
[image: image15.wmf]

Time

Frequency

Frequency

Frequency

Intervals

Duration

Time

Frequency

Frequency

Frequency

Intervals

Duration

Universal Business Language (UBL)
Naming and Design Rules

Working Draft 18, 20 November 2002
Document identifier:

wd-ublndrsc-ndrdoc-18 (Word, PDF)

Location:

 http://www.oasis-open.org/committees/ubl/ndrsc/drafts/
Editors:

Bill Burcham, Sterling Commerce <bill_burcham@stercomm.com>

Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com> (primary editor)

Mark Crawford, LMI <MCRAWFORD@lmi.org>

Arofan Gregory, Aeon Consulting <arofan_gregory@hotmail.com>

Eve Maler, Sun Microsystems <eve.maler@sun.com>
Lisa Seaburg, Aeon Consulting <xmlgeek@gmi.net>
Contributors:

Fabrice Desré, France Telecom

Matt Gertner, Schemantix

Jessica Glace, LMI

Phil Griffin, Griffin Consulting

Michael Grimley, US NavyEduardo Gutentag, Sun Microsystems

Sue Probert, CommerceOne

Lisa Seaburg, Aeon Consulting

Gunther Stuhec, SAP

Paul Thorpe, OSS Nokalva

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML components for the UBL vocabulary.

Status:

This is a draft document and is likely to change on a weekly basis.
If you are on the ubl-ndrsc@lists.oasis-open.org list for NDR subcommittee members, send comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-open.org/committees/security/).

Copyright © 2001, 2002 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

51
Introduction

51.1
Audiences

51.2
Terminology and Notation

51.3
Guiding Principles

51.3.1
Adherence to general UBL guiding principles

71.3.2
Design For Extensibility

71.3.3
Code Generation

82
Choice of schema language

93
Relationship to ebXML Core Components

103.1
Rules for Mapping Business Information Entities, Their Properties, and Primitive Types to XML

144
XML Constructs

144.1
UBL Documentation

144.1.1
The UBL Dictionary

144.1.2
Other UBL Documentation

144.1.3
Embedded documentation

154.2
Naming and Design of XML Constructs

154.2.1
General Naming Rules

164.2.2
Rules for Mapping the UBL Syntax-Neutral Model to XML Constructs

174.2.3
Rules for Mapping the Core Component Types to XML Constructs

184.2.4
Rules for Using Code Lists with XML Constructs

184.2.5
Rules for Embedding Documentation into XML Constructs

194.3
Containership and element design

205
Modularity, Namespaces, and Versioning

205.1
Schema Module Concepts

235.2
Rules for Creating Namespaces

235.3
Rules for Namespace Identification

235.4
Rules for Schema Module Schema Location

245.5
Rules for Versioning

256
Facets

256.1
Introduction

256.2
Rules

277
Date and Time

277.1
Introduction

277.1.1
Rules for specific points of date/time

277.1.2
Rules for duration

277.1.3
Core Component Types and Representation Terms

287.1.4
Period

297.1.5
Frequency of recurrent period

338
Rules for Context

349
Code Lists

3510
UBL Messages

3510.1
General Message Rules

3611
References

3712
Technical Terminology

39Appendix A. UBL NDR Rules

40Appendix B. Notices

1 Introduction

This specification documents the rules and guidelines for the naming and design of XML components for the UBL library. It reflects only rules that have been agreed on by the OASIS UBL Naming and Design Rules Subcommittee (NDR SC). Proposed rules, and rationales for decided rules, appear in the accompanying NDR SC position papers, which are available at http://www.oasis-open.org/committees/ubl/ndrsc/.

The W3C XML Schema form of the UBL library is currently constructed automatically from the metamodel developed by the OASIS UBL Library Content Subcommittee (LC SC). Thus, most of the rules in this document are used to guide the development of the engine that generates the XSD schema modules; this engine is produced by the OASIS UBL Tools and Techniques Subcommittee (TT SC). Some of the rules address XML instance constructs and other practices that must be undertaken by humans, such as developers who are customizing UBL for their own purposes.

1.1 Audiences

There are two primary audiences for this document – the internal TC member/perl script writer, and the UBL customizer.
Unless otherwise specified, rules in this document apply to both the UBL Library and customizations thereof.
1.2 Terminology and Notation

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119]. Non-italicized forms of these words are used in the regular English sense.

Other italicized words have been defined in the Technical Terminology Section.

The bolding of words is used to represent example names or parts of names taken from the library.
The terms “W3C XML Schema” and “XSD” are used throughout this document. They are considered synonymous; both refer to XML Schemas that conform to the W3C Schema Recommendations [XSD]. See Section 12 for additional term definitions.
The notation [Rn] indicates a rule that requires conformance. Only rules are normative; all other text is explanatory.
1.3 Guiding Principles

1.3.1 Adherence to general UBL guiding principles

The UBL NDRSC is following the high-level guiding principles for the design of UBL as approved by the UBL TC. These principles are:

· Internet Use - UBL shall be straightforwardly usable over the Internet.

· Interchange and Application Use–UBL is intended for interchange and application use.

· Tool Use and Support - The design of UBL cannot make any assumptions about sophisticated tools for creation, management, storage, or presentation being available. . The lowest common denominator for tools is incredibly low (for example, Notepad), and the variety of tools used is staggering. We do not see this situation changing in the near term.

· Time Constraints–Urgency is a key item in the development of UBL. Many facets of XML are still being debated. UBL will make rapid “informed” decisions that may not agree with the ultimate “right” design decisions subsequently reached elsewhere.

· Legibility - UBL documents should be human-readable and reasonably clear

· Simplicity - The design of UBL must be as simple as possible (but no simpler).

· 80/20 Rule - The design of UBL should provide the 20% of features that accommodate 80% of the needs.

