UBL Schema Naming and Design Rules Checklist

General Comments:

1. Make all the MUST and must the same. Either italics or uppercase, don’t mix.

2. “We formally accepted the proposal to use elements for everything, except for using attributes for supplementary components” Find rule

	Rule Number
	Rule
	Comment

	[R 1]
	All UBL schema design rules MUST be based on the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.
	Good, accepted

	[R 2]
	All UBL schemata and messages must be based on the W3C suite of technical specifications holding recommendation status.
	Change wording to schemas not schemata.

	[R 3]
	Each dictionary entry name must define one and only one fully qualified path (FQP) for an element or attribute.
	OK

CK: Seems to suggest that dictionary entry name use XPath,
but then current usage of dictionary entry name doesn't do that.
So which is which?

	[R 4]
	Names must be in the English language, using the primary English spellings provided in the Oxford English Dictionary.
	OK

	[R 5]
	XML names constructed from dictionary entry names must not include periods, spaces, or other separators.
	This is another rule LCSC has been asking for, should we clarify?
The regular expression is not quite right, but we agree. We want clarification, we don’t want difficulty in translation or programming within other environments.

CK: Underscores (_) used as first character to denote "internal
usage of some sort" need not be considered separators, but should
presumably fall under this guidance of usage avoidance. So
suggest that "separators" be replaced by

"any other character than the 52 upper and lower case alphabets and the 10 digit characters. In other words, the XML names in UBL should be drawn from the regular expression set [a-zA-Z]+[a-zA-Z0-9]*"

Note: this would also help mapping to the namespaces of other languages such as Java.

	[R 6]
	Names must not use acronyms, abbreviations, or other word truncations, with the following list of exceptions:
	DELETE

See R87, is this the same?

Need list of exceptions.

CK: Sentence incomplete. What are the exceptions?

Currently, in Reusable.xsd, there are definitions of
 <xsd:element name="BuyersID" type="cct:IdentifierType" />
 <xsd:element name="CV2" type="cct:TextType" />
 <xsd:element name="UNDGCode" type="cct:CodeType" />

which contain an abbreviations. Are these elements invalid? Or should [R6] be relaxed a little? Though listing them in the list of exceptions may solve existing usage, what about cases when within individual user's context, certain abbreviations are standard usages within their industry or consortiums but not listed in the exceptions here?

	[R 7]
	Names must not contain non-letter characters unless required by language-specific rules.
	See R5, we thought this should be combined with that rule to cover all naming.

CK: Made redundant by [R5] modification above.

	[R 8]
	Names must be in singular form unless the concept itself is plural (example: Goods).
	OK

CK: Please define a measure of "clarity".

	[R 9]
	Upper-camel-case (UCC) MUST be used for naming elements and types.
	OK

Standards document that describes the Upper and Lower case, we need reference there.

	[R 10]
	Lower-camel-case (LCC) MUST be used for naming attributes.
	OK

	[R 11]
	Every UBL business message must have a single corresponding top-level element.
	Change to: “every UBL business document must have a single root element”

	[R 12]
	Every top-level element must be named according to the portion of the business process that it initiates.
	Change to: “every root element in a UBL document must be named according to the portion of the business process that it ….”

	[R 13]
	For every object class identified in the syntax-neutral model, a complex type definition and a corresponding global element declaration bound to that type must be created.
	Somehow tie to the UBL model diagrams.

Can we add this as a reference?

Syntax-neutral model is not enough information.

	[R 14]
	The name of a complex type based on an object class must be the name of the object class, with the separators removed and with the "Details" suffix replaced with "Type".
	We recommend an appendix that groups the rules all together by type.

Examples should be linked either in appendix or by reference.

	[R 15]
	An element name in a global element declaration based on an object class must be the name of the object class, with the separators removed and with "Details" removed.
	See comment above.

	[R 16]
	For every complex type definition based on an object class, its content model must be defined such that it reflects each property of the object class as an element declaration, with its cardinality and positioning within the content model determined by the details of the syntax-neutral model.
	Group together like rules, Complex-types together, elements together.

Syntax-neutral model is not enough information, we need a better way to reference this.

