1.1 Rules for Versioning UBL

A minor version is in a new namespace and a specialization of a major version.

A minor version is or must be reflectable as a ??? get text from Arofan and Bill.

Every major version will have the URI of:

urn:oasis:names:tc:ubl:Order:major-number:0
The first minor version release will have the URI of:

urn:oasis:names:tc:ubl:Order:major-number:1…

Question: Do we need a rule about the names of things, every time we change something within a version/namespace it keeps the same name. What happens if the only thing is a name change?

[A: Proposed Rule] When minor version changes are being made, then the name of the version construct will not change (short name not qualified name), unless the intent of the change is to rename the construct.

[R 1] Each version should have a namespace.

[R 2] Each minor version must be given a separate namespace.

[R 3] Once we publish a namespace, it never changes.

a. The idea is that if any of the definitions change than the namespace uri must also change.

[R 4] When the URN changes to reflect a change in the namespace, this change will be reflected in the version number, either major or minor.

[R 5] Minor versioning must be limited to declaring new optional constructs, extending existing constructs and refinements of an optional nature.

[R 6] Changes in minor versions must not break semantic compatibility with prior versions.

[R 7] Minor version namespaces must reference preceding minor version root schemas.

a. 1.1 should import the 1.0

b. The 1.2 should import the 1.1

Note: We need to resolve in a version 1.2 can important both the version 1.0 and 1.1) Changes that require “breaking” backwards compatibility will require a new major version number

Under this approach, type aware processors can use polymorphic processing. Non-type aware processors are not broken. We also said that we would use the XSD schemaVersion attribute to reflect the appropriate version.

Pros:

1)
critical to support context

2)
critical to reduce workload – under other approaches a new xslt stylesheet would be required for each major and minor. Under this approach only major versions would require new stylesheets.

3)
Can support addition of elements

4)
The complexity that polymorphic processing adds does not require adoption. Non type aware processors are not broken.

Cons:

1)
No type aware processors until XPath 2.0

2)
Unproven approach with existing tools/standards (although Commerce One successfully used a similar approach)

There seemed to be general agreement with Arofan’s proposal.

Tasking

· Lisa to capture updates on discussion to paper,

· Arofan to provide material on polymorphism.

· Matt to do testing to ensure viability of this option, check with SAX group to identify plans for support for type aware processing, and check with XPath to determine when v2.0 will be in candidate status.

See also attached: XML Schema Versioning (Best Practices) paper by Roger Costello.