· Component Reuse–The design of UBL document types should share as many common features as possible. The essential nature of e-commerce transactions is to pass along information that gets incorporated again into the next transaction down the line. For example, a purchase order contains information that will be copied into the purchase order response. This forms the basis for our need for a core library of reusable components. In fact, reuse in this context is important not only for the efficient development of software, but also for keeping audit trails.

· Standardization - The number of ways to express the same information in a UBL document is to be kept as close to one as possible.

· Domain Expertise–UBL will leverage expertise in a variety of domains through interaction with appropriate development efforts.

· Customization and Maintenance - The design of UBL must enable customization and maintenance.

· Context Sensitivity - The design of UBL must ensure that context-sensitive document types aren’t precluded.

· Prescriptiveness–UBL design will balance prescriptiveness in any one usage scenario with prescriptiveness across the breadth of usage scenarios supported. Having precise, tight content models and datatypes is a good thing (and for this reason, we might want to advocate the creation of more document type “flavors” rather than less; see below). However, in an interchange format, it is often difficult to get the prescriptiveness that would be desired in any one usage scenario.

· Content Orientation - Most UBL document types should be as “content-oriented” (as opposed to merely structural) as possible. Some document types, such as product catalogs, will likely have a place for structural material such as paragraphs, but these will be rare.

· XML Technology–UBL design will avail itself of standard XML processing technology wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). However, UBL will be cautious about basing decisions on “standards” (foundational or vocabulary) that are works in progress.

· Relationship to Other Namespaces–UBL design will be cautious about making dependencies on other namespaces. UBL does not need to reuse existing namespaces wherever possible. For example, XHTML might be useful in catalogs and comments, but it brings its own kind of processing overhead, and if its use is not prescribed carefully it could harm our goals for content orientation as opposed to structural markup.

· Legacy formats - UBL is not responsible for catering to legacy formats; companies (such as ERP vendors) can compete to come up with good solutions to permanent conversion. This is not to say that mappings to and from other XML dialects or non-XML legacy formats wouldn’t be very valuable.

· Relationship to xCBL–UBL will not be a strict subset of xCBL, nor will it be explicitly compatible with it in any way.

1.3.2 Design For Extensibility

Many basic e-commerce document types are generally useful, but require minor structural modifications for specific tasks or markets. When a truly common XML structure is to be established for e-commerce, it needs to be easy and inexpensive to modify.

In EDI there has been a gradual increase in the number of published components to accommodate market-specific variations. Several efforts within the EDI community are focused on eliminating this problem; variations are a requirement, and one that is not easy to meet. A related EDI phenomenon is the overloading of the meaning and use of existing elements, which greatly complicates interoperation.

To avoid the high degree of cross-application coordination required to handle structural variations in EDI - and in DTD-based systems - it is necessary to accommodate the required variations in basic data structures without either overloading the meaning and use of existing data elements, or requiring wholesale addition of data elements. This can be accomplished by allowing implementers to specify new element types that inherit the properties of existing elements, and to also specify exactly the structural and data content of the modifications.

Many data structures used in e-commerce are very similar to “standard” data structures, but have some significant semantic difference native to a particular industry or process. This can be expressed by saying that extensions of core elements are driven by context [need ref here]. Context driven extensions should be renamed to distinguish them from their parents, and designed so that only the new elements require new processing.

Similarly, data structures should be designed so that processes can be readily engineered to ignore additions that are not needed.

1.3.3 Code Generation

Most of the schema modules in the UBL Library are generated automatically from the underlying model in order to ensure faithful adherence to the model. Therefore, the UBL design
process needs to ensure successful automation. For example, the model
needs to provide enough information to take advantage of schema
constraint opportunities, and the design rules that apply to these need
to avoid requiring human judgment at generation time
2 Choice of schema language

The UBL vocabulary is expressed in XSD.

3 Relationship to ebXML Core Components

UBL employs the methodology and model described in [CCTS]. In the terminology of that specification, the UBL vocabulary consists primarily of Aggregate Business Information Entities (ABIE). An ABIE is similar to a Class in object-oriented modeling (e.g. UML). An ABIE is similar to an entity in Entity Relationship modeling.

According to the [CCTS] each ABIE must have a unique name (Object Class Term). Each ABIE must have one or more BIE Properties. Each BIE Property must have a name (Property Term). That name must be unique within that ABIE.

There are two kinds of BIE Property. A Basic BIE Property represents an intrinsic property of an ABIE. An Association BIE Property represents an extrinsic property – in other words an association from one ABIE instance to another ABIE instance. It is the Association BIE Property that expresses the relationship between ABIEs.

In order to actually define the intrinsic structure of an ABIE, a set of Basic Business Information Entities is defined. These are the “leaf” types in the system in that they contain no Association BIE Properties, and no Basic BIE Properties. A BBIE must have a single Content Component and one or more Supplementary Components. A Content Component is of some Primitive Type.

Here’s a picture of the relevant parts of the Core Components metamodel:
Figure 3.1 The Core Component metamodel

[image: image2.wmf](part of) Core Components Metamodel

-Object Class Term

Aggregate Business Information Entity

-Object Class Term

Basic Business Information Entity

-Property Term

-cardinality

Association BIE Property

0..*

-to

1

-name

Primitive Type

0..*

-supplementaryComponents

1..*

0..*

-from

1

0..*

-contentComponent

1

-Property Term

-cardinality

Basic BIE Property

1

0..*

1

0..*

The preceding diagram depicts a summary of the Core Components metamodel. Whereas the Core Components metamodel encompasses two broad categories of model element, the Core Component and the Business Information Entity, UBL is concerned with only the latter.

Since UBL is concerning itself only with the development of Business Information Entities, and their realization in XML, the UBL metamodel speaks only in terms of BIE concepts. For instance, while the Core Components metamodel specifies that each BIE is “based on” a particular Core Component – that detail is not considered by UBL. UBL defines no Core Components.

