[R 1] Names must be in the English language, using the primary English spellings provided in the Oxford English Dictionary.

[R 2] XML names constructed from dictionary entry names must remove all periods, spaces, and other separators.

[R 3] Names must not use acronyms, abbreviations, or other word truncations, with the following list of exceptions:

[R 4] Names must not contain non-letter characters unless required by language-specific rules.
[R 5] Names must be in singular form unless the concept itself is plural (example: Goods).

[R 6] Names for XML constructs must use camel-case capitalization, such that each internal word in the name begins with an initial capital followed by lowercase letters (example: AmountContentType). All XML constructs other than attributes must use upper camel-case, with the first word initial-capitalized, while attributes must use lower camel-case, with the first word all in lowercase (example: unitCode), with the exception of attribute names consisting of one of the allowed acronyms, abbreviations, or truncations given in R3.

[R 7] Every UBL business message must have a single corresponding top-level element.

[R 8] Every top-level element must be named according to the portion of the business process that it initiates (examples: Order, AdvanceShipNotice).

[R 9] For every object class (aggregate BIE) identified in the syntax-neutral model, a complex type definition and a corresponding global element declaration bound to that type must be created (example: from a Party. Details object class, a complex type/global element declaration pair is created). [TBD: complete the local/global decision and implement in this rule and below.]

[R 10] The name of a complex type based on an object class must be the name of the object class, with the separators removed and with the “Details” suffix replaced with “Type” (example: The Party. Details object class becomes the PartyType complex type).

[R 11] An element name in a global element declaration based on an object class must be the name of the object class, with the separators removed and with “Details” removed (example: The Party. Details object class becomes a global Party element).

[R 12] For every complex type definition based on an object class, its content model must be defined such that it reflects each property of the object class as an element declaration, with its cardinality and positioning within the content model determined by the details of the syntax-neutral model (example: an optional Party. Address. Address property appearing as the first content of a Party. Details object class becomes the first element declaration inside the PartyType complex type, with a minOccurs value of “0”. [TBD: an element ref= declaration, or an element name= declaration?]

[R 13] An element name in an element declaration [TBD: ref= or name=?] based on a property must be the full dictionary name of the property in the syntax-neutral model, with the separators and object class term removed, and with the property term removed if it is identical or similar to the representation term, with the following term pairs considered similar: Identification/Identifier and Identification/Code. If the representation term is “Text”, it must be removed. If the representation term is “Identifier”, it must be replaced with “ID”. Examples: Person. Name. Text becomes Name, Person. Residence. Address becomes ResidenceAddress, and Address. Country. Identifier becomes CountryID. [TBD: This rule seems very long. Is there any way it can be broken down into multiple rules?]

[R 14] Every element declaration corresponding to a property must be bound to a type corresponding to the property’s representation term. Where the representation term corresponds to an object class (aggregate BIE), the complex type corresponding to that object class must be used. Where the representation term corresponds to a Core Component Type, the complex type corresponding to that Core Component Type must be used. Examples: A BuyerParty element declaration based on the Order. Buyer Party. Party property is bound to the PartyType complex type, and a CountryID element declaration based on the Address. Country. Identifier property is bound to the Identifier type that is defined in the CCT schema module. [TBD: what about restrictions and faceting of CCTs?]

[R 15] A namespace schema module dedicated to defining types corresponding to the Core Component Types must be created.

[R 16] Each CCT must have at least one corresponding unique complex type and simple type, where the element content (governed by the xs:simpleContent construct and the CCT’s simple type) represents the content component of the CCT and whose attributes (defined in the complex type) each represent a supplementary component of the CCTs. [TBD: need example.]

[R 17] The complex type name corresponding to a CCT must be the CCT name, with the periods and spaces removed (example: the Quantity. Type CCT becomes the QuantityType complex type).

[R 18] The name of the simple type corresponding to the content component of a CCT must be the content component name, with the periods and spaces removed and with “Type” added to the end (example: the content component Amount. Content becomes AmountContentType).

[R 19] The name of the attribute corresponding to a supplementary component must be the name of the supplementary component, with the periods and spaces removed. The first field (the “object class” field) may be truncated, reworded, or removed as necessary for brevity and clarity. If the final field (the “representation term” field) is “Text”, it must be removed. If the final field is “Identifier”, it must be replaced with “ID”. Examples: Binary Object. Format. Text becomes format, Code List Identifier becomes codeListID, and Quantity. Unit. Code becomes unitCode.

[R 20] Mixed-content elements should not be used. [TBD: Rule about “Prose” RT? Or just wait until we have an actual case of mixed content?]

[R 21] The CCT schema module may define a set of one or more common attributes that apply to all UBL elements.

[R 22] A common attribute should be declared as a global attribute only in cases where the attribute’s meaning is identical no matter what element it is used on, and where the attribute is useful on every UBL element. This rule applies to both external (such as xml:lang) and UBL-specific global attributes.

[R 23] The names of UBL-specific global attributes must be based on assigned object class property names, as is done for elements that are properties. [TBD: need example.]

[R 24] Every type definition and element declaration must contain a structured set of annotations in following pattern, where the keyword is typically based on the spreadsheet column heading in the syntax-neutral model and the description is typically based on the content of the spreadsheet field:

[R 25] The following sets of annotations are required in type definitions and element declarations: [TBD: replace this list with Arofan’s table]

[R 26] The nillable attribute must not be used in any UBL schema. The element declaration of xsi:nil shall not appear in any UBL conforming instance.

[R 27] The top-level element must be globally declared in a UBL root schema.

