In fact, international shipping conventions ensure that container numbers are unique globally. However, whilst at any particular moment in time an EquipmentID would be unique, containers are re-used in other shipments. This is the case here, where container “PONL34567” is taken off a ship and carried by road. So our key for ShipmentEquipment is both the ContractID and the EquipmentID. We then end up with the following….

	ContractID
	EquipmentID
	SizeTypeCode

	PONL40078678
	PONL12345
	4040

	PONL40078678
	PONL34567
	4020

	TNT9439287-5
	PONL34567
	4020

	180-1234567
	KAL12345
	747-K10

Table 4 ShipmentEquipment Table - 1NF

	ContractID
	EquipmentID
	SealNumber
	SealIssuer

	PONL40078678
	PONL12345
	ABX123456
	ABC

	PONL40078678
	PONL34567
	ABX123457
	ABC

	TNT9439287-5
	PONL34567
	ABX123457
	ABC

	TNT9439287-5
	PONL34567
	GGDFG99
	Customs

	180-1234567
	KAL12345
	XXX664
	

Table 5 ShipmentSeal Table - 1NF

The new table for ShipmentSeal has inherited the foreign key of both ContractID and EquipmentID. That is to say, this piece of equipment when used in this shipment has this seal.

1.2 Second Normal Form

The aim of second normal form data is to split off into separate tables any attributes that do not wholly depend on the entire key.

For example, when we look closely at the ShipmentEquipment table we can see that SizeTypeCode does not depend entirely on ContractID and EquipmentID (our two keys).

We can say that the size and type of a container depends on the EquipmentID. Every container has one EquipmentID and one size and type. “PONL34567” is a 40 foot container of standard features. If the EquipmentID value changed (ie a different container was used), then we could not be sure the SizeTypeCode would remain the same. SizeTypeCode is dependant on the EquipmentID.

The same cannot be said for ContractID. The value of ContractID can change without affecting the SizeTypeCode. For example, when the container is transferred to the truck for road haulage – its size and type do not change.

Second Normal Form tells us to separate these attributes that don’t depend on the entire key. In this case it is the SizeTypeCode and its dependant foreign key, EquipmentID, that form a new Equipment table.

	ContractID
	EquipmentID

	PONL40078678
	PONL12345

	PONL40078678
	PONL34567

	TNT9439287-5
	PONL34567

	180-1234567
	KAL12345

Table 6 - ShipmentEquipment table - 2 NF

	EquipmentID
	SizeTypeCode

	PONL12345
	4040

	PONL34567
	4020

	KAL12345
	747-K10

Table 7 Equipment table - 2 NF

1.3 Third Normal Form

To achieve a data model in Third Normal Form we must ensure that all Non-Key attributes are independent of one another. This is similar to Second Normal Form, but now we focus on the non-key dependencies.

For example, if we look at the ShipmentSeal table, we see that SealNumber and SealIssuer are not independent of each other. Neither are keys values, but there is a dependant relationship between them, for example if the SealIssuer where to change then the SealNumber would presumably change as well. So we must move SealIssuer and its dependant foreign key, SealNumber into a new table. In this case we shall call it the Seal table.

	ContractID
	EquipmentID
	SealNumber

	PONL40078678
	PONL12345
	ABX123456

	PONL40078678
	PONL34567
	ABX123457

	TNT9439287-5
	PONL34567
	ABX123457

	TNT9439287-5
	PONL34567
	GGDFG99

	180-1234567
	KAL12345
	XXX664

Table 8 ShipmentSeal table - 3 NF

	SealNumber
	SealIssuer

	ABX123456
	ABC

	ABX123457
	ABC

	GGDFG99
	Customs

	XXX664
	

Table 9 Seal table - 3 NF

1.4 Notations for Describing the Model

One of the most effective ways to describe the model we have built is by using a graphical notation such as Entity Attribute Relationship diagrams (Figure 1) or UML Class Diagrams (Figure 2).

[image: image1.wmf]Shipment

ShipmentEquipment

ShipmentSeal

Equipment

Seal

Figure 1 Model as EAR diagram

Figure 2 Model as UML Class Diagram

1.5 [image: image2.wmf]Shipment

ShipmentEquipment

ShipmentSeal

Equipment

Seal

Sensible use of Normalization

One of the significant lessons of data modeling is that there are occasions where the principles of design give way to the practicalities of implementation. We saw some of this in the discussion about primary keys for the Shipment table. We accepted that ContractID was near enough to being unique as to be the key field.

In our example, another practical consideration may be the merging of our ShipmentEquipment and ShipmentSeal tables – their de-normalization. We actually gain only a small advantage by having separate tables for these two, given the nature of their application. For example, we are unlikely to need to update either value as part of any normal transport operation. So it may be more efficient and technically simpler to reduce the number of tables we are using.

Many of these type of design decisions are pragmatic and based on the business rules of the required application. However, having the normalized model as a reference allows us to make these design decisions consciously and formally rather than on an ad-hoc basis. It is not critical to have a fully normalized data model – but it helps to know why it isn’t.

1.6 Applying Normalization to UBL

Currently, UBL uses a spreadsheet form to describe its logical models. We show associations or relationships by re-using the table/object class in our definitions. For example, where the re-usable type known as Equipment is used in Shipment, it is known as ShipmentEquipment.

Therefore, our example above can be described as…

	UBL Name
	Object Class
	Property Term
	Representation Term

	Shipment
	
	
	

	ContractID
	Shipment
	Contract
	Identifier

	Transport Mode
	Shipment
	Transport Mode
	Identifier

	CarrierID
	Shipment
	Carrier
	Identifier

	Equipment
	Shipment
	Equipment
	Equipment

	Equipment
	
	
	

	EquipmentID
	Equipment
	Identifier
	Identifier

	SizeTypeCode
	Equipment
	SizeType
	Code

	Seal
	Equipment
	Seal
	Seal

	Seal
	
	
	

	SealNumber
	Seal
	Identifier
	Identifier

	SealIssuer
	Seal
	Issuer
	Code

Using a simplistic version of the UBL XSD rules, this would be defined as:

<xsd:complexType name="ShipmentType" id="UBL000054">

<xsd:sequence>

<xsd:element name="ContractId" type="cct:IdentifierType" id="UBL000059" minOccurs="0">

</xsd:element>

<xsd:element name="TransportModeId" type="cct:IdentifierType" id="UBL000056" minOccurs="0">

</xsd:element>

<xsd:element name="CarrierId" type="cct:IdentifierType" id="UBL000058" minOccurs="0">

</xsd:element>

<xsd:element name="ShipmentEquipment" type="EquipmentType" id="UBL000062" minOccurs="0" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="EquipmentType" id="UBL000066">

<xsd:sequence>

<xsd:element name="Identifier" type="cct:IdentifierType" id="UBL000067" minOccurs="0">

</xsd:element>

<xsd:element name="SizeTypeCode" type="cct:CodeType" id="UBL000070" minOccurs="0">

</xsd:element>

<xsd:element name="Seal" type="SealType" id="UBL000075" minOccurs="0" maxOccurs="unbounded">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SealType" id="UBL000077">

<xsd:sequence>

<xsd:element name="Number" type="cct:IdentifierType" id="UBL000078">

</xsd:element>

<xsd:element name="IssuerCode" type="cct:CodeType" id="UBL000079" minOccurs="0">

</xsd:element>

</xsd:sequence>

</xsd:complexType>
This demonstrates how the relationships of our normalized model can be implemented as hierarchical structures in both our spreadsheet and XML forms.

1.7 Summary

Normalization is a formal and well established method of analyzing data structures. If applied consistently, then this technique will identify the logical containers necessary for building re-usable XML schemas. It can be used in conjunction with other analysis techniques to compare and refine data models.

Whilst its original purpose was to organize data to minimize redundancy and avoid data duplication, it is a powerful technique for improving the understanding of the data models necessary for re-usable libraries of components such as UBL.

� http://www.webopedia.com/TERM/N/normalization.html

� http://www.gslis.utexas.edu/~l384k11w/normover.html

� identifies a shipping contract that allows the supplier to ship goods under specific freight conditions or the carrier to bill against a specific contract.

� specifies the method or type of transportation of the shipment. Typically this may be sea, air or road.

� the identifier assigned by the agency to the carrier. This identifies the carrier being used for this stage of the shipment.

� identifies the information about one set of transport equipment related to the shipment. The most common example of transport equipment is a shipping container.

� the size and type of the transport equipment.

� identifies the seal number of the equipment.

� which party issues and is responsible for the seal.

22

12

1