Similarly, the Core Components metamodel describes parallel model elements to capture low-level types such as Identifiers, and Dates etc. In that metamodel, a Core Component Type describes these low-level types for use by Core Components, and (in parallel) a “Data Type” – corresponding to that Core Component Type, describes these low-level types for use by Business Information Entities. UBL is not, therefore concerned with Core Component Types since again, they pertain only to the Core Components model, which UBL is not specifying. UBL defines no Core Components, and UBL defines no Core Component Types.

That being said, you might rightly expect to see Data Type appear in the diagram above, however, since in the Core Components metamodel there is a one-to-one correspondence between a Data Type and a Business Information Entity, UBL has elected to define only the latter. The alternative would be for UBL to define Data Types (e.g. AmountType, CodeType, DateTimeType, etc.) and also to define corresponding BIE’s. To do so would add no value to the work product, so we will model only one. UBL defines no Data Types separate from BIE’s – there is only the BIE’s.

3.1 Rules for Mapping Business Information Entities, Their Properties, and Primitive Types to XML

A primary deliverable of the UBL effort is XML Schemas. These schemas declare a complex type for each ABIE, and a complex type for each BBIE. Each Association BIE Property becomes an element definition (within the appropriate complex type). Similarly each Basic BIE Property becomes an element definition within a complex type.

This diagram depicts the relationship between the ABIE model and the XML Schema/XML instance models:
Figure 3.2 ABIE and XML schema instance models

[image: image3.wmf]XML Model

XML Instance

XML Schema

(part of) Core Components Metamodel

-Object Class Term

Aggregate Business Information Entity

-Object Class Term

Basic Business Information Entity

-Property Term

-cardinality

Association BIE Property

0..*

-to

1

TypeDefinition

ElementDeclaration

-describes

1

0..*

-contains

1

-defines

0..*

1

1

1

1

Element

-parent

1

-child

0..*

Type

1

-defines

1

-defines

1

-implements

0..*

TypeName

-identifies

1

1

TagName

1..*

-describes

1

0..*

-describes

1

1

1

-name

Primitive Type

0..*

-supplementary

1..*

0..*

-from

1

0..*

-contentComponent

1

-Property Term

-cardinality

Basic BIE Property

1

0..*

1

0..*

1

1

Each ABIE results in a complex type declaration in the XML Schema. The complex type name is derived like this:

<ABIE Object Class Term>”Type”

Here are some examples:

	ABIE Object Class Term
	Complex Type Name

	Address
	AddressType

	Party

	PartyType

Each BBIE results in a complex type declaration in the XML Schema. The name of the complex type is derived like this:

<BBIE Object Class Term>”Type”

Here are some examples:

	BBIE Object Class Term
	Complex Type Name

	Amount
	AmountType

	DateTime

	DateTimeType

Each Basic BIE Property results in an element in the XML Schema. The tag name is derived like this:

<Basic BIE Property Property Term>((<BBIE Object Class Term> != “Text” && <Basic BIE Property Property Term> != <BBIE Object Class Term>) ? (<BBIE Object Class Term> == “Identifier” ? “ID” : <BBIE Object Class Term>)

So the tag name is the name of the Basic BIE Property followed by the name of the pertinent BBIE. If the BBIE is named “Text” or if the name of the Basic BIE Property is the same as the name of the BBIE then it must be elided. If the BBIE Object Class Term is Identifier then it is translated to “ID” in the tag name.

Here are some examples:

	Basic BIE Property Property Term
	BBIE Object Class Term
	Tag name

	Purpose
	Code
	PurposeCode

	Name
	Text
	Name

	Party
	Identifier
	PartyID

Each Association BIE Property results in an element definition in the XML Schema. The tag name is derived like this:

<Association BIE Property Property Term>((<Association BIE Property Property Term> != < ABIE Object Class Term of ABIE in the “to” role>) ? (<ABIE Object Class Term of ABIE in the “to” role >)

Here are some examples:

	Association BIE Property Property Term
	ABIE Object Class Term of ABIE in the “to” role
	Tag name

	Receiving

	Contact
	ReceivingContact

	Address
	Address
	Address

TODO: we need to add the excruciating details of mapping Basic Business Information Entities, and their associated content component and supplementary components to XSD and XMl.
4 XML Constructs

In W3C XML Schema, elements are defined in terms of complex or simple types and attributes are defined in terms of simple types. The rules in this section govern the consistent naming and structuring of these constructs and the manner of unambiguously and thoroughly documenting them in the UBL Library
4.1 UBL Documentation

4.1.1 The UBL Dictionary

The primary component of the UBL documentation is its dictionary. The entries in the dictionary fully define the pieces of information available to be used in UBL business messages. Each dictionary entry has a full name that ties the information to its standardized semantics, while the name of the corresponding XML element or attribute is only a shorthand for this full name. The rules for element and attribute naming and dictionary entry naming are different.

[d1] Each dictionary entry name must define one and only one fully qualified path (FQP) for an element or attribute.

The fully qualified path anchors the use of that construct to a particular location in a business message. The dictionary definition identifies any semantic dependencies that the FQP has on other elements and attributes within the UBL library that are not otherwise enforced or made explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also serves some of the functions of traditional implementation guides in this way.

4.1.2 Other UBL Documentation

Additional components of the UBL documentation include definitions of:

· XSD complex and simple types in the UBL library, including whether and how that type maps to a core component type

· The top-level elements in UBL that contain whole UBL messages

· Global attributes

· Summaries of Code Lists

· UBL-specific Core Component Types

· UBL-specific representation terms
The UBL documentation should be automatically generated to the extent possible, using embedded documentation fields in the structural definitions.

4.1.3 Embedded documentation

(Incorporate: [R] Element declarations must be accompanied by documentation in the form of an <xsd:annotation> element with an <xsd:documentation> element that has a source attribute value of “Use”. The documentation specifies the use of the element within its parent type. (Note: This is an incorrect use of the “source” attribute, which holds a URI (?).))