[R 28] If a definition depends on named constructs found in another namespace, then that other namespace must be imported as a namespace schema module. The needed constructs must not be directly included as internal schema modules.

[R 29] The namespace names for UBL namespaces must have the following structure while the schemas are at draft status:

urn:oasis:names:tc:ubl:schema{:subtype}?:{document-id}

[R 30] When they move to specification status the form must change to:

urn:oasis:names:specification:ubl:schema{:subtype}?:{document-id}

[R 31] Where the form of {document-id} is TBD but it should match the schema module name (see section).

[R 32] Schema location must include the complete URI which is used to identify schema modules.

[R 33] [R] In the fashion of other OASIS specifications, UBL schema modules will be located under the UBL committee directory:

[R 34] Each namespace should have a version. TBD:

[R 35] A Core Component Type without any restriction of the Content Component must be defined by a complexType. This complexType includes a simpleContent group with a extension for all relevant global and local attributes (Supplementary Components) of this Core Component Type. The base type definition of this extension must be based on one of the decided built-in datatypes (see table ###).

[R 36] If the Content Component of a Core Component Type is restricted by any kind of facets, this Content Component must be a restriction of a simpleType. The name of the simpleType must be ending with the suffix “Content”.

[R 37] The Core Component Type with the restricted Content Component must refer to the relevant named simpleType.
[R 38] A restricted Supplementary Component (local attribute) within a Core Component Type must have a restriction of its simpleType. The base type definition of the restriction must refer to one of the decided built-in datatypes (see table ###). The restriction itself should have all relevant facets.

[R 39] A complexType of a Basic Core Component as well as Basic Business Information Entity without any additional restrictions must be a extension of a simpleContent. The base type definition of the extension must refer to the complexType of the relevant Core Component Type.

[R 40] A complexType of a Basic Core Component as well as Basic Business Information Entity with any additional restrictions must be a restriction of a simpleContent. The base type definition of the restriction must refer to the complexType of the relevant Core Component Type. The element group of the restriction includes all required facets.

[R 41] If a global attribute or a Supplementary Component (local attribute) should be restricted within a Basic Core Component as well as a Basic Business Information Entity, there must be a restriction of a simpleContent. The base type definition of the restriction must refer to the complexType of the relevant Core Component Type. This restriction includes the attribute or attributes, which should be restricted. The simpleType of each attribute must be a restriction, again. This restriction includes all relevant facets.
[R 42] If a Basic Core Component as well as a Basic Business Information Entity should have one or more restricted Supplementary Components (local attributes) and a restricted Content Component, the simpleContent of the complexType must be a restriction. This base type definition of the restriction must refer to the complexType of the relevant Core Component Type. This restriction must include all facets and restricted attributes. The simpleType of each attribute must be a restriction, too. This restriction should have all relevant facets of each restricted attribute.
[R 43] Standardized identifiers whose identification schemes are administrated by an agency from the code list DE 3055.

[R 44] Proprietary identifiers whose identification schemes are administrated by an agency that is identified using a standard.

[R 45] Proprietary identifiers whose identification schemes are administrated by an agency that is identified proprietarily.

[R 46] Proprietary identifiers whose identification schemes are administrated by an agency that is specified either using a role or not at all. The role is specified as a prefix in the tag name. SchemeId and schemeVersionId can be used as attributes if there is more than one identification scheme. If there is only one identification scheme, no attributes are required.

[R 47] For each specific point in time the built in datatype from XML schema (Part 2) must be used. These are xsd:time, xsd:date, xsd:dateTime.

[R 48] For the expression of the Representation Term Duration. Type the XSD built in datatype xsd:Duration must be used. For example

[R 49] A period can be expressed using the Aggregate Core Component (ACC) PeriodDetails. The ACC is divided into 3 representation types, Date, Time and DateTime. One of these must be selected. Each option has a start and end date, start and end time or start DateTime and end DateTime.

[R 50] For each representation term the equivalent data type must be used i.e. if the representation term Date is used, then the corresponding built in datatype xsd:date must be used.

[R 51] The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.

[R 52] The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.

[R 53] Duration may be expressed by the BCC Duration.

[R 54] The number of recurrences may be expressed by the BCC RecurrenceValue.

[R 55] Duration may be expressed by the BCC Duration.

[R 56] The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.

[R 57] A UBL message set may be extended where desirable if the business function of the UBL original is retained., but the message exists within its own business context.

[R 58] According to the XML Recommendation [XML], the legal characters in XML character data are tab, carriage return, line feed, and the legal
characters of Unicode and ISO/IEC 10646, as these standards are updated
from time to time. It further notes that "The mechanism for encoding
character code points into bit patterns may vary from entity to entity"
and requires all XML processors (parsers) to accept the UTF-8 and UTF-16
encodings of 10646. UBL has the same requirements for legal characters
in XML instance documents and the same minimal requirements for
character encoding support in UBL-aware software. Trading partners may
agree on other character encodings to use among themselves. It is
recommended in all case that encoding declarations be provided in the
XML declarations of UBL documents.

[R 59] UBL messages must express semantics fully in schemas and not rely merely on well-formedness.

[R 60] Instances conforming to schemas should be readable and understandable, and should enable reasonably intuitive interactions.

[R 61] In the context of a schema, information that expresses correspondences between data elements in different classification schemes (“mappings”) may be regarded as metadata. This information should be accessible in the same manner as the rest of the information in the schema.

[R 62] The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.

[R 63] The recurrence of these periods in time may be represented by the BCC RecurrenceValue.