	[R 17]
	An element name in an element declaration [TBD: ref= or name=?] based on a property must be the full dictionary name of the property in the syntax-neutral model, with the separators and object class term removed, and with the property term removed if it is identical or similar to the representation term.
	Group together like rules, Complex-types together, elements together.

Syntax-neutral model is not enough information, we need a better way to reference this.

	[R 18]
	If the object class term would have been helpful in the resulting XML name for clarity, or if needed to differentiate the element and allow it to have a different type association, it should be repeated in the property qualifier field.
	Group together like rules, Complex-types together, elements together, etc.

Change to:

“The object class term may be repeated in the property qualifier field, where it is deemed helpful for reasons of either XML naming clarity or if needed to differentiate the element and allow it to have a different type association.”

	[R 19]
	Every element declaration corresponding to a property must be bound to a type corresponding to the property's representation term. Where the representation term corresponds to an object class (aggregate BIE), the complex type corresponding to that object class must be used. Where the representation term corresponds to a Core Component Type, the complex type corresponding to that Core Component Type must be used.
	Should this be broken down to different rules for each piece?

	[R 20]
	A namespace schema module dedicated to defining types corresponding to the Core Component Types must be created.
	Again, should this be groups with Namespace rules?

	[R 21]
	Each CCT must have at least one corresponding unique complex type and simple type, where the element's content (governed by the xs:simpleContent construct and the CCT's simple type) represents the content component of the CCT and whose attributes (defined in the complex type) each represent a supplementary component of the CCTs.
	CK: Use of "xs:simpleContent" conflicts with [R 107]

	[R 22]
	The complex type name corresponding to a CCT must be the CCT name, with the periods and spaces removed.
	CK: Make all name-construction guidances point to the modified [R 5]. So it reads something like: "[R 22] The complex type name corresponding to a CCT must be the CCT name, an XML name constructed following [R 5]".

	[R 23]
	The name of the simple type corresponding to the content component of a CCT must be the content component name, with the periods and spaces removed and with "Type" added to the end.
	CK: Guidance on "with the periods and spaces removed" should point back to [R 5]. So all name construction rules are standardized leaving no gray area to individual references to name construction.

	[R 24]
	The name of the attribute corresponding to a supplementary component must be the name of the supplementary component, with the periods and spaces removed. The first field (the "object class" field) may be truncated, reworded, or removed as necessary for brevity and clarity. If the final field (the "representation term" field) is "Text", it must be removed. If the final field is "Identifier", it must be replaced with "ID".
	CK: Guidance on "with the periods and spaces removed" should point back to [R 5]. So all name construction rules are standardized leaving no gray area to individual references to name construction.

	[R 25]
	Mixed-content elements should not be used.

Note that mixed content in business documents is undesirable because white space in mixed content is difficult to handle and complicates processing, and because mixed-content models allow little useful control over the cardinality of elements.
	See R97

	[R 26]
	The CCT schema module may define a set of one or more common attributes that apply to all UBL elements.
	

	[R 27]
	A common attribute should be declared as a global attribute only in cases where the attribute's meaning is identical no matter what element it is used on, and where the attribute is useful on every UBL element. This rule applies to both external (such as xml:lang) and UBL-specific global attributes.

Note that this rule allows for the creation of common attributes that are allowed on every element but are not globally declared, and that need documentation of their meaning in each XML environment in which they are used
	

	[R 28]
	The names of UBL-specific global attributes must be based on assigned object class property names, as is done for elements that are properties.

[TBD: need example.]
	

	[R 29]
	Code Lists Must not be enumerated in the core schema. Code Lists Must be enumerated in a schema module using the UBL code list schema template.
	

	[R 30]
	Every type definition and element declaration must contain a structured set of annotations in following pattern, where the keyword is typically based on the spreadsheet column heading in the syntax-neutral model and the description is typically based on the content of the spreadsheet field:
	We need the pattern of the annotations for this rule. Is this the embedded documentation rule?
CK: Pattern not listed after ending colon.

	[R 31]
	The following sets of annotations are required in type definitions and element declarations:

UBL UID: The unique identifier assigned to the type in the UBL library.