4.2 Naming and Design of XML Constructs

The rules in this section make use of the following special concepts related to XML elements and attributes.

[TBD: Make sure all these terms appear in the glossary.]

Top-level element: An element that encloses a whole UBL business message. Note that UBL business messages might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a UBL top-level element is not necessarily the root element of the XML document that carries it.

Lower-level element: An element that appears inside a business message.

Intermediate element: An element not at the top level that is of a complex type, only containing other elements and attributes.

Leaf element: An element containing only character data (though it may also have attributes). Note that, because of the XSD mechanisms involved, a leaf element that has attributes must be declared as having a complex type, but a leaf element with no attributes may be declared with either a simple type or a complex type.

Common attribute: An attribute that has identical meaning on the multiple elements on which it appears. A common attribute might or might not correspond to an XSD global attribute.

4.2.1 General Naming Rules

[R 1] Names must be in the English language, using the primary English spellings provided in the Oxford English Dictionary.

If the UBL Library is translated into other languages for localization purposes, these additional languages might require additional restrictions. Such restrictions are expected be formulated as additional rules and published as appropriate.

[R 2] XML names constructed from dictionary entry names must remove all periods, spaces, and other separators.

[R 3] Names must not use acronyms, abbreviations, or other word truncations, with the following list of exceptions:

· A Dun & Bradstreet number must appear as “DUNS”. [TBD: need example.]

· “Identifier” must appear as “ID”.

· “Uniform Resource Identifier” must appear as “URI” (example: the “Uniform Resource. Identifier” portion of the Binary Object. Uniform Resource. Identifier supplementary component becomes “URI” in the resulting XML name). This rule takes precedence over the rule that dictates a substitution of “ID” for “Identifier”.

[R 4] Names must not contain non-letter characters unless required by language-specific rules.
[R 5] Names must be in singular form unless the concept itself is plural (example: Goods).

[R 6] Names for XML constructs must use camel-case capitalization, such that each internal word in the name begins with an initial capital followed by lowercase letters (example: AmountContentType). All XML constructs other than attributes must use upper camel-case, with the first word initial-capitalized, while attributes must use lower camel-case, with the first word all in lowercase (example: unitCode), with the exception of attribute names consisting of one of the allowed acronyms, abbreviations, or truncations given in R3.

4.2.2 Rules for Mapping the UBL Syntax-Neutral Model to XML Constructs

The naming of Core Components is based on the following concepts taken from the ISO/IEC 11179 specification for data dictionaries [TBD: move stuff here from Eve’s paper]:

The names of elements and types are not faithful reproductions of the naming scheme used in the UBL Library’s syntax-neutral model for object classes and properties; truncation rules are applied to allow for reuse of element names across parent element environments and to maintain brevity and clarity.

[TBD: Add object class, aggregate BIE, syntax-neutral model, etc. to the glossary.]

[R 7] Every UBL business message must have a single corresponding top-level element.

[R 8] Every top-level element must be named according to the portion of the business process that it initiates (examples: Order, AdvanceShipNotice).

[R 9] For every object class (aggregate BIE) identified in the syntax-neutral model, a complex type definition and a corresponding global element declaration bound to that type must be created (example: from a Party. Details object class, a complex type/global element declaration pair is created). [TBD: complete the local/global decision and implement in this rule and below.]

The element thus created is useful for reuse in the building of new business messages. The complex type thus created is useful for both reuse and customization, in the building of both new and contextualized business messages. [TBD: point to a context methodology document or section from here.]

[R 10] The name of a complex type based on an object class must be the name of the object class, with the separators removed and with the “Details” suffix replaced with “Type” (example: The Party. Details object class becomes the PartyType complex type).

[R 11] An element name in a global element declaration based on an object class must be the name of the object class, with the separators removed and with “Details” removed (example: The Party. Details object class becomes a global Party element).

[R 12] For every complex type definition based on an object class, its content model must be defined such that it reflects each property of the object class as an element declaration, with its cardinality and positioning within the content model determined by the details of the syntax-neutral model (example: an optional Party. Address. Address property appearing as the first content of a Party. Details object class becomes the first element declaration inside the PartyType complex type, with a minOccurs value of “0”. [TBD: an element ref= declaration, or an element name= declaration?]

[R 13] An element name in an element declaration [TBD: ref= or name=?] based on a property must be the full dictionary name of the property in the syntax-neutral model, with the separators and object class term removed, and with the property term removed if it is identical or similar to the representation term, with the following term pairs considered similar: Identification/Identifier and Identification/Code. If the representation term is “Text”, it must be removed. If the representation term is “Identifier”, it must be replaced with “ID”. Examples: Person. Name. Text becomes Name, Person. Residence. Address becomes ResidenceAddress, and Address. Country. Identifier becomes CountryID. [TBD: This rule seems very long. Is there any way it can be broken down into multiple rules?]

If the object class term would have been helpful in the resulting XML name for clarity, it should be repeated in the property qualifier field. For example, if Party. Identification. Identifier would result in an element name of ID, and if this name would be confusing because a Party object has many different identifiers as properties, then the property should have been named Party. Party Identification. Identifier instead, resulting in an element name of PartyID.

[R 14] Every element declaration corresponding to a property must be bound to a type corresponding to the property’s representation term. Where the representation term corresponds to an object class (aggregate BIE), the complex type corresponding to that object class must be used. Where the representation term corresponds to a Core Component Type, the complex type corresponding to that Core Component Type must be used. Examples: A BuyerParty element declaration based on the Order. Buyer Party. Party property is bound to the PartyType complex type, and a CountryID element declaration based on the Address. Country. Identifier property is bound to the Identifier type that is defined in the CCT schema module. [TBD: what about restrictions and faceting of CCTs?]

4.2.3 Rules for Mapping the Core Component Types to XML Constructs

[R 15] A namespace schema module dedicated to defining types corresponding to the Core Component Types must be created.

[R 16] Each CCT must have at least one corresponding unique complex type and simple type, where the element content (governed by the xs:simpleContent construct and the CCT’s simple type) represents the content component of the CCT and whose attributes (defined in the complex type) each represent a supplementary component of the CCTs. [TBD: need example.]

Note that this rule relegates attribute usage to supplementary components only; all “primary” business data appears exclusively in element content. Note also that because all CCTs have a content component and because all object classes have at least one property, the UBL Library does not have any elements that are required to be empty by design. [TBD: do we once again need an empty-element rule, so that we can discourage customizers from adding their own and using them as booleans?]

[R 17] The complex type name corresponding to a CCT must be the CCT name, with the periods and spaces removed (example: the Quantity. Type CCT becomes the QuantityType complex type).

[R 18] The name of the simple type corresponding to the content component of a CCT must be the content component name, with the periods and spaces removed and with “Type” added to the end (example: the content component Amount. Content becomes AmountContentType).

[R 19] The name of the attribute corresponding to a supplementary component must be the name of the supplementary component, with the periods and spaces removed. The first field (the “object class” field) may be truncated, reworded, or removed as necessary for brevity and clarity. If the final field (the “representation term” field) is “Text”, it must be removed. If the final field is “Identifier”, it must be replaced with “ID”. Examples: Binary Object. Format. Text becomes format, Code List Identifier becomes codeListID, and Quantity. Unit. Code becomes unitCode.

[R 20] Mixed-content elements should not be used. [TBD: Rule about “Prose” RT? Or just wait until we have an actual case of mixed content?]

Note that mixed content in business documents is undesirable because white space in mixed content is difficult to handle and complicates processing, and because mixed-content models allow little useful control over the cardinality of elements.

[R 21] The CCT schema module may define a set of one or more common attributes that apply to all UBL elements.

[R 22] A common attribute should be declared as a global attribute only in cases where the attribute’s meaning is identical no matter what element it is used on, and where the attribute is useful on every UBL element. This rule applies to both external (such as xml:lang) and UBL-specific global attributes.

Note that this rule allows for the creation of common attributes that are allowed on every element but are not globally declared, and that need documentation of their meaning in each XML environment in which they are used.

[R 23] The names of UBL-specific global attributes must be based on assigned object class property names, as is done for elements that are properties. [TBD: need example.]

4.2.4 Rules for Using Code Lists with XML Constructs

[TBD: need to figure out interface of external code list schema modules with a handcrafted UBL module that incorporates their use.]

4.2.5 Rules for Embedding Documentation into XML Constructs

[R 24] Every type definition and element declaration must contain a structured set of annotations in following pattern, where the keyword is typically based on the spreadsheet column heading in the syntax-neutral model and the description is typically based on the content of the spreadsheet field:

<xs:annotation>

 <xs:documentation>

 <xhtml:div class=”KEYWORD1”>

 <xhtml:TAG>DESCRIPTION</xhtml:TAG>

 </xhtml:div>

 <xhtml:div class=”KEYWORD2”>

 ...

 </xhtml:div>

 ...

 </xs:documentation>

</xs:annotation>

[R 25] The following sets of annotations are required in type definitions and element declarations: [TBD: replace this list with Arofan’s table]

· UBL UID: The unique identifier assigned to the type in the UBL library.

· UBL Name: The complete name (not the tag name) of the type per the UBL library.

· Object Class: The Object Class represented by the type.

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component.

· Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

· Core Component UID: The UID of the Core Component on which the Type is based.

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”.

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

Following is an example of a complete set of annotations for a definition:

[TBD]

4.3

·
[R 26]
[R 27]
[R 28]
[R 29]
4.4

·
·
·
·
4.5
4.5.1

4.5.1.1

4.5.1.2
[R 30]
[R 31]
4.5.1.3

4.5.1.3.1
[R 32]
[R 33]
[R 34]
[R 35]
[R 36]
4.5.1.3.2
[R 37]
[R 38]

4.5.1.3.3

[R 39]

[R 40]
·
·

[R 41]
[R 42]
[R 43]
[R 44]
[R 45]
[R 46]
[R 47]
[R 48]
[R 49]
4.5.2

·
·

4.5.2.1

4.5.2.2

4.5.2.3
4.5.2.3.1

·
·
·
·
·
·
·
·
·
·
·
·
·
·

4.6 Containership and element design

5 Modularity, Namespaces, and Versioning

For an overview of current thinking on issues of modularity, namespace and versioning, consult the Modnamver position paper.
[R 50] The top-level element must be globally declared in a UBL root schema.
5.1 Schema Module Concepts

This section describes the mapping of XML namespaces onto XSD files:
Schema module: A schema document containing type definitions and element declarations.

Namespace schema module: A schema module that declares a target namespace and is likely to pull in (by including or importing) schema modules.
Internal schema module: A schema module that does not declare a target namespace.
[R 51] If a definition depends on named constructs found in another namespace, then that other namespace must be imported as a namespace schema module. The needed constructs must not be directly included as internal schema modules.
[R 52]
If a namespace is small enough then it can be completely specified within the RootSchema. For larger namespaces, more SchemaModules may be defined – call these InternalModules. The RootSchema for that namespace then include those InternalModules.

This structure provides encapsulation of namespace implementations.

A namespace “A” dependent upon type definitions or element declaration defined in another namespace “B” must import B’s RootSchema. “A” must not import internal schema modules of “B”.

The only place XSD “include” is used is within a RootSchema. When a namespace gets large, its type definitions and element declarations may be split into multiple SchemaModules (called InternalModules) and included by the RootSchema for that namespace.

Thus a namespace is an indivisible grouping of types. A “piece” of a namespace can never be used without all its pieces.