UBL Name: The complete name (not the tag name) of the type per the UBL library.

Object Class: The Object Class represented by the type.

UBL Definition: Documentation of how the type is to be used, written such that it addresses the type's function as a reusable component.

Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

Core Component UID: The UID of the Core Component on which the Type is based

Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is "In All Contexts".

Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is "In All Contexts".

Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is "None".

Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is "In All Contexts"

Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is "In All Contexts".

Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is "In All Contexts".

Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is "In All Contexts".

System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is "In All Contexts".
	

	[R 32]
	The nillable attribute must not be used in any UBL schema. The element declaration of xsi:nil shall not appear in any UBL conforming instance.
	See R94

	[R 33]
	The top-level element must be globally declared in a UBL root schema.
	

	[R 34]
	If a definition depends on named constructs found in another namespace, then that other namespace must be imported as a namespace schema module. The referenced constructs must not be directly included as Internal Schema Modules.
	

	[R 35]
	A namespace may be completely specified within the Root Schema. If For larger namespaces, more schema modules may be defined - call these internal modules. The root schema for that namespace then MUST include those Internal Modules.
	

	[R 36]
	The namespace names for UBL namespaces must have the following structure while the schemas are at draft status:

urn:oasis:names:tc:ubl:schema:name:major:minor
	

	[R 37]
	The namespace names for UBL Schemas holding specification status MUST be of the form:

urn:oasis:names:specification:ubl:schema:name:major:minor
	

	[R 38]
	Schema location must include the complete URI which is used to identify schema modules.
	

	[R 39]
	UBL schema modules must be located under the UBL committee directory:

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd
	

	
	
	

	[R 40]
	Every UBL Schema Major version Must have the URI of:

urn:oasis:names:tc:ubl:Order:major-number:0
	

	[R 41]
	The first minor version release of a UBL Schema Must have the URI of:

urn:oasis:names:tc:ubl:Order:major-number:1…

For UBL Minor version changes, the name of the version construct Must not change (short name not qualified name), unless the intent of the change is to rename the construct.
	

	[R 43]
	The number scheme must be the major number is a non-negative integer and the minor number is a non-negative integer.
	

	[R 44]
	The CCT types and Reusable types and their namespace, should have a version.
	

	[R 45]
	Non-namespaced schema modules, will not have their own versions or namespaces, and thus must only be used within the context of and in conjunction with one specified parent.
	

	[R 46]
	Each version Must have a namespace.
	

	[R 47]
	Each minor version must be given a separate namespace.
	

	[R 48]
	A published namespace MUST never be changed.
	

	[R 49]
	When the URN changes to reflect a change in the namespace, this change will be reflected in the version number, either major or minor.
	

	[R 50]
	Minor versioning must be limited to declaring new optional constructs, extending existing constructs and refinements of an optional nature.
	

	[R 51]
	Changes in minor versions must not break semantic compatibility with prior versions.
	

	[R 52]
	Minor version namespaces must reference preceding minor version root schemas.
	

	[R 53]
	A Core Component Type without any restriction of the Content Component must be defined by a complexType. This complexType includes a simpleContent group with a extension for all relevant global and local attributes (Supplementary Components) of this Core Component Type. The base type definition of this extension must be based on one of the decided built-in datatypes (see table ###).
	

	[R 54]
	If the Content Component of a Core Component Type is restricted by any kind of facets, this Content Component must be a restriction of a simpleType. The name of the simpleType must be ending with the suffix "Content".
	

	[R 55]
	The Core Component Type with the restricted Content Component must refer to the relevant named simpleType.
	

	[R 56]
	A restricted Supplementary Component (local attribute) within a Core Component Type must have a restriction of its simpleType. The base type definition of the restriction must refer to one of the decided built-in datatypes (see table ###). The restriction itself should have all relevant facets.
	

	[R 57]
	A complexType of a Basic Core Component as well as Basic Business Information Entity without any additional restrictions must be a extension of a simpleContent. The base type definition of the extension must refer to the complexType of the relevant Core Component Type.
	

	[R 58]
	A complexType of a Basic Core Component as well as Basic Business Information Entity with any additional restrictions must be a restriction of a simpleContent. The base type definition of the restriction must refer to the complexType of the relevant Core Component Type. The element group of the restriction includes all required facets.
	

	[R 59]
	If a global attribute or a Supplementary Component (local attribute) should be restricted within a Basic Core Component as well as a Basic Business Information Entity, there must be a restriction of a simpleContent. The base type definition of the restriction must refer to the complexType of the relevant Core Component Type. This restriction includes the attribute or attributes, which should be restricted. The simpleType of each attribute must be a restriction, again. This restriction includes all relevant facets.
	

	[R 60]
	If a Basic Core Component as well as a Basic Business Information Entity should have one or more restricted Supplementary Components (local attributes) and a restricted Content Component, the simpleContent of the complexType must be a restriction. This base type definition of the restriction must refer to the complexType of the relevant Core Component Type. This restriction must include all facets and restricted attributes. The simpleType of each attribute must be a restriction, too. This restriction should have all relevant facets of each restricted attribute.
	

	[R 61]
	UBL Libraries and Schemas MUST only use UN/CEFACT approved Core Component Types.
	

	[R 62]
	The UBL Library should identify and use external standardized code lists rather than develop its own UBL-native code lists.
	

	[R 63]
	The UBL Library may design and use an internal code list where an existing external code list needs to be extended, or where no suitable external code list exists.
	

	[R 64]
	If a UBL code list is created, the lists should be globally scoped (designed for reuse and sharing, using named types and namespaced schema modules) rather than locally scoped (not designed for others to use and therefore hidden from their use).
	

	[R 65]
	For each UBL construct containing a code, the UBL documentation should identify the zero or more code lists that must be minimally supported when the construct is used.
	

	[R 66]
	Users of the UBL Library may identify any subset they wish from an identified code list for their own trading community conformance requirements.
	

	[R 67]
	Both standardized and proprietary identifiers within a message are exchanged.
	

	[R 68]
	For each specific point in time the built in datatype from XML schema (Part 2) must be used. These are xsd:time, xsd:date, xsd:dateTime.
	

	[R 69]
	The expression of duration requires the use of an additional secondary Representation Term called Duration. Type.
	

	[R 70]
	For the expression of the Representation Term Duration. Type the XSD built in datatype xsd:Duration must be used.
	

	[R 71]
	A period can be expressed using the Aggregate Core Component (ACC) PeriodDetails. The ACC is divided into 3 representation types, Date, Time and DateTime. One of these must be selected. Each option has a start and end date, start and end time or start DateTime and end DateTime.
	

	[R 72]
	For each representation term the equivalent data type must be used i.e. if the representation term Date is used, then the corresponding built in datatype xsd:date must be used.
	

	[R 73]
	The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.
	

	[R 74]
	The recurrence of these periods in time may be represented by the BCC RecurrenceValue.
	

	[R 75]
	The start and end times may be represented by the BCCs i.e. StartTime, EndTime, StartDate, EndDate etc.
	

	[R 76]
	The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.
	

	[R 77]
	Duration may be expressed by the BCC Duration.
	

	[R 78]
	The number of recurrences may be expressed by the BCC RecurrenceValue.
	

	[R 79]
	Duration may be expressed by the BCC Duration.
	

	[R 80]
	The intervals in a point in time should be represented by a single BCC indicated by the choice operator i.e. FrequencyDuration, FrequencyYear etc.
	

	[R 81]
	A UBL message set may be extended where desirable if the business function of the UBL original is retained., but the message exists within its own business context.
	

	[R 82]
	UBL documents must use the same legal characters in XML character data that are listed in the XML Recommendation. Including tab, carriage return, line feed, and the legal characters of Unicode and ISO/IEC 10646.
	

	[R 83]
	Trading partners may agree on other character encodings to use among themselves. It is recommended in all case that encoding declarations be provided in the XML declarations of UBL documents.
	

	[R 84]
	UBL messages must express semantics fully in schemas and not rely merely on well-formedness.
	

	[R 85]
	Instances conforming to schemas should be readable and understandable, and should enable reasonably intuitive interactions.
	

	[R 86]
	In the context of a schema, information that expresses correspondences between data elements in different classification schemes ("mappings") may be regarded as metadata. This information should be accessible in the same manner as the rest of the information in the schema.
	

	[R 87]
	Element and Simple and Complex Type Names must not use acronyms, abbreviations, or other word truncations, except those in the list of exceptions published in Section XX. [Editor's note: Section xx to be a section in the NDR document. Currently this section only includes ID for Identifier, DUNS, and URI.]
	See R6, Delete R6, and add attributes to the list of what is named.

	[R 88]
	Acronyms and abbreviations will only be added to the approved list after careful consideration for maximum understanding and reuse.
	See R6

	[R 89]
	Acronyms and abbreviations must only be taken from the latest version of the Pocket Oxford English Dictionary. The first occurrence listed for a word will be the preferred item to be used.
	See R6

	[R 90]
	The Abbreviations and Acronyms listed in Section XX must always be used.
	See R6

	[R 91]
	All type declarations MUST be global.
	

	[R 92]
	All element declarations MUST be global with the exception of ID and Code which MUST be local.
	

	[R 93]
	Processing Instructions MUST NOT be used.
	

	[R 94]
	The nillable attribute MUST NOT be used.
	See R37

	[R 95]
	Wildcards MUST NOT be used.
	

	[R 96]
	Two schemas shall be developed for each standard. One schema shall be a run-time schema devoid of documentation. One schema shall be a fully annotated schema that employs XHTML for the annotations.
	

	[R 97]
	Mixed content MUST NOT be used (excluding documentation).
	See R25

	[R 98]
	Built-in Simple Types SHOULD be used wherever possible.
	

	[R 99]
	Simple Type restriction MAY be used.
	

	[R 100]
	ATG: Union technique MAY be used to merge data types. UBL: Not applicable. Therefore, SHOULD NOT be used. (Code lists are excluded from this rule.)
	

	[R 101]
	Complex Types MUST be named.
	

	[R 102]
	The absence of a construct or data MUST NOT carry meaning.
	

	[R 103]
	Substitution groups MUST NOT be used.
	

	[R 104]
	Attribute Groups MAY be used.
	

	[R 105]
	ID/IDREF MUST NOT be used.
	

	[R 106]
	Key/KeyRef MAY be used.
	

	[R 107]
	The XSD prefix MUST be used. (xmlns:xsd=http://www.w3.org/2001/xmlSchema)
	Move to part of R1.

	[R 108]
	The XSI prefix SHALL be used where appropriate.
	

	[R 109]
	Abstract Complex Types MAY be used (for UBL ur-schema)..
	

	[R 110]
	(not finalized) Complex Type extension SHOULD be used where appropriate.
	

	[R 111]
	(not finalized) The final attribute SHALL be used to control extensions.
	

	[R 112]
	(not finalized) The block attribute SHALL be used to control extensions.
	

	[R 113]
	Complex type restriction SHOULD be used.
	

	[R 114]
	Notations MUST NOT be used.
	

	[R 115]
	All documents shall have a container for metadata and which proceeds the body of the document and is named "Head" _____________. (anything but header)
	

	[R 116]
	All elements with a cardinality of 1..n, (and lack a qualifying structure) must be contained by a list container named "(name of repeating element)List", which has a cardinality of 1..1.
	

We need some basic context, extension, and restriction rules.

Mavis’ table of decisions made from emails

	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00068.html
	New terminology to be added to the document:

Well-formedness checking:

 Basic XML 1.0 adherence.

DTD validation:

 Adherence to an XML 1.0 DTD.

Schema validation:

 Adherence to an XSD schema.

Schema processing:

 Schema validation checking plus provision of default values and provision of new infoset properties.

 Ad hoc schema processing:

 Doing partial schema processing, but not with official schema validator software; e.g., reading through schema to get the default values out of it.

 Instance constraint checking:

 Additional validation checking of an instance, beyond what XSD makes available, that relies only on constraints describable in terms of the instance and not additional business knowledge; e.g., checking co-occurrence constraints across elements and attributes. Such constraints might be able to be described in terms of Schematron.

 Application-level validation:

 Adherence to business requirements, such as valid account numbers.
	R84

R1

R107 & R39

	http://lists.oasis-open.org/archives/ubl-ndrsc/200111/msg00110.html
	Motion: "To use XSD as the source format for UBL business document types." Moved by Arofan and seconded by Dale. Approved by unanimous

 consent.

	R1

	http://lists.oasis-open.org/archives/ubl-ndrsc/200201/doc00005.doc
	We will not use anonymous types. We will use named types in order to build a proper dictionary that can be referenced. Named types will be top level constructs of the XSD instance. All complex types will be defined together and all simple types will be defined together so that people will know where to look for things. (Approved)

1. To create a usable data dictionary we will document the reusable objects expressed as XSD types in the schema, document the properties of each of these objects expressed as XSD locally declared elements, and document each unique occurrence of each element within each document type. Documentation of unique occurrences of each element within each document type will be sparse but sufficient. Best efforts will be made to auto-generate as much documentation as possible. This documentation will be produced by the UBL TC. (Approved)

2. Type name shall consist of an optional qualifier followed by the object class, followed by the suffix “Type”. (Approved)

Intermediate level tags (i.e. not top level and not leaf) must be comprised of the property term and may be preceded by an appropriate qualifier term as necessary to create semantic clarity at that level. The object class may be used as a qualifier. Mark Crawford has abstained and there were no further objections. (Approved)

3. If elements share the same name they must share the same type. If they can’t share a type because they are different structurally they must have different names except in the following cases. The ones currently mandated are fields containing status codes, purpose codes, action codes. (Still under discussion; add to issues list.)

4. The initial list of representation terms shall be taken from the approved list of ebXML core component representation terms. The NDR SC proposes to be the owner of the UBL representation term list and shall liaise with UN CEFACT with regard to any changes made. (Approved)

5. The representation term must appear on leaf elements with the following qualifications:
(a) ID must be used as the substitution token for the representation term Identifier.

(b) The representation term “Text” will be considered the default representation term when a representation term does not appear. (Approved)

6. UpperCamelCase must be used for element and type names and lowerCamelCase must be used for attribute names. (Approved)
	R61

R24

R9, R10

	http://lists.oasis-open.org/archives/ubl-ndrsc/200203/msg00028.html
	MOTION: In those cases where it seems beneficial to have two elements that have the same tag name but are bound to different types, as is currently the case with the BIE Order.Header.Details (tag name Header), it is permissible.

Motion passes with Mark C. objecting.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200203/msg00028.html
	MOTION: Ratify the one-doctype- per-transmission principle as stated in the UBL Planning report and the modnamver paper.

(Attending on 22 Mar '02): Eve, Fabrice, Mavis, Bill, Gunther, Phil, Paul, Arofan, Eduardo.)

Motion passes unanimously.

	R11

	http://lists.oasis-open.org/archives/ubl-ndrsc/200204/msg00069.html
	We formally accepted the proposal to use elements for everything, except for using attributes for supplementary components.
	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200205/msg00011.html
	Code lists

 We voted on accepting the "namespaced type hybrid method". Accepted

 with one abstention from Jessica. We agreed that the instance

 extension method should still be described as a (failed) contender.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200205/msg00011.html
	Separate RT/CCT module

There seems to be some interest in breaking down the UBL "core"

 into multiple core-ish files, for both memory management reasons

 (the C1 folks experimenting with Xerces report this) and for

 reasons of reusing only the parts one wants (some verticals

 seem to want to reuse the built-in ebXML CCT semantics in a

 neat package). There's a question about whether such a low-level

 module needs its own namespace, but it needs one if you are

 worried about memory management.

 There's also a question about what we would call this module: Is

 "CCT" incorrect, given our comments on CCTS? "Leafy things" is

 too informal. :-) They are sort of "built-in UBL types"; would

 this be a good name? But other UBL types will be built in to UBL

 too, by definition.

 We agreed on "common [UBL] leaf types" (CLTs or CULTs!) for the

 CCT-ish (basic) stuff, and "[UBL] common aggregate types" (CATs)

 for the aggregate stuff.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200205/msg00018.html
	Modnamver

Bill moved that we add a recommendation allowing two or more

 functional areas to share definitions common between them but not

 used elsewhere by creating and importing an additional RootSchema,

 where the criterion for creation of this additional level of

 namespace is that it not be used in a majority of the functional

 areas. Motion PASSES unanimously. (This means that we've

 essentially accepted Option 4.)

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200205/msg00033.html
	Code Lists

We agreed that it's too circular and inconvenient to require

 external code list modules to use our simple types for supplementary

 components, so we agreed that instead they must use the attribute

 names that we dictate in order for us to know that they intended the

 CCTS semantics.

 We didn't agree yet on whether to recommend XSD documentation

 elements in external code list modules. We will leave this point

 open in the NDR document.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200207/msg00011.html
	Nested Supplementary Components

We will definitely have attributes that apply to other

 attributes. The worst case is codes (other than Language.Code,

 since the code list for that will be fixed) that are

 supplementary to real BIEs.

 - We believe that the names for these second-order attributes can

 be constructed automatically by applying a qualifier consisting

 of the name of the first-order attribute to which they apply.

 - However, we think the definition of the relevant XSD types could

 be tricky, because those additional attributes need to be specific

 to particular attributes defined on particular complex types.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200208/msg00011.html
	Xsd:documentation

we agreed that using xsd:documentation is most appropriate. This doesn't preclude anyone from using our documentation fields for further processing, and leaves appinfo free for (e.g.) Schematron business rules.

	R96

	http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00013.html
	Our NDR document should be equally clear on which XSD features UBL schemas do and do not employ.
	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00042.html
	
Rules For CCTs –

1) CCTs will be declared as elements

2) CCT Content Components will be conveyed as the value

3) CCT Supplementary Components will be conveyed as the attribute of the CCT element

4) If you use the default codeListVersionID, then you do not have to convey codeListVersionID. If however you use a different codeListVersionID, then you must convey codeListVersionID.

5) Any change to cardinality or length for any code for any CCT will only be allowed as derivations from the Ur Schema.

6) Binary objects will not be carried as a value for the declared element, but will be referred to through the supplementary component attribute. The element will be declared as empty.

	

	
	The following principles underpinned by Bill's document on Modularity,

Namespace and Versioning have been voted upon and agreed.

These principles and the prose of this document v8 will provide the basis

for the rules in the NDR document.

1. UBL namespace names shall include version identifiers.

2. The version identifier that is used in the namespace name has two parts,

a major number and a minor number. The major number is incremented whenever

it contains any incompatible changes. The minor number is incremented with

any other type of changes.

3. UBL is composed of a number of namespaces each of which has its own

namespace name and, possibly and in practice, its own version identifiers.

There is no one to one correspondence between the various namespace versions

that make up a UBL release.

3. Once a namespsace and its associated namespace space name are published

they shall not change.

5. XSD import function will be used. In all cases a minor version imports

the immediately preceding minor version of the same major release.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200303/msg00047.html
	Code Lists

PROPOSED RULE:

Where a code list producer has not created a conforming code list schema

module, the UBL library

must bind the code property to the generic code type found in the CCT

module.

Accepted rule.

Proposed RULE:

For release of 1.0 of the Code List rules we will mandate a simpleType for

the CodeContentType. We will examine in future versions of the Code Lists

rules, guidelines for using XML for expressing hierarchy in code values.

Accepted.

Proposed Design RULE:

The NDR SC agrees to remove the codename supplementary component from our

recommendations for code markup . HOwver, we recommend

that for codelist schema modules chosing to do so, they may provide code

expansions and definitions in an annotation element inside each enumeration

element

wher any natural language information should be conveyed by means of

xml:lang.

Accepted

Design RULE:

The NDR SC agrees not to use XLINK for supplementary components of code tha

t involve URIs but rather to use the XSD:anyURI and to name

those attributes according to our usual naming rules.

Agreed.

	

	http://lists.oasis-open.org/archives/ubl-ndrsc/200303/msg00047.html
	Embedded Documentation

Proposed Design Principle

It is the intention of the NDR SC to use XHTML Basic as proposed in the NDR

document for the purposes of documenting information other than CCTS that

already has

a structure.
This has been voted on and agreed during this meeting which has quorum.
	

	
	
	