Here is a depiction of the component structure we’ve described so far. This is a UML Static Structure Diagram. It uses classes and associations to depict the various concepts we’ve been discussing:
Figure 5.1 UML Static Structure Diagram
[image: image1.png]
You can see that there are two kinds of schema module: RootSchema and “InternalModule”. A RootSchema may have zero or more InternalModules that it includes. Any SchemaModule, be it a RootSchema or an InternalModule may import other RootSchemas.

The diagram shows the 1-1 correspondence between RootSchemas and namespaces. It also shows the 1-1 correspondence between files and SchemaModules. A SchemaModule consists of type definitions and element declarations.

Another way to visualize the structure is by example. The following informal diagram depicts instances of the various classes from the previous diagram.
Figure 5.2 Classes
[image: image10.wmf]

SchemaModule

RootSchema

InternalModule

1

-included

0..*

0..*

-imported

0..*

File

1

1

Namespace

1

1

TypeDefinition

ElementDeclaration

1

0..*

1

0..*

The preceding diagram shows how the order and invoice RootSchemas import the “CommonAggregateTypes” and “CommonLeaf Types” RootSchemas. It also shows how e.g. the order RootSchema includes various InternalModules – modules local to that namespace. The clear boxes show how the various SchemaModules are grouped into namespaces.

UBL is structured so that a user can import a piece without getting the whole. It must be possible, for instance for a user to import the CommonLeafTypes namespace without causing the CommonAggregateTypes to be imported. It must be possible for a user to import the CommonAggregateTypes namespace without causing the Order namespace to be imported. It must be possible to import any one of the “vertical” namespaces, e.g. Order without causing another, e.g. Invoice to be imported.

If two namespaces are mutually dependent then clearly, importing one will cause the other to be imported as well. For this reason there must not exist circular dependencies between UBL SchemaModules. By extension, there must not exist circular dependencies between namespaces. This rule is not limited to direct dependencies – transitive dependencies must be taken into account also.

5.2 Rules for Creating Namespaces

Given the conceptual framework of the previous section, important questions remain: how many namespaces are needed? What is the function of each?

This section makes explicit the namespace structure given implicitly in the previous section. The UBL library consists of four namespaces. The Common Leaf Types namespace defines all the Basic Business Information Entities. A Common Aggregate Types namespace defines reusable Aggregate Business Information Entities based on the types defined in the Common Leaf Types namespace.

Two higher-level “domain” namespaces are defined, one for the “ordering” domain and another for the “invoicing” domain. The Order Domain namespace defines message types and ABIEs specific to the ordering domain. Similarly, the Invoice Domain namespace defines message types and ABIEs specific to the invoicing domain.

	Purpose
	Namespace name

	Common Leaf Types -- this is where Basic Business Information Entities are defined.
	urn:oasis:names:tc:ubl:CommonLeafTypes[TBD version info]

	Common Aggregate Types – this is where Aggregate BIE’s used across various domains are defined.
	urn:oasis:names:tc:ubl:CommonAggregateTypes[TBD version info]

	Order Domain – this is where ordering-related message types and their order-specific ABIE’s are defined.
	urn:oasis:names:tc:ubl:Order[TBD version info]

	Invoice Domain – this is where invoicing-related message types and their invoicing-specific ABIE’s are defined.
	urn:oasis:names:tc:ubl:Invoice[TBD version info]

5.3 Rules for Namespace Identification

[R] The namespace names for UBL namespaces must have the following structure while the schemas are at draft status:

urn:oasis:names:tc:ubl:schema{:subtype}?:{document-id}

[R] When they move to specification status the form must change to:

urn:oasis:names:specification:ubl:schema{:subtype}?:{document-id}

[R] Where the form of {document-id} is TBD but it should match the schema module name (see section).

5.4 Rules for Schema Module Schema Location

[R] Schema location must include the complete URI which is used to identify schema modules.

[R] In the fashion of other OASIS specifications, UBL schema modules will be located under the UBL committee directory:

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd
Where <schema-mod-name> is the name of the schema module file. The form of that name is TBD.
5.5 Rules for Versioning

[R 53] Each namespace should have a version. TBD:

6 Facets

6.1 Introduction

The following rules have been defined for the handling of facets.

6.2 Rules

[R] The content component of a basic core component with attributes must be a restriction of a simple type.

For Example:

<xsd:simpleType name="AmountContent">

<xsd:restriction base="decimal">

<xsd:totalDigits value="31"/>

</xsd:restriction>

</xsd:simpleType>
[R] All basic core components and basic information entities that include content components must use user defined types that are based on a simpleType.

Example:

<xsd:simpleType name="AmountContent">

<xsd:restriction base="decimal">

<xsd:totalDigits value="31"/>

</xsd:restriction>

</xsd:simpleType>
[R] Every basic core component or basic business information entity must be created by a ComplexType which refers to the appropriate Simple Type inside of the element <extension>.
Example:

<xsd:complexType name="Amount">

<xsd:simpleContent>

<xsd:extension base="A">

<xsd:attribute name="currencyId" use="required" id="000107">

<xsd:simpleType>

<xsd:restriction base="token">

<xsd:length value="3"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

7 Date and Time

7.1 Introduction

Rules for the following aspects of time have been formulated. These aspects of time are:

· specific point of date and/or time

· durations, i.e. measurements of time

· periods between particular points in date and or time
· frequency of a defined period
ISO 8601 (as described in XML Schema Part 2) is used for the lexical description of the built in datatypes DateTime, Date, Time and Duration. Its periods and recurrence rules are not satisfactory for the description of these aspects. Rather an XML structure is more flexible for this purpose.
7.1.1 Rules for specific points of date/time

[R] For each specific point in time the built in datatype from XML schema (Part 2) must be used. These are xsd:time, xsd:date, xsd:dateTime.

7.1.2 Rules for duration

The expression of duration requires the use of an additional secondary Representation Term called Duration. Type.
[R] For the expression of the Representation Term Duration. Type the XSD built in datatype xsd:Duration must be used. For example

<simpleType name="DurationContent" id="000300">

<restriction base="duration">

<pattern value='P\p{Nd}{4}Y\p{Nd}{2}M\p{Nd}{2}D'/>

</restriction>

</simpleType>

<complexType name="DurationType" id="000299">

<simpleContent>

<extension base="decimal">

<attributeGroup ref="cct:commonAttributes"/>

</extension>

</simpleContent>

</complexType>

7.1.3 Core Component Types and Representation Terms

[R] There is a one to one correspondence between Core Component Types and Representation Terms. Where additional property terms like Year, YearMonth, are used then the additional built in datatypes from XML Schema part 2 must be used. These additional datatypes are: xsd:gYear, xsd:gYearMonth, xsd:gMonth, xsd:gMonthDay, and xsd:gDay.
7.1.4 Period

[R] A period can be expressed using the Aggregate Core Component (ACC) PeriodDetails. The ACC is divided into 3 representation types, Date, Time and DateTime. One of these must be selected. Each option has a start and end date, start and end time or start DateTime and end DateTime.
[image: image4.png]
XML-Schema:

<complexType name="PeriodDetails">

<sequence>

<choice>

<element name="StartTime"

type="cct:TimeType"/>

<element name="StartDate" type="cct:DateType"/>

<element name="StartDateTime" type="cct:DateTimeType"/>

</choice>

<choice>

<element name="EndTime" type="cct:TimeType"/>

<element name="EndDate" type="cct:DateType"/>

<element name="EndDateTime" type="cct:DateTimeType"/>

</choice>

</sequence>

</complexType>

XML-Instance:

<ValidityPeriod>

<StartDate>1967-08-13</StartDate>

<EndDate>1967-08-13</EndDate>
This example is stating that the validity period is from the 13th Aug 1967 to 13th August 1967, i.e. that day.

[R] For each representation term the equivalent data type must be used i.e. if the representation term Date is used, then the corresponding built in datatype xsd:date must be used.
7.1.5 Frequency of recurrent period
This represents a recurring times and/or dates within a duration period (start and end date/-time) or a duration (measure of time). There are four different types of recurrence:

1. By a number of recurrences at points over a defined period of time

2. By recurrences at time intervals over a period, with the indicated duration for each time-interval between recurrences.

3. By a number of recurrences over a duration.

4. By recurrences at time intervals over a duration, with the indicated duration for each time-interval between recurrences.
It is possible to represent each of these four types of recurrent periods by a single structure. This structure looks as follows:
[image: image5.png]
7.1.5.1 Number of recurrences at points over a defined period of time
[image: image11.wmf]urn:oasis:names:tc:ubl:

CommonLeafTypes

urn:oasis:names:tc:ubl:

CommonAggregateTypes

urn:oasis:

names:tc:ubl:

Invoice

urn:oasis:

names:tc:ubl

:Order

Common

LeafTypes

Invoice

Order

Common

Aggregate

Types

Internal

Module

Root

schema

import

include

X:y:z

Namespace

To represent defined points in a time period, the following components of the structure are required:

[image: image6.png]
[image: image12.wmf]

Time

Beginning Date and/or

Time

Ending Date and/or

Time

Frequency

Frequency

Frequency

Time

Beginning Date and/or

Time

Ending Date and/or

Time

Frequency

Frequency

Frequency

[R] The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.
[R] The recurrence of these periods in time may be represented by the BCC RecurrenceValue.
7.1.5.2 Recurrences at time intervals over a period
To represent defined interval in a time period, the following components of the structure are required:

[image: image7.png]
[R] The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.

[R] The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.
7.1.5.3 Number of recurrences over a duration
[image: image13.wmf]Time

Beginning Date and/or

Time

Ending Date and/or

Time

Frequency

Frequency

Frequency

Time

Beginning Date and/or

Time

Ending Date and/or

Time

Intervals

Time

Beginning Date and/or

Time

Ending Date and/or

Time

Frequency

Frequency

Frequency

Time

Beginning Date and/or

Time

Ending Date and/or

Time

Intervals

To represent the number of recurrences over a duration, the following components of the structure are required:
[image: image8.png]
[R] Duration may be expressed by the BCC Duration.

[R] The number of recurrences may be expressed by the BCC RecurrenceValue.

7.1.5.4 [image: image14.wmf]

Time

Frequency

Frequency

Frequency

Duration

Time

Frequency

Frequency

Frequency

Duration

Recurrences at time intervals over a duration
To represent the recurrences of intervals over a duration, the following components of the structure are required:

[image: image9.png]
[R] Duration may be expressed by the BCC Duration.

[R] The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.

8 Rules for Context

For an overview of current thinking on Context Rules, consult the Specialization Architecture position paper from the Context Methodology Subcommittee.

9 Code Lists

See the separate Code List Recommendation paper for details of the NDRSC's recommendations for code lists.

10 UBL Messages

10.1 General Message Rules

The following general rules for messages must be applied.

· A UBL message set may be extended where desirable if the business function of the UBL original is retained., but the message exists within its own business context.

· According to the XML Recommendation [XML], the legal characters in XML character data are tab, carriage return, line feed, and the legal
characters of Unicode and ISO/IEC 10646, as these standards are updated
from time to time. It further notes that "The mechanism for encoding
character code points into bit patterns may vary from entity to entity"
and requires all XML processors (parsers) to accept the UTF-8 and UTF-16
encodings of 10646. UBL has the same requirements for legal characters
in XML instance documents and the same minimal requirements for
character encoding support in UBL-aware software. Trading partners may
agree on other character encodings to use among themselves. It is
recommended in all case that encoding declarations be provided in the
XML declarations of UBL documents.

· UBL messages must express semantics fully in schemas and not rely merely on well-formedness.

· Instances conforming to schemas should be readable and understandable, and should enable reasonably intuitive interactions.

· In the context of a schema, information that expresses correspondences between data elements in different classification schemes (“mappings”) may be regarded as metadata. This information should be accessible in the same manner as the rest of the information in the schema.

11 References

[CCTS]
UN/CEFACT Draft Core Components Specification 30 September, 2002, Version 1.85

[CCFeedback]
Feedback from OASIS UBL TC to Draft Core Components Specification 1.8, version 5.2, May 4, 2002, http://oasis-open.org/committees/ubl/lcsc/doc/ubl-cctscomments-5p2.pdf.
[GOF]
Design Patterns, Gamma, et al. ISBN 0201633612
[ISONaming]
ISO/IEC 11179, Final committee draft, Parts 1-6.
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[UBLChart]
UBL TC Charter, http://oasis-open.org/committees/ubl/charter/ubl.htm
[XML]
Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6, 2000

[XSD]
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.

12 Technical Terminology

	Application-level validation
	Adherence to business requirements, such as valid account numbers.

	Ad hoc schema processing
	Doing partial schema processing, but not with official schema validator software; e.g., reading through schema to get the default values out of it.

	Assembly
	Using parts of the library of reusable UBL components to create a new kind of business document type.

	Context
	A particular set of context driver values.

	DTD validation
	Adherence to an XML 1.0 DTD.

	Instance constraint checking
	Additional validation checking of an instance, beyond what XSD makes available, that relies only on constraints describable in terms of the instance and not additional business knowledge; e.g., checking co-occurrence constraints across elements and attributes. Such constraints might be able to be described in terms of Schematron.

	Generic BIE
	A semantic model that has a “zeroed” context. We are assuming that it covers the requirements of 80% of business uses, and therefore is useful in that state.

	Instance root/doctype
	This is still mushy. The transitive closure of all the declarations imported from whatever namespaces are necessary. A doctype may have several namespaces used within it.

	Root Schema
	A schema document corresponding to a single namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root schema always pull in the “meat” of the definitions for that namespace, regardless of how small it is?

	Schema
	Never use this term unqualified!

	Schema Module
	A “schema document” (as defined by the XSD spec) that is intended to be taken in combination with other such schema documents to be used.

	Schema Processing
	Schema validation checking plus provision of default values and provision of new infoset properties.

	Schema Validation
	Adherence to an XSD schema.

	Well-Formedness Checking
	Basic XML 1.0 adherence.

(This is text to be used in defining Parent type and type bindings.) General Overview of Types

In XSD, elements are declared to have types, and most types (those complex types that are defined to have “complex contents”) are defined as a pattern of subelements and attributes. Thus, XSD has an indirect nesting structure of elements and types (where, for example, Type 1 below is the parent type of Element A and where Type 2 is the parent type of Element B and the type bound to Element A):

· Type 1

· Element A

· Type 2

· Element B

Appendix A. UBL NDR Rules

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

22

12
wd-ublndrsc-ndrdoc-18 (18-11-2002)
3
18 November 2002

_1096123930.vsd
�

�

�

�

�

�

Static Structure�

�

�

SchemaModule�

�

�

�

RootSchema�

�

�

�

�

�

InternalModule�

�

�

�

�

�

1�

-included�

0..*�

�

�

0..*�

-imported�

0..*�

�

�

File�

�

�

�

1�

�

1�

�

�

Namespace�

�

�

�

1�

�

1�

�

�

TypeDefinition�

�

�

�

ElementDeclaration�

�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

_1096356620.vsd
�

�

�

�

�

�

�

�

0..*�

-contentComponent�

1�

�

-Object Class Term�

Aggregate Business Information Entity�

�

(part of) Core Components Metamodel�

�

-Object Class Term�

Basic Business Information Entity�

�

�

-Property Term
-cardinality�

Association BIE Property�

�

�

-Property Term
-cardinality�

Basic BIE Property�

�

�

�

�

1�

�

0..*�

�

�

1�

�

�

0..*�

�

�

0..*�

-from�

1�

-to�

1�

0..*�

�

-name�

Primitive Type�

�

�

�

0..*�

-supplementaryComponents�

1..*�

_1096124014.vsd
urn:oasis:�names:tc:ubl:Order�

�

Internal Module�

�

Root schema�

Order�

Common�Aggregate�Types�

Common�LeafTypes�

�

import�

�

include�

urn:oasis:�names:tc:ubl:�Invoice�

X:y:z�

Namespace�

urn:oasis:names:tc:ubl:�CommonAggregateTypes�

urn:oasis:names:tc:ubl:�CommonLeafTypes�

Invoice�

_1095657965.vsd
�

�

�

�

�

�

�

�

0..*�

-contentComponent�

1�

�

-Object Class Term�

Aggregate Business Information Entity�

�

(part of) Core Components Metamodel�

�

-Object Class Term�

Basic Business Information Entity�

�

�

�

TypeDefinition�

�

�

-Property Term
-cardinality�

Association BIE Property�

�

�

-Property Term
-cardinality�

Basic BIE Property�

�

�

�

�

ElementDeclaration�

�

�

-describes�

1�

�

0..*�

�

-contains�

�

�

1�

�

0..*�

�

�

1�

�

�

0..*�

�

�

0..*�

-from�

1�

-to�

1�

0..*�

�

�

1�

�

1�

�

-name�

Primitive Type�

�

1�

-defines�

0..*�

�

�

1�

�

1�

�

�

1�

�

1�

XML Model�

�

�

Element�

�

�

-parent�

1�

-child�

0..*�

�

�

Type�

�

�

�

1�

-defines�

1�

�

-defines�

1�

-implements�

0..*�

XML Schema�

XML Instance�

�

�

TypeName�

�

�

-identifies�

1�

�

1�

�

�

TagName�

�

�

�

1..*�

-describes�

1�

�

�

0..*�

-describes�

1�

�

�

1�

�

1�

�

�

0..*�

-supplementary�

1..*�

