
[image: image1.png]

Universal Business Language (UBL)
Naming and Design Rules

1 October 2003

Document identifier:

wd-ublndrsc-ndrdoc-V1pt0Drafta (Word)

Location:

 http://www.oasis-open.org/committees/ubl/ndrsc/drafts/
Editors:

Mavis Cournane, Cognitran Ltd <mavis.cournane@cognitran.com>

Mark Crawford, LMI <MCRAWFORD@lmi.org>
Eve Maler, Sun Microsystems <eve.maler@sun.com>

Lisa Seaburg, Aeon LLC <lseaburg@aeon-llc.com>

Contributors:

Bill Burcham, Sterling Commerce

Fabrice Desré, France Telecom

Matt Gertner, Schemantix

Jessica Glace, LMI

Arofan Gregory, Aeon LLC

Michael Grimley, US Navy

Eduardo Gutentag, Sun Microsystems

Sue Probert, CommerceOne

Gunther Stuhec, SAP

Paul Thorpe, OSS Nokalva

Bill Burcham, Sterling Commerce

Abstract:

This specification documents the naming and design rules and guidelines for the construction of XML components from ebXML Core Components

Status:

This is a draft document under consideration by the OASIS UBL TC for approval as a TC standard.
Copyright © 2001, 2002, 2003 The Organization for the Advancement of Structured Information Standards [OASIS]

Table of Contents

61
Introduction

61.1
Audiences

71.2
Scope

71.3
Terminology and Notation

81.4
Guiding Principles

81.4.1
Adherence to general UBL guiding principles

101.4.2
Design For Extensibility

111.4.3
Code Generation

111.5
Choice of schema language

122
Relationship to ebXML Core Components

142.1
Mapping Business Information Entities to XSD

163
General XML Construct

163.1
Overall Schema Structure

173.1.1
Root Element

173.2
Constraints

183.2.1
Naming Constraints

183.2.2
Modeling Constraints

191.1
Modularity

193.3

223.3.1
Overall Modularity Approach

223.3.2
UBL Schema Modules

223.3.3
Limitations on Import

233.3.4
Module Conformance

233.3.5
Core Component Type Schema Module

233.3.6
CCTS Representation Term Schema Module

233.3.7
UBL Datatypes

243.4
Namespace Scheme

253.5
Versioning Scheme

263.6
Documentation

273.6.1
Embedded documentation

283.6.2
Schema Annotation

294
Naming Rules

294.1
General Naming Rules

304.2
Element Naming Rules

314.3
Attribute Naming Rules

314.4
Type Naming Rules

335
Declarations and Definitions

335.1
Type Definitions

335.1.1
General Type Definitions

335.1.2
Simple Types

335.1.3
Complex Types

355.2
Element Declarations

355.2.1
General Element Declarations

365.2.2
Elements Bound to Complex Types

365.2.3
Code List Import

365.2.4
Empty Elements

365.2.5
XSD:Any

365.3
Attribute Declarations

365.3.1
User Defined Attributes

365.3.2
Global Attributes

375.3.3
Supplementary Components

375.3.4
Schema Location

375.3.5
XSD:Nil

375.3.6
XSD:Any

386
Code Lists

407
Miscellaneous XSD Rules

407.1
XSD Simple Types

407.2
Namespace Declaration

407.3
XSD:Substitution Groups

407.4
XSD:Final

407.5
XSD: Notations

407.6
XSD:All

407.7
XSD:Choice

407.8
XSD:Include

407.9
XSD:Union

407.10
XSD:Appinfo

417.11
Extension and Restriction

428
Instance Documents

45Appendix A. UBL NDR Checklist

46Table A1 — Code List Rules

47Table A2. Constraint Rules

47Modeling Constraints

47Naming Constraints

48Table A3 — Declarations Rules

48Element Declarations

49Attribute Declarations

51Table A4. Documentation Rules

53Table A5. General XSD Rules

56Table A6 —Instance Documents

57Table A7 — Naming Rules

57General Naming rules

58Specific Naming Rules

58Element Naming Rules

58Attribute Naming Rules

59Type Naming Rules

60Table A8 — Namespace Rules

62Table A9 — Root Element Declaration Rules

63Table A10 — Schema Structure Modularity Rules

65Table A11 — Standards Adherence Rules

66Table 12 — Type Definition Rules

66General Type Definitions

66Simple Type Definitions

66Complex Type Definitions

69Table A13 — Versioning Rules

71Appendix B. Technical Terminology

74Appendix C. References

75Appendix D. Notices

1 Introduction

XML is often described as the lingua franca of e-commerce. The implication is that by standardizing on XML, enterprises will be able to trade with anyone, any time, without the need for the costly custom integration work that has been necessary in the past. But this vision of XML-based “plug-and-play” commerce is overly simplistic. Of course XML can be used to create electronic catalogs, purchase orders, invoices, shipping notices, and the other documents needed to conduct business. But XML by itself doesn't guarantee that these documents can be understood by any business other than the one that creates them. XML is only the foundation on which additional standards can be defined to achieve the goal of true interoperability. The Universal Business Language (UBL) initiative is the next step in achieving this goal.

The task of creating a universal XML business language is a challenging one. Most large enterprises have already invested significant time and money in an e-business infrastructure and are reluctant to change the way they conduct electronic business. Furthermore, every company has different requirements for the information exchanged in a specific business process, such as procurement or supply-chain optimization. A standard business language must strike a difficult balance, adapting to the specific needs of a given company while remaining general enough to let different companies in different industries communicate with each other.

The UBL effort addresses this problem by building on the work of the ebXML initiative. EbXML, currently continuing development in the Organization for the Advancement of Structured Information Standards (OASIS), is an initiative to develop a technical framework that enables XML and other payloads to be utilized in a consistent manner for the exchange of all electronic business data. UBL is organized as an OASIS Technical Committee to guarantee a rigorous, open process for the standardization of the XML business language. The development of UBL within OASIS also helps ensure a fit with other essential ebXML specifications. UBL will be promoted to the level of international standard.

This specification documents the rules and guidelines for the naming and design of XML components for the UBL library. It contains only rules that have been agreed on by the OASIS UBL Naming and Design Rules Subcommittee (NDR SC). Proposed rules, and rationales for those that have been agreed on, appear in the accompanying NDR SC position papers, which are available at http://www.oasis-open.org/committees/ubl/ndrsc/.

1.1 Audiences

This document has several primary and secondary targets that together constitute its intended audience. Our primary target audience is the UBL Library Content Subcommittee. Specifically, the UBL Library Content Subcommittee will use this document to create normative form schema for business transactions. External developers will use this document to extend and restrict UBL schema in a fashion that will ensure conformance to the UBL design rules and guarantee compatibility with existing UBL schema. Other developers implementing ebXML Core Components may find the rules contained herein sufficiently useful to merit adoption as, or infusion into, their own approaches to ebXML Core Component based XML schema development. All other XML Schema developers may find the rules contained herein sufficiently useful to merit consideration for adoption as, or infusion into, their own approaches to XML schema development.
1.2 Scope

This specification conveys a normative set of XML schema design rules and naming conventions for the creation of business based XML schema for transactions being exchanged between two parties using objects developed in accordance with the ebXML Core Components Technical Specification.

1.3 Terminology and Notation

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) 2119. Non-capitilized forms of these words are used in the regular English sense.

Definition] – A formal definition of a term. Definitions are normative.

[Example] – A representation of a definition or a rule. Examples are informative.

[Note] – Explanatory information. Notes are informative.

[RRRn] - Identification of a rule that requires conformance to ensure that an XML Schema is UBL conformant. The value RRR is a prefix to categorize the type of rule where the value of RRR is as defined in Table 1 and n (1..n) indicates the sequential number of the rule within its category. . In order to ensure continuity across versions of the specification, rule numbers that are deleted in future versions will not be re-issued, and any new rules will be assigned the next higher number - regardless of location in the text. Future versions will contain an appendix that lists deleted rules and the reason for their deletion. Only rules are normative; all other text is explanatory.

Figure 1 - Rule Prefix Token Value

	Rule Prefix Token
	Value

	ATD
	Attribute Declaration

	ATN
	Attribute Naming

	CDL
	Code List

	CTD
	ComplexType Definition

	DOC
	Documentation

	ELD
	Element Declaration

	ELN
	Element Naming

	GNR
	General Naming

	GTD
	General Type Definition

	GXS
	General XSD

	IND
	Instance Document

	MDC
	Modeling Constraints

	NMC
	Naming Constraints

	NMS
	Namespace

	RED
	Root Element Declaration

	SSM
	Schema Structure Modularity

	STD
	SimpleType Definition

	VER
	Versioning

Bold - The bolding of words is used to represent example names or parts of names taken from the library.

Courier – All words appearing in bolded courier font are values or objects.

Italics – All words appearing in italics, when not titles or used for emphasis, are special terms defined in Appendix A.

The terms “W3C XML Schema” and “XSD” are used throughout this document. They are considered synonymous; both refer to XML Schemas that conform to Parts 1 and 2 of the W3C XML Schema Definition Language Recommendations. See Appendix A for additional term definitions.

1.4 Guiding Principles

1.4.1 Adherence to general UBL guiding principles

The UBL Technical Committee has approved a set of high-level guiding principles. The UBL Naming and Design Rules Subcommittee (NDRSC) has followed these high-level guiding principles for the design of UBL NDR. These guiding principles are:

1. Internet Use - UBL shall be straightforwardly usable over the Internet.

2. Interchange and Application Use–UBL is intended for interchange and application use.

3. Tool Use and Support - The design of UBL will not make any assumptions about sophisticated tools for creation, management, storage, or presentation being available. The lowest common denominator for tools is incredibly low (for example, Notepad) and the variety of tools used is staggering. We do not see this situation changing in the near term.

4. Legibility - UBL documents should be human-readable and reasonably clear

5. Simplicity - The design of UBL must be as simple as possible (but no simpler).

6. 80/20 Rule - The design of UBL should provide the 20% of features that accommodate 80% of the needs.

7. Component Reuse -The design of UBL document types should contain as many common features as possible. The nature of e-commerce transactions is to pass along information that gets incorporated into the next transaction down the line. For example, a purchase order contains information that will be copied into the purchase order response. This forms the basis of our need for a core library of reusable components. Reuse in this context is important, not only for the efficient development of software, but also for keeping audit trails.

8. Standardization - The number of ways to express the same information in a UBL document is to be kept as close to one as possible.

9. Domain Expertise - UBL will leverage expertise in a variety of domains through interaction with appropriate development efforts.

10. Customization and Maintenance - The design of UBL must facilitate customization and maintenance.

11. Context Sensitivity - The design of UBL must ensure that context-sensitive document types aren’t precluded.

12. Prescriptiveness - UBL design will balance prescriptiveness in any one usage scenario with prescriptiveness across the breadth of usage scenarios supported. Having precise, tight content models and datatypes is a good thing (and for this reason, we might want to advocate the creation of more document type “flavors” rather than less; see below). However, in an interchange format, it is often difficult to get the prescriptiveness that would be desired in any one usage scenario.

13. Content Orientation - Most UBL document types should be as “content-oriented” (as opposed to merely structural) as possible. Some document types, such as product catalogs, will likely have a place for structural material such as paragraphs, but these will be rare.

14. XML Technology - UBL design will avail itself of standard XML processing technology wherever possible (XML itself, XML Schema, XSLT, XPath, and so on). However, UBL will be cautious about basing decisions on “standards” (foundational or vocabulary) that are works in progress.

15. Relationship to Other Namespaces - UBL design will be cautious about making dependencies on other namespaces. UBL does not need to reuse existing namespaces wherever possible. For example, XHTML might be useful in catalogs and comments, but it brings its own kind of processing overhead, and if its use is not prescribed carefully it could harm our goals for content orientation as opposed to structural markup.

16. Legacy formats - UBL is not responsible for catering to legacy formats; companies (such as ERP vendors) can compete to come up with good solutions to permanent conversion. This is not to say that mappings to and from other XML dialects or non-XML legacy formats wouldn’t be very valuable.

17. Relationship to xCBL - UBL will not be a strict subset of xCBL, nor will it be explicitly compatible with it in any way.

1.4.2 Design For Extensibility

Many e-commerce document types are, broadly speaking, useful but require minor structural modifications for specific tasks or markets. When a truly common XML structure is to be established for e-commerce, it needs to be easy and inexpensive to modify.

Many data structures used in e-commerce are very similar to “standard” data structures, but have some significant semantic difference native to a particular industry or process. In EDI, there has been a gradual increase in the number of published components to accommodate market-specific variations. Handling these variations are a requirement, and one that is not easy to meet. A related EDI phenomenon is the overloading of the meaning and use of existing elements, which greatly complicates interoperation.

To avoid the high degree of cross-application coordination required to handle structural variations common to EDI and DTD based systems - it is necessary to accommodate the required variations in basic data structures without either overloading the meaning and use of existing data elements, or requiring wholesale addition of new data elements. This can be accomplished by allowing implementers to specify new element types that inherit the properties of existing elements, and to also specify exactly the structural and data content of the modifications.

This can be expressed by saying that extensions of core elements are driven by context.
 Context driven extensions should be renamed to distinguish them from their parents, and designed so that only the new elements require new processing.

Similarly, data structures should be designed so that processes can be easily engineered to ignore additions that are not needed.

1.4.3 Code Generation

UBL has developed two code generation tools that automatically convert the UBL BIE library into UBL NDR conformant XSD. However, in conformance with UBL guiding principle 3, the UBL design process has scrupulously avoided establishing any NDR that sub-optimize the XSD in favor of automatic generation. In conformance with UBL guiding principle 8, The NDR are sufficiently rigorous to avoid requiring human judgment at generation time.

1.5 Choice of schema language

The World Wide Web Consortium (W3C) XML Schema Definition (XSD) Language has become the generally accepted schema language that is experiencing the most wide-spread adoption. Although other schema languages exist that have their own pro’s and con’s, UBL has determined that the best approach for developing an international XML business standard is to base its work on W3C XSD.

All UBL schema design rules MUST be based on the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.
A W3C technical specification holding recommended status represents consensus within the W3C and has the Director's stamp of approval. Recommendations are appropriate for widespread deployment and promote W3C's mission. Before the Director approves a recommendation, it must show an alignment with the W3C architecture. By aligning with W3C specifications holding recommended status, UBL can ensure that its products and deliverables are well suited for use by the widest possible audience with the best availability of common support tools.
All UBL schema and messages MUST be based on the W3C suite of technical specifications holding recommendation status.
2 Relationship to ebXML Core Components

Figure 2-1 Core Components Metamodel

[image: image2.wmf]Registry Class

Unique Identifier 1..1

Dictionary EntryName 1..1

Definition 1..1

Business Context

Business Information Entity (BIE)

Business Term 0..*

1..*

0..*

+context

1..*

0..*

Core Component

0..*

1

0..*

+basis

1

Association BIE Property

Association CC Property

Association Core

Component (ASCC)

1

1

1

1

Association Business

Information Entity (ASBIE)

1

1

1

1

1

0..*

+basis

1

0..*

Aggregate Business

Information Entity (ABIE)

Qualifier Term 0..1

Cardinality 1..1

1

0..*

1

0..*

Aggregate Core

Component (ACC)

Object Class Term 1..1

0..*

1

0..*

1

1

0..*

+basis

1

0..*

CC Property

Property Term 1..1

Cardinality 1..1

1..*

1..*

BIE Property

Qualifier Term 0..1

1..*

1..*

1

0..*

+basis

1

0..*

Basic Business Information

Entity (BBIE)

Basic BIE Property

1

1

1

1

Basic Core Component (BCC)

1

0..*

+basis

1

0..*

Basic CC Property

1

1

1

1

Data Type

Qualifier Term 0..1

0..*

1

0..*

1

0..*

1

0..*

1

UBL employs the methodology and model (See Figure 2-1) described in Core Components Technical Specification, Part 8 of the ebXML Technical Framework, Version 2.0 of 11 August 2003 (CCTS) to build the UBL Component Library. The Core Components work is a continuation of work that originated in, and remains a part of, the electronic business XML (ebXML) initiative. The Core Components concept defines a new paradigm in the design and implementation of reusable syntatically neutral information building blocks. Core Components are intended to form the basis of business information standardization efforts and to be realized in syntactically specific instantiations such as electronic data interchange and XML.

The essence of the Core Components specification is captured in context neutral and context specific building blocks. The context neutral components are defined as Core Components. Context neutral Core Components are defined in CCTS as “A building block for the creation of a semantically correct and meaningful information exchange package. It contains only the information pieces necessary to describe a specific concept.”

The context specific components are defined as Business Information Entities. Context specific Business Information Entities are defined in CCTS as “A piece of business data or a group of pieces of business data with a unique Business Semantic definition.”
 As shown in Figure 2-1, there are different types of Core Components and Business Information Entities. Each type of Core Component and Business Information Entity has specific relationships between and amongst the other components and entities. The context neutral Core Components are the linchpin that establishes the formal relationship between the various context specific Business Information Entities. Multiple Business Information Entities, each expressing a different context, can be associated to a single Core Component. A collection of Business Information Entities will constitute a business message. A larger collection of Business Information Entities will constitute a library of reusable components.

UBL is developing a library of reusable components for XML syntactic expressions, as well as the syntactic expressions themselves in the form of normative schema. In keeping with the tenants of the CCTS, the UBL component library will consist of Business Information Entities. More specifically, The UBL vocabulary consists of Aggregate Business Information Entities (ABIEs), their underlying Basic Business Information Entities (BBIEs], and Association Business Information Entities (ASBIEs).

UBL is committed to contributing its library of reusable components to UN/CEFACT for harmonization and inclusion in the UN/CEFACT ebXML Core Component and Business Information library. Since UBL is concerning itself only with the development of Business Information Entities, and their realization in XML, the UBL metamodel is that subset of Figure 2-1 that consists of the Business Information Entity concepts. UBL defines no Core Components. Since UBL will not be defining Core Components, UBL will leave it to UN/CEFACT to define the relationships between the UBL Business Information Entities and their underlying Core Components.

2.1 Mapping Business Information Entities to XSD

UBL has defined how each of the Business Information Entity components map to an XSD construct (See figure 2-2). In defining this mapping, UBL has analyzed the CCTS metamodel and determined the optimal usage of XSD to express the various Business Information Entity components. As stated above, a Business Information Entity can be an Aggregate Business Information Entity, Basic Business Information Entity, or Association Business Information Entity. In understanding the logic of the UBL binding of BIEs to XSD expressions, it is important to understand the basic constructs of the BIEs and their relationships as shown in Figure 2-1.

Aggregate and Basic Business Information Entities must have a unique name (Object Class Term). Both are treated as objects and both are defined as xsd:ComplexTypes.

Figure 2-2. UBL Metamodel

[image: image3.wmf]As

Property

Aggregated

in

As

Property

Aggregated

in

Core

Component

Type (CCT)

Basic Core Component

Aggregate Core Component

Association

Core

Component

Data Type

Specifies

restrictions on

Defines set

of values of

Basic Business Information Entity

Aggregate Business Information

Entity

Association

Business

Information

Entity

Message Assembly

Assembly

Component

Qualifies the

Object Class

of

Is

based

on

Is

based

on

Core Component Library

Adds

extra information

Data Type

Further

restricts

Aggregated in

Aggregated

in

Defines set

of values of

XSD:

complexType

XSD:element

XSD:

complexType

XSD:element

XSD:

complexType

XSD:element

XSD:

complexType

XSD:element

XSD:element

As Representation Term

As Representation Term

There are two kinds of Business Information Entity Properties - Basic and Association. A Basic Business Information Entity Property represents an intrinsic property of an Aggregate Business Information Entity. Basic Information Entity properties are linked to a data type and expressed as either a primary or secondary Representation Term. Since data types are not expressed directly, UBL does not define an xsd structure for data types. CCTS pre-defines an approved set of primary and secondary representation terms. Since these terms are fixed, UBL defines each primary and secondary representation term in a reusable xsd:schemaModule. In that schema module, all representation terms are defined as an xsd:complexType with the exception of those representation terms that directly map to an xsd:dataType, which are defined as xsd:simpleTypes.

An Association Business Information Entity Property represents an extrinsic property – in other words an association from one Aggregate Business Information Entity Property instance to another Aggregate Business Information Entity Property instance. It is the Association Business Information Entity property that expresses the relationship between Aggregate Business Information Entities. Due to their unique extrinsic association role, Association Business Information Entities are not defined as xsd:complexTypes, rather they are declared as elements that are then bound to the xsd:complexType of the associated Aggregate Business Information Entity.

As stated above, Basic Business Information Entities define the intrinsic structure of an Aggregate Business Information Entity. These Basic Business Information Entities are the “leaf” types in the system in that they contain no Association Business Information Entity Properties. A Basic Business Information Entity must have a Core Component Type. Core Component Types are low-level types, such as Identifiers and Dates. A Core Component Type describes these low-level types for use by Core Components, and (in parallel) a “Data Type” – corresponding to that Core Component Type, describes these low-level types for use by Business Information Entities. Core Component Types have a single Content Component and one or more Supplementary Components. A Content Component is of some Primitive Type. Core Component Types and their corresponding content and supplementary components are pre-defined in the CCTS. UBL, in partnership with the Open Applications Group has developed an xsd:schemaModule that defines Core Component Types as xsd:complexTypes and declares supplementary components as attributes.

3 General XML Construct
This Chapter defines UBL rules related to general XML constructs to include:

Overall Schema Structure

Naming and Modeling Constraints

Modularity Strategy

Namespace Scheme

Versioning Scheme
Schema Documentation Requirements
3.1 Overall Schema Structure
A key aspect of developing standards is to ensure consistency in their development. Since UBL is envisioned to be a collaborative standards development effort, with liberal developer customization opportunities through use of the xsd:extension and xsd:restriction mechanisms, it is essential to provide a mechanism that will guarantee that each occurance of a UBL conformant schema will have the same look and feel.

[GXS1]
UBL Schema MUST conform to the following physical layout:

XML Declaration

<!-- ===== XML Declaration ===== -->

<!-- ===== Copyright Information ===== -->

<!-- ===== Namespaces ===== -->

<!-- ===== Imports ===== -->

Representation Term Schema Module (to include CCT module)
Common Basic Types Schema Module

Common Aggregate Types Schema Module
<!-- ===== Global Attributes ===== -->

Root Element

<!-- ===== Root Element ===== -->

<!-- ===== Element Declarations ===== -->

alphabetized order

<!-- ===== Type Definitions ===== -->

<!-- =====Basic Business Information Entity Type Definitions ===== -->

alphabetized order of Basic Business Information Entities

<!-- ===== Aggregate Business Information Entity Type Definitions ===== -->

alphabetized order of Aggregate Business Informaiton Entities
[Ed. Note – requires harmonization with LC order]
3.1.1 Root Element
Per XML 1.0, “There is exactly one element, called the root, or document element, no part of which appears in the content of any other element.” XML 1.0 further states “The root element of any document is considered to have signaled no intentions as regards application space handling, unless it provides a value for this attribute or the attribute is declared with a default value.” W3C XSD allows for any globally declared element to be the root element. To keep consistency in the instance documents and to adhere to the underlying process model that supports each UBL Schema, it is desireous to have one and only one element function as the root element for each Schema. Since UBL follows a global element declaration scheme (See Section x.x.x), each UBL Schema will identify one element declaration in each schema as the root element. This will be accomplished through an xsd:annotation child element for that element in accordance with the following rule:
[ELD1]
Each UBL Schema MUST declare one global element that defines the overall business process being conveyed in the Schema expression. That global element declaration MUST include an xsd:annotation child element which MUST further contain an xsd:documentation child element that declares “This element MUST be conveyed as the root element in any instance document based on this Schema expression.”

 Additional root element rules are contained in Section 8.
3.2 Constraints
A key aspect of UBL is to base its work on process modeling and data analysis as precursors to developing the UBL library. In determining how best to affect this work, several constraints have been identified that directly impact on both the process modeling and data analysis, as well as on the resultant UBL Schema.
3.2.1 Naming Constraints
A primary component of the UBL library documentation is its dictionary. The entries in the dictionary fully define the pieces of information available for use in UBL business messages. These entries contain fully conformant CCTS dictionary entry names as well as truncated UBL XML element names developed in conformance with the rules in section XX. The dictionary entry name ties the information to its standardized semantics, while the name of the corresponding XML element or attribute is only shorthand for this full name. The rules for element and attribute naming and dictionary entry naming are different.

[NMC1]
Each dictionary entry name MUST define one and only one fully qualified path (FQP) for an element or attribute.

The fully qualified path anchors the use of that construct to a particular location in a business message. The dictionary definition identifies any semantic dependencies that the FQP has on other elements and attributes within the UBL library that are not otherwise enforced or made explicit in its structural definition. The dictionary serves as a traditional data dictionary, and also serves some of the functions of traditional implementation guides.
3.2.2 Modeling Constraints
In keeping with UBL guiding principles, modeling constraints are limited to those necessary to ensure consistency in development.
3.2.2.1 Defining Classes

UBL is based on instantiating ebXML Core Components. UBL models and the XML expressions of those models are class driven. Specifically, classes are defined for each Basic and Aggregate Business Information Entity defined.
[MDC1]
UBL Models MUST define classes based on ebXML Core Component Basic Business Information Entities and Aggregate Business Information Entities.
3.2.2.2 Core Component Types
Each Basic Business Information Entity has an associated Core Component Type. The CCTS predefines the authorized set of Core Component Types. To ensure conformance, UBL is limited to using this predefined set.
[MDC2]
UBL Libraries and Schemas MUST only use ebXML Core Component approved Core Component Types.
3.2.2.3 Consistent Business Function in Extensions

A key aspect of UBL extension methodology is to ensure that extensions are consistent with the original message construct purpose.
[MDC3]
If a UBL message set is extended it MUST retain the business function of the original UBL message set.
3.2.2.4 Mixed Content Models

UBL messages are designed to effect data-centric electronic commerce. Mixed content models allow little useful control over the cardinality of elements. Mixed content in business documents is undesirable because white space in mixed content is difficult to handle and complicates processing, and
[MDC4]
Mixed content MUST NOT be used except where contained in an xsd:documentation element.

3.3 Modularity
[Ed Note – the narrative in this section has not yet been reworked]

UBL relies extensively on modularity in schema design.
[Definition] Root Schema – A schema module that declares a target namespace and is likely to pull in (by including or importing) Schema Modules.
[Definition] Schema Module: A schema document containing type definitions and element declarations intended to be reused in multiple Schema.
[Definition] Internal Schema Module: A Schema Module that does not declare a target namespace.

If a namespace is small enough then it can be completely specified within the Root Schema. For larger namespaces, more schema modules may be defined – call these internal modules. The root schema for that namespace then include those Internal Modules.

This structure provides encapsulation of namespace implementations.

A namespace “A” dependent upon type definitions or element declaration defined in another namespace “B” must import B’s root schema. “A” must not import internal schema modules of “B”.

The only place XSD “include” is used is within a root schema. When a namespace gets large, its type definitions and element declarations may be split into multiple schema modules (called internal modules) and included by the root schema for that namespace.
Thus a namespace is an indivisible grouping of types. A “piece” of a namespace can never be used without all its pieces.

Here is a depiction of the component structure we’ve described so far. This is a UML Static Structure Diagram. It uses classes and associations to depict the various concepts we’ve been discussing:

Figure 5.1 UML Static Structure Diagram

[image: image4.wmf]urn:oasis:names:tc:ubl:

CommonLeafTypes

urn:oasis:names:tc:ubl:

CommonAggregateTypes

urn:oasis:

names:tc:ubl:

Invoice

urn:oasis:

names:tc:ubl

:Order

Common

LeafTypes

Invoice

Order

Common

Aggregate

Types

Internal

Module

Root

schema

import

include

X:y:z

Namespace

There are two kinds of schema module: RootSchema and “InternalModule”. A RootSchema may have zero or more InternalModules that it includes. Any SchemaModule, be it a RootSchema or an InternalModule may import other RootSchemas.

The diagram shows the 1-1 correspondence between RootSchemas and namespaces. It also shows the 1-1 correspondence between files and SchemaModules. A SchemaModule consists of type definitions and element declarations.

Another way to visualize the structure is by example. The following informal diagram depicts instances of the various classes from the previous diagram.

Figure 5.2 Classes

[image: image5.wmf]

SchemaModule

RootSchema

InternalModule

1

-included

0..*

0..*

-imported

0..*

File

1

1

Namespace

1

1

TypeDefinition

ElementDeclaration

1

0..*

1

0..*

[Ed Note – align figure content with actual “CommonBasicTypes” name]
The preceding diagram shows how the order and invoice RootSchemas import the “CommonAggregateTypes” and “CommonBasicTypes” RootSchemas. It also shows how e.g. the order RootSchema includes various InternalModules – modules local to that namespace. The clear boxes show how the various SchemaModules are grouped into namespaces.

UBL is structured so that a user can import a piece without getting the whole. It must be possible, for instance, for a user to import the CommonBasicTypes namespace without causing the CommonAggregateTypes to be imported. It must be possible for a user to import the CommonAggregateTypes namespace without causing the Order namespace to be imported. It must be possible to import any one of the “vertical” namespaces, e.g. Order without causing another, e.g. Invoice to be imported.
If two namespaces are mutually dependent then clearly, importing one will cause the other to be imported as well. For this reason there must not exist circular dependencies between UBL SchemaModules. By extension, there must not exist circular dependencies between namespaces. This rule is not limited to direct dependencies – transitive dependencies must be taken into account also
3.3.1 Overall Modularity Approach
[SSM1]
UBL Schema expressions MAY be split into multiple Schema Modules.

3.3.2 UBL Schema Modules
[SSM2]
UBL Schema Modules MUST either be treated as external Schema Modules or as internal Schema Modules of the root Schema.

3.3.2.1 Internal Schema Modules

[SSM3]
All UBL internal Schema Modules MUST be in the same namespace as their corresponding root Schema.

[SSM4]
Each UBL internal Schema Module MUST be named {ParentSchemaModuleName}{InternalSchemaModuleFunction}{Schema Module}

3.3.2.2 Reusable Types

UBL will maximize reuse.
[SSM5]
A UBL Schema Module MAY be created for Reusable types.
3.3.2.2.1 UBL CommonBasicTypes Schema Module
[SSMxx]
A Schema Module defining all ubl:CommonBasicTypes MUST be created.

[SSMxx]
The UBL:CommonBasicTypes Schema Module MUST be named “UBL:CommonBasicTypes Schema Module”

3.3.2.2.1.1 UBL CommonBasicTypes Schema Module Namespace
[NMS14]
The UBL:CommonBasicTypes Schema Module MUST reside in its own namespace.

[NMS15]
The UBL:CommonBasicTypes Schema Module MUST be represented by the token “cbt”.

3.3.2.2.2 UBL CommonAggregateTypes Schema Module
[SSMxx]
A Schema Module defining all ubl:CommonAggregateTypes MUST be created.

[SSMxx]
The UBL:CommonAggregateTypes Schema Module MUST be named “UBL:CommonAggregateTypes Schema Module”
3.3.2.2.2.1 UBL CommonAggregateTypes Schema Module Namespace
[NMS16]
The UBL:CommonAggregateTypes Schema Module MUST reside in its own namespace.

[NMS17]
The UBL CommonAggregateTypes Schema Module MUST be represented by the token “cat”.

3.3.2.2.3 Common
3.3.3 Limitations on Import
[SSM6]
A root schema in one UBL namespace that is dependent upon type definitions or element declaration defined in another namespace MUST only import the RootSchema from that namespace.

[SSM7]
A UBL root schema in one UBL namespace that is dependant upon type definitions or element declarations defined in another namespace MUST NOT import Schema Modules from that namespace.

3.3.4 Module Conformance
[SSM8]
Imported Schema Modules MUST be fully conformant with UBL naming and design rules.

3.3.5 Core Component Type Schema Module
[SSM9]
A Schema Module defining all CCTS:CCTs MUST be created.

[SSM10]
The CCTS:CCT Schema Module MUST be named “CCTS:CCT Schema Module”

[SSM11]
The xsd:facet feature MUST not be used in the CCTS:CCT Schema Module.
3.3.5.1 Core Component Type Schema Module Namespace
[NMS8]
The CCTS:CCT Schema Module MUST reside in its own namespace.

[NMS9]
The CCTS:CCT Schema Module namespace MUST be represented by the token “cct”.

3.3.6 CCTS Representation Term Schema Module
[SSM12]
A Schema Module defining all CCTS:PrimaryRepresentationTerms and CCTS:SecondaryRepresentationTerms MUST be created.
[SSM13]
The CCTS:RepresentationTerm Schema Module MUST be named “CCTS Representation Term Schema Module”
3.3.6.1 CCTS Representation Term Schema Module Namespace

[NMS10]
The CCTS:RepresentationTerm Schema Module MUST reside in its own namespace.

[NMS11]
The CCTS:RepresentationTerm Schema Module namespace MUST be represented by the token “rt”.

3.3.7 UBL Datatypes
CCTS stipulates Datatypes will be defined for Basic Business Information Entity properties. The Datatype defines the set of valid values that can be used for its Basic Business Information Entity Property. The Datatype is defined by specifying restrictions on the Core Component Type that forms the basis of the Data Type. Consistency with the UBL modularity and reuse goals necessitate creating a single schema module that defines all UBL Datatypes.
[SSM14]
A Schema Module defining all UBL Datatypes MUST be created.
The ubl:Datatypes Schema module name must follow the UBL module naming approach.
[SSM15]
The UBL:Datatypes Schema Module MUST be named “UBL Datatypes” Schema Module”
3.3.7.1 UBL Datatype Schema Module Namespace

[NMS12]
The UBL:Datatypes Schema Module MUST reside in its own namespace.

[NMS13]
The UBL:Datatypes Schema Module namespace MUST be represented by the token “dt”.

[NMS18]
Each UBL:CodeList Schema Module MUST be maintained in a separate namespace.

3.4 Namespace Scheme
[NMS1]
Every UBL defined or used Schema Module MUST have a namespace declared.

[NMS2]
Every UBL defined or used Schema Module version MUST have its own unique namespace.

[NMS3]
UBL namespaces MUST only contain UBL developed Schema Modules.
[NMS4]
The namespace names for UBL Schemas holding draft status MUST be of the form:

urn:oasis:names:tc:ubl:schema:name:major:minor
[NMS5]
The namespace names for UBL Schemas holding specification status MUST be of the form:

urn:oasis:names:specification:ubl:schema:name:major:minor
[NMS6]
UBL Schema modules MUST be hosted under the UBL committee directory:

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd
[NMS7]
UBL published namespaces MUST never be changed.

3.5 Versioning Scheme
[VER1]
Every UBL Schema and Schema Module Major version MUST have the URI of:

urn:oasis:names:tc:ubl:name:major-number:0

[VER2]
The first minor version release of a UBL Schema or Schema Module MUST have the URI of:

urn:oasis:names:tc:ubl:name:major-number:non-zero
[VER3]
For UBL Minor version changes, the name of the version construct MUST NOT change (short name not qualified name), unless the intent of the change is to rename the construct.
[VER4]
Every UBL Schema and Schema Module major version number MUST be a non-negative integer.
[VER5]
Every UBL Schema and Schema Module minor version number MUST be a non-negative integer.
[VER6]
Each UBL minor version MUST be given a separate namespace.
[VER7]
When a UBL URN changes to reflect a change in the namespace, this change MUST be reflected in the version number, either major or minor.
[VER8]
UBL Schema and Schema Module minor versioning MUST be limited to declaring new optional constructs, extending existing constructs, and refinements of an optional nature.
[VER9]
UBL Schema and Schema Module minor version changes MUST not break semantic compatibility with prior versions.
[VER10]
UBL minor version namespaces MUST reference immediately preceding minor version root Schemas.

3.6 Documentation
The UBL documentation also includes definitions of:

· XSD complex and simple types in the UBL library, including whether and how that type maps to a core component type

· The top-level whole message elements in UBL

· Global attributes

· Summaries of Code Lists

· UBL-specific Core Component Types

· UBL-specific representation terms
The UBL documentation should be automatically generated to the extent possible, using embedded documentation fields in the structural definitions.

3.6.1 Embedded documentation

The information about each UBL BIE is in the library spreadsheets. UBL spreadsheets contain all necessary information to produce fully annotated Schema. Fully annotated Schema are valuable tools to implementers to assist in understanding the nuances of the information contained therein. UBL annotations will consist of information currently required by Section 7 of the CCTS and supplemented by necessary information identified by LCSC.
[DOC1]
Every type definition MUST contain a structured set of annotations in the following pattern:

· UBL UID: The unique identifier assigned to the type in the UBL library.

· UBL Name: The complete name (not the tag name) of the type per the UBL library.

· Object Class: The Object Class represented by the type.

· Dictionary Entry Name: The complete name (not the tag name), which is the unique official name of the BIE or the property in the UBL library.

· UBL Definition: Documentation of how the type is to be used, written such that it addresses the type's function as a reusable component.

· Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

· Core Component UID: The UID of the Core Component on which the Type is based

· Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is "In All Contexts".

· Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is "In All Contexts".

· Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is "None".

· Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is "In All Contexts"

· Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is "In All Contexts".

· Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is "In All Contexts".

· Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is "In All Contexts".

· System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is "In All Contexts".

· All relevant metadata as specified in CCTS Section 7 for the concept (CCTS:BBIE, CCTS:ABIE, CCTS:ASBIE, CCTS:CCT, CCTS:RepresentationTerm, CCTS:Datatype) being conveyed.
[DOC2]
Every element declaration MUST contain an annotation as follows:

<Documentation>Dictionary Entry Name</Documentation> where Dictionary Entry Name is the complete name (not the tag name) that is the unique official name of the element in the UBL library.
[DOC3]
For each UBL construct containing a code, the UBL documentation MUST identify the zero or more code lists that MUST be minimally supported when the construct is used.
3.6.2 Schema Annotation

[GXS2]
UBL MUST provide two normative schemas for each transaction. One schema shall be a run-time schema devoid of documentation. One schema shall be fully annotated.

4 Naming Rules
The rules in this section make use of the following special concepts related to XML elements and attributes.

Top-level element: An element that encloses a whole UBL business message. Note that UBL business messages might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a UBL top-level element is not necessarily the root element of the XML document that carries it.

Lower-level element: An element that appears inside a UBL business message.

Intermediate element: An element not at the top level that is of a complex type, only containing other elements and attributes.

Leaf element: An element containing only character data (though it may also have attributes). Note that, because of the XSD mechanisms involved, a leaf element that has attributes must be declared as having a complex type, but a leaf element with no attributes may be declared with either a simple type or a complex type.

Common attribute: An attribute that has identical meaning on the multiple elements on which it appears. A common attribute might or might not correspond to an XSD global attribute.

4.1 General Naming Rules
[GNR1]
UBL XML element, attribute and type names MUST be in the English language, using the primary English spellings provided in the Oxford English Dictionary.

[GNR2]
UBL XML element, attribute and type names MUST be taken from CCTS conformant dictionary entry names.

[GNR3]
UBL XML element, attribute and type names constructed from CCTS:DictionaryEntryNames MUST NOT include periods, spaces, other separators, or characters not allowed by W3C XML 1.0 for XML names.

[GNR4]
UBL XML Element, attribute, and Simple and complex type names MUST NOT use acronyms, abbreviations, or other word truncations, except those in the list of exceptions published in Appendix B.

[GNR5]
Acronyms and abbreviations MUST only be added to the UBL approved acronym and abbreviation list after careful consideration for maximum understanding and reuse.

[GNR6]
Acronyms and abbreviations added to the UBL approved list MUST only be taken from the latest version of the Pocket Oxford English Dictionary. The first occurrence listed for a word MUST be used.

[GNR7]
The acronyms and abbreviations listed in Appendix B MUST always be used.

[GNR8]
UBL XML element, attribute and type names MUST be in singular form unless the concept itself is plural (example: Goods).

[GNR9]
The UpperCamelCase (UCC) convention MUST be used for naming elements and types.

[GNR10]
The lowerCamelCase (LCC) convention MUST be used for naming attributes.

4.2 Element Naming Rules
[ELN1]
A UBL global element name based on an CCTS:ABIE MUST be the same as the name of the corresponding xsd:complexType to which it is bound, with the word “Type” removed.

[ELN2]
A UBL global element name based on a CCTS:BBIE MUST be the same as the name of the corresponding xsd:complexType to which it is bound, with the word “Type” removed.

[ELN3]
A UBL global element name based on an CCTS:ASBIE MUST be declared and bound to the xsd:complexType of its associated CCTS:ABIE.

[ELN4]
A UBL global element name based on an CCTS:ASBIE MUST be the CCTS:ASBIE dictionary entry name property term and qualifiers; and the object class term and qualifiers of its associated CCTS:ABIE. All CCTS:DictionaryEntryName separators MUST be removed. Redundant words in the CCTS:ASBIE property term or qualifiers and the associated CCTS:ABIE object class term or qualifiers MUST be dropped.

4.3 Attribute Naming Rules
[ATN1]
Each CCT:SupplementaryComponent xsd:attribute “name” MUST be the CCTS:SupplementaryComponent dictionary entry name property term and representation term, with the separators removed.

4.4 Type Naming Rules

[CTN1]
A UBL xsd:complexType name based on an CCTS:ABIE MUST be the CCTS:DictionaryEntryName with the separators removed and with the “Details” suffix replaced with “Type”.

[CTN2]
A UBL xsd:complexType name based on a CCTS:BBIE MUST be the CCTS:DictionaryEntryName property term and qualifiers and representation term, with the separators removed and with the “Type” suffix appended after the representation term.

[CTN3]
A UBL xsd:complexType name based on a primary representation term used in the UBL model MUST be the name of the corresponding CCTS:CCT, with the separators removed and with the “Type” suffix appended after the primary representation term name.

[CTN4]
A UBL xsd:complexType name based on a secondary representation term used in UBL model MUST be the name of the secondary representation term, with the separators removed and with the “Type” suffix appended after the secondary representation term name.

[CTN5]
A UBL xsd:complexType name based on a CCTS:CCT MUST be the Dictionary entry name of the CCTS:CCT, with the separators removed.

5 Declarations and Definitions

5.1 Type Definitions
5.1.1 General Type Definitions
[GTD1]
All types MUST be named.
[GTD2]
The xsd:any Type MUST NOT be used.

5.1.2 Simple Types
[STD1]
For every CCTS:CCT whose supplementary components are equivalent to the properties of a built-in xsd:datatype, the CCT:SupplementaryComponents MUST NOT be expressed as attributes, and the CCTS:CCT MUST be defined as a named simpleType in the CCTS:CCT Schema Module.

[STD2]
xsd:simpleType restriction MUST NOT be used for CCTS:CCTs.

5.1.3 Complex Types
[CTD1]
For every class identified in the UBL model, a named xsd:complexType MUST be defined.

5.1.3.1 Aggregate Business Information Entities
 [CTD4]
Every CCTS:ABIE xsd:complexType definition content model MUST use the xsd:sequence element with appropriate global element references, or local element declarations in the case of ID and Code, to reflect each property of its class as defined in the corresponding UBL model.

5.1.3.2 Basic Business Information Entities
[CTD5]
Every CCTS:BBIE xsd:complexType definition content model MUST use the xsd:simpleContent element.

[CTD6]
Every CCTS:BBIE ComplexType content model xsd:simpleContent element MUST consist of an xsd:extension element.

[CTD7]
Every CCTS:BBIE xsd:complexType content model xsd:extension element MUST use the xsd:base attribute to define the basis of each primary or secondary representation term.

[CTD8]
Every CCTS:BBIE xsd:complexType content model xsd:base attribute value MUST be the CCTS:CCT of the primary representation term or the datatype of the secondary representation term as appropriate.

5.1.3.3 Representation Terms
[CTD2]
For every primary representation term used in the UBL model, a named xsd:complexType MUST be defined.

[CTD3]
For every secondary representation term used in the UBL model, a named xsd:complexType MUST be defined.

5.1.3.4 Core Component Types
[CTD9]
For every CCTS:CCT whose supplementary components are not equivalent to the properties of a built-in xsd:datatype, the CCTS:CCT MUST be defined as a named xsd:complexType in the CCTS:CCT Schema Module.
[CTD10]
Each CCTS:CCT xsd:complexType definition MUST contain one xsd:simpleContent element
[CTD11]
The CCTS:CCT xsd:complexType definition xsd:simpleContent element MUST contain one xsd:extension element. This xsd:extension element MUST include an xsd:base attribute that defines the specific xsd:built-inDatatype required for the CCTS:ContentComponent of the CCTS:CCT.
5.1.3.5 Supplementary Components
[CTD12]
Each CCT:SupplementaryComponent xsd:attribute “type” MUST define the specific xsd:built-in Datatype or the user defined xsd:simpleType for the CCTS:SupplementaryComponent of the CCTS:CCT.
[CTD13]
Each CCTS:SupplementaryComponent xsd:attribute user-defined xsd:simpleType MUST only be used when the CCTS:SupplementaryComponent is based on a standardized code list for which a UBL conformant code list Schema Module has been created.
[CTD14]
Each CCTS:SupplementaryComponent xsd:attribute user defined xsd:simpleType MUST be the same xsd:simpleType from the appropriate UBL conformant code list Schema Module for that type.
[CTD15]
Each CCTS:Supplementary Component xsd:attribute “use” MUST define the occureance of that CCTS:SupplementaryComponent as either “required”, or “optional.
[CTD16]
Each CCTS:CCT simpleType definition name MUST be the CCTS:CCT dictionary entry name with the separators removed.

5.1.3.6
5.1.3.7
5.1.3.8
5.2 Element Declarations
5.2.1 General Element Declarations
[ELD2]
All element declarations MUST be global with the exception of ID and Code which MUST be local.

5.2.2
5.2.3 Elements Bound to Complex Types
[ELD3]
For every class identified in the UBL model, a global element bound to the corresponding xsd:complexType MUST be declared.

[ELD4]
CCTS:CCT simple and xsd:complexTypes MUST only be bound to elements that represent a BCC or a BBIE.

5.2.3.1
5.2.3.2
5.2.3.3 Elements Bound to Representation Terms
5.2.3.4 Elements Bound to Core Component Types
[ELD5]
For each CCTS:CCT simpleType, an xsd:restriction element MUST be declared.

5.2.4 Code List Import
[ELD6]
The code list xsd:import element MUST contain the namespace and schema location attributes.

5.2.5 Empty Elements
[ELD7]
Empty elements MUST not be declared.

5.2.6 XSD:Any
[ELD8]
The xsd:any element MUST NOT be used.

5.3 Attribute Declarations
5.3.1 User Defined Attributes
[ATD1]
User defined attributes SHOULD NOT be used. When used, user defined attributes MUST only convey CCT:SupplementaryComponent information.

5.3.2 Global Attributes
[ATD6]
If a UBL xsd:SchemaExpression contains one or more common attributes that apply to all UBL elements contained or included or imported therein, the common attributes MUST be declared as part of a global attribute group.

[ATD2]
If a CCTS:SupplementaryComponent xsd:attribute is common to all UBL elements, it MUST be declared as part of a global attribute group in the CCTS:CCT Schema Module.

5.3.3 Supplementary Components
[ATD3]
Within the CCTS:CCT xsd:extension element an xsd:attribute MUST be declared for each CCTS:SupplementaryComponent pertaining to that CCTS:CCT.
[ATD4]
For each CCTS:CCT simpleType xsd:Restriction element, an xsd:base attribute MUST be declared.

[ATD5]
Each CCTS:CCT simpleType xsd:Restriction element xsd:base attribute value MUST be set to the appropriate xsd:datatype.

5.3.4 Schema Location
[ATD7]
Each xsd:schemaLocation attribute declaration MUST contain a persistant and resolvable URL.

[ATD8]
Each xsd:schemaLocation attribute declaration URL MUST contain an absolute path.

To identify schema modules relative paths are not allowed. Although this may cause a problem with mirror sites, this is outside the scope of UBL.

5.3.5 XSD:Nil
[ATD9]
The xsd built in nillable attribute MUST NOT be used for any UBL declared element.

5.3.6 XSD:Any
[ATD10]
The xsd:any attribute MUST NOT be used.

6 Code Lists

UBL has determined that the best approach for code lists is to handle them as schema modules. In recognition of the fact that most code lists are maintained by external agencies, UBL has determined that if code list owners all used the same normative form schema module, all users of those code lists could avoid a significant level of code list maintenance. By having each code list owner develop, maintain, and make available via the internet their code lists using the same normative form schema, code list users would be spared the unnecessary and duplicative efforts required for incorporation in the form of enumeration of such code lists into Schema, and would subsequently avoid the maintenance of such enumerations since code lists are handled as imported schema modules rather than cumbersome enumerations. To make this mechanism operational, UBL has defined a number of rules. To avoid enumeration of codes, UBL has determined that:
[CDL1]
All UBL Codes MUST be part of a UBL or External maintained Code List.
Because the majority of code lists are owned and maintained by external agencies, UBL will make maximum use of such external code lists where they exist.
[CDL2]
The UBL Library SHOULD identify and use external standardized code lists rather than develop its own UBL-native code lists.
[CDL3]
The UBL Library MAY design and use an internal code list where an existing external code list needs to be extended, or where no suitable external code list exists.
[CDL4]
If a UBL code list is created, the lists SHOULD be globally scoped (designed for reuse and sharing, using named types and namespaced Schema Modules) rather than locally scoped (not designed for others to use and therefore hidden from their use).
[CDL5]
All UBL maintained or used Code Lists MUST be enumerated using the UBL Code List Schema Module.
[CDL6]
The name of each UBL Code List Schema Module MUST be of the form:

{Owning Organization}[Code List Name}{Code List Schema Module}
[CDL7]
An xsd:Import element MUST be declared for every code list required in a UBL schema.
[CDL8]
Users of the UBL Library may identify any subset they wish from an identified code list for their own trading community conformance requirements.

7 Miscellaneous XSD Rules
7.1 XSD Simple Types
[GXS3]
Built-in XSD Simple Types SHOULD be used wherever possible.

7.2 Namespace Declaration
[GXS4]
All W3C XML Schema constructs in UBL Schema and Schema Modules MUST contain the following namespace declaration on the xsd schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema”

7.3 XSD:Substitution Groups
[GXS5]
The xsd:substitution groups feature MUST NOT be used.

7.4 XSD:Final
[GXS6]
The xsd:final attribute MUST be used to control extensions.

7.5 XSD: Notations
[GXS7]
xsd:notations MUST NOT be used.

7.6 XSD:All
[GXS8]
The xsd:all element MUST NOT be used.

7.7 XSD:Choice
[GXS9]
The xsd:choice element MUST NOT be used.

7.8 XSD:Include
[GXS10]
The xsd:include feature MUST only be used within a RootSchema.

7.9 XSD:Union
[GXS11]
The xsd:union technique MUST NOT be used except for Code Lists. The xsd:union technique MAY be used for Code Lists.

7.10 XSD:Appinfo
[GXS12]
UBL designed schema SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST only be used to convey non-normative information.
7.11 Extension and Restriction
[GXS13]
Complex Type extension or restriction MAY be used where appropriate.

8 Instance Documents
[RED1]
Every UBL business document MUST have a single root element.
[RED2]
Every root element in a UBL document MUST be named according to the portion of the business process that it initiates.
[IND1]
All UBL instance documents MUST validate to a corresponding schema.

[IND2]
All UBL instance documents MUST always identify their character encoding with the XML declaration.

[IND3]
In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by OASIS, all UBL XML SHOULD be expressed using UTF-8.

[IND4]
All UBL instance documents MUST contain the following namespace declaration in the root element:

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

.

[IND5]
UBL conformant instance documents MUST NOTcontain an element devoid of content.

[IND6]
The absence of a construct or data in a UBL instance document MUST NOT carry meaning.

Appendix A.

Appendix B.
	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

·

Appendix C. UBL NDR Checklist

The following checklist constitutes all UBL XML naming and design rules as defined in UBL Naming and Design Rules version 1.0, xx November 2003. The checklist is in alphabetical sequence as follows:
Table A1 — Code List Rules (CDL)
Table A2 — Constraint Rules
· Modeling Constraints (MDC}
· Naming Constraints {NMC)
Table A3 — Declaration Rules

· Element Declarations (ELD)
· Attribute Declarations (ATD)
Table A4 — Documentation Rules (DOC)
Table A5 — General XSD Rules (GXS)
Table A6 — Instance Document Rules (IND)
Table A7 — Naming Rules
General Naming Rules (GNR)
Specific Naming Rules

· Element Naming Rules (ELN)
· Attribute Naming Rules (ATN)
· Type Naming Rules (CTN)
Table A8 — Namespace Rules (NMS)
Table A9 — Root Element Declaration Rules (RED)
Table A10 —
Table A1 — Code List Rules

	Rule Number
	Rule
	[Ed. Note]

	[CDL1]
	All UBL Codes MUST be part of a UBL or External maintained Code List.
	[R29a]

	[CDL2]
	The UBL Library SHOULD identify and use external standardized code lists rather than develop its own UBL-native code lists.
	[R62]

	[CDL3]
	The UBL Library MAY design and use an internal code list where an existing external code list needs to be extended, or where no suitable external code list exists.
	[R63]

	[CDL4]
	If a UBL code list is created, the lists SHOULD be globally scoped (designed for reuse and sharing, using named types and namespaced Schema Modules) rather than locally scoped (not designed for others to use and therefore hidden from their use).
	[R64]

	[CDL5]
	All UBL maintained or used Code Lists MUST be enumerated using the UBL Code List Schema Module.
	[R29c]

	[CDL6]
	The name of each UBL Code List Schema Module MUST be of the form:

{Owning Organization}[Code List Name}{Code List Schema Module}
	[R29b]

	[CDL7]
	An xsd:Import element MUST be declared for every code list required in a UBL schema.
	[R29e]

	[CDL8]
	Users of the UBL Library may identify any subset they wish from an identified code list for their own trading community conformance requirements.
	[R66]

Table A2. Constraint Rules
	Rule Number
	Rule

	[Ed. Note]

	Modeling Constraints

	[MDC1]
	UBL Models MUST define classes based on ebXML Core Component Basic Business Information Entities and Aggregate Business Information Entities.
	[R13a]

	[MDC2]
	UBL Libraries and Schemas MUST only use ebXML Core Component approved Core Component Types.
	[R61]

	[MDC3]
	If a UBL message set is extended it MUST retain the business function of the original UBL message set.
	[R81]

	[MDC4]
	Mixed content MUST NOT be used except where contained in an xsd:documentation element.
	[R 97]

	Naming Constraints

	[NMC1]
	Each dictionary entry name MUST define one and only one fully qualified path (FQP) for an element or attribute.
	[R3]

Table A3 — Declarations Rules

	Rule Number
	Rule
	[Ed. Note]

	Element Declarations

	[ELD2]
	All element declarations MUST be global with the exception of ID and Code which MUST be local.
	[R 92]

	[ELD1]
	Each UBL Schema MUST declare one global element that defines the overall business process being conveyed in the Schema expression. That global element declaration MUST include an xsd:annotation child element which MUST further contain an xsd:documentation child element that declares “This element MUST be conveyed as the root element in any instance document based on this Schema expression.”
	[R33]

	[ELD3]
	For every class identified in the UBL model, a global element bound to the corresponding xsd:complexType MUST be declared.
	[R13c]

	[ELD4]
	CCTS:CCT simple and xsd:complexTypes MUST only be bound to elements that represent a BCC or a BBIE.
	[R21d]

	[ELD5]
	For each CCTS:CCT simpleType, an xsd:restriction element MUST be declared.
	[R23b] OK

	[ELD6]
	The code list xsd:import element MUST contain the namespace and schema location attributes.
	[R29f]

	[ELD7]
	Empty elements MUST not be declared.
	[R94a]

	[ELD8]
	The xsd:any element MUST NOT be used.
	[R95a] Clear highlight

	Attribute Declarations

	[ATD1]
	User defined attributes SHOULD NOT be used. When used, user defined attributes MUST only convey CCT:SupplementaryComponent information.
	[R21a]

	[ATD2]
	If a CCTS:SupplementaryComponent xsd:attribute is common to all UBL elements, it MUST be declared as part of a global attribute group in the CCTS:CCT Schema Module.
	[R26a]

	[ATD3]
	Within the CCTS:CCT xsd:extension element an xsd:attribute MUST be declared for each CCTS:SupplementaryComponent pertaining to that CCTS:CCT.
	[R21g]

	[ATD4]
	For each CCTS:CCT simpleType xsd:Restriction element, an xsd:base attribute MUST be declared.
	[R23c]

	[ATD5]
	Each CCTS:CCT simpleType xsd:Restriction element xsd:base attribute value MUST be set to the appropriate xsd:datatype.
	[R23d]

	[ATD6]
	If a UBL xsd:SchemaExpression contains one or more common attributes that apply to all UBL elements contained or included or imported therein, the common attributes MUST be declared as part of a global attribute group.
	[R26b]

	[ATD7]
	Each xsd:schemaLocation attribute declaration MUST contain a persistant and resolvable URL.
	[R38a]

	[ATD8]
	Each xsd:schemaLocation attribute declaration URL MUST contain an absolute path.

To identify schema modules relative paths are not allowed. Although this may cause a problem with mirror sites, this is outside the scope of UBL.

	[R38b]

	[ATD9]
	The xsd built in nillable attribute MUST NOT be used for any UBL declared element.
	[R94b]

	[ATD10]
	The xsd:any attribute MUST NOT be used.
	[R95b]

	[ATD11]
	The xsd:version attribute MUST be used to convey the version of the schema. Its value MUST be identical to the portion of the namespace declaration schema version information. The xsd:version attribute MUST NOT be considered normative if different from the version information contained in the namespace declaration. FIX
	Added as additional metadata and is non-normative. MUST NOT replace the normative use of versioning in the namespace declaration because it is not sufficient to provide the control we need.

Table A4. Documentation Rules
	Rule Number
	Rule
	Ed. Note

	[DOC1]
	Every type definition MUST contain a structured set of annotations in the following pattern:

UBL UID: The unique identifier assigned to the type in the UBL library.

UBL Name: The complete name (not the tag name) of the type per the UBL library.

Object Class: The Object Class represented by the type.

Dictionary Entry Name: The complete name (not the tag name), which is the unique official name of the BIE or the property in the UBL library.

UBL Definition: Documentation of how the type is to be used, written such that it addresses the type’s function as a reusable component.

Code Lists/Standards: A list of potential standard code lists or other relevant standards that could provide definition of possible values not formally expressed in the UBL structural definitions.

Core Component UID: The UID of the Core Component on which the Type is based

Business Process Context: A valid value describing the Business Process contexts for which this construct has been designed. Default is “In All Contexts”.

Geopolitical/Region Context: A valid value describing the Geopolitical/Region contexts for which this construct has been designed. Default is “In All Contexts”.

Official Constraints Context: A valid value describing the Official Constraints contexts for which this construct has been designed. Default is “None”.

Product Context: A valid value describing the Product contexts for which this construct has been designed. Default is “In All Contexts”

Industry Context: A valid value describing the Industry contexts for which this construct has been designed. Default is “In All Contexts”.

Role Context: A valid value describing the Role contexts for which this construct has been designed. Default is “In All Contexts”.

Supporting Role Context: A valid value describing the Supporting Role contexts for which this construct has been designed. Default is “In All Contexts”.

System Capabilities Context: A valid value describing the Systems Capabilities contexts for which this construct has been designed. Default is “In All Contexts”.

All relevant metadata as specified in CCTS Section 7 for the concept (CCTS:BBIE, CCTS:ABIE, CCTS:ASBIE, CCTS:CCT, CCTS:RepresentationTerm, CCTS:Datatype) being conveyed.
	[R31]

Changed per NDR call 10/8/2003

	[DOC2]
	Every element declaration MUST contain an annotation as follows:

<Documentation>Dictionary Entry Name</Documentation> where Dictionary Entry Name is the complete name (not the tag name) that is the unique official name of the element in the UBL library.
	Added per NDR call of 10/8/2003

	[DOC3]
	For each UBL construct containing a code, the UBL documentation MUST identify the zero or more code lists that MUST be minimally supported when the construct is used.
	[R65]

Table A5. General XSD Rules
	Rule Number
	Rule

	Post Montreal Rule Number (This column will be deleted before publication)

	[GXS1]
	UBL Schema MUST conform to the following physical layout:

XML Declaration

<!-- ===== XML Declaration ===== -->

<!-- ===== Copyright Information ===== -->

Namespaces

<!-- ===== Namespaces ===== -->

Imports

<!-- ===== Imports ===== -->

Core Component Types

Representation Terms

Data Types
Basic Business Information Entities
Aggregate Business Information Entities
Global Attributes

<!-- ===== Global Attributes ===== -->

Root Element

<!-- ===== Root Element ===== -->

<!-- ===== Element Declarations ===== -->

alphabetized order

<!-- ===== Type Definitions ===== -->

<!-- =====
Basic Business Information Entity Type Definitions ===== -->

alphabetized order of Basic Business Information Entities

<!-- ===== Aggregate Business Information Entity Type Definitions ===== -->

alphabetized order of Aggregate Business Informaiton Entities
[Ed. Note – Being harmonized with LC format]
	

	[GXS2]
	UBL MUST provide two normative schemas for each transaction. One schema shall be a run-time schema devoid of documentation. One schema shall be fully annotated.
	[R96]

	[GXS3]
	Built-in XSD Simple Types SHOULD be used wherever possible.
	[R 98]

	[GXS4]
	All W3C XML Schema constructs in UBL Schema and Schema Modules MUST contain the following namespace declaration on the xsd schema element:

xmlns:xsd="http://www.w3.org/2001/XMLSchema”
	[R 107]

	[GXS5]
	The xsd:substitution groups feature MUST NOT be used.
	[R 103] Stephen felt groups should be part.

	[GXS6]
	The xsd:final attribute MUST be used to control extensions.
	[R 111]

	[GXS7]
	xsd:notations MUST NOT be used.
	[R 114]

	[GXS8]
	The xsd:all element MUST NOT be used.
	[R16b]

	[GXS9]
	The xsd:choice element MUST NOT be used.
	[R16c]

	[GXS10]
	The xsd:include feature MUST only be used within a RootSchema.
	[R45]

	[GXS11]
	The xsd:union technique MUST NOT be used except for Code Lists. The xsd:union technique MAY be used for Code Lists.
	[R 100]

	[GXS12]
	UBL designed schema SHOULD NOT use xsd:appinfo. If used, xsd:appinfo MUST only be used to convey non-normative information.
	[R 93]

	[GXS13]
	Complex Type extension or restriction MAY be used where appropriate.
	[R110]

Approved 10/8/03.

Table A6 —Instance Documents

	Rule Number
	Rule
	[Ed. Note]

	[IND1]
	All UBL instance documents MUST validate to a corresponding schema.
	[R84]

	[IND2]
	All UBL instance documents MUST always identify their character encoding with the XML declaration.
	[R83]

	[IND3]
	In conformance with ISO/IETF/ITU/UNCEFACT Memorandum of Understanding Management Group (MOUMG) Resolution 01/08 (MOU/MG01n83) as agreed to by OASIS, all UBL XML SHOULD be expressed using UTF-8.
	[R5c] OK

	[IND4]
	All UBL instance documents MUST contain the following namespace declaration in the root element:

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”.
	[R 108] revised and approved

	[IND5]
	UBL conformant instance documents MUST NOTcontain an element devoid of content.
	[R94c]

	[IND6]
	The absence of a construct or data in a UBL instance document MUST NOT carry meaning.
	[R 102]

Table A7 — Naming Rules

	Rule Number
	Rule

	[Ed. Note]

	General Naming rules

	[GNR1]
	UBL XML element, attribute and type names MUST be in the English language, using the primary English spellings provided in the Oxford English Dictionary.
	[R4]

	[GNR2]
	UBL XML element, attribute and type names MUST be taken from CCTS conformant dictionary entry names.
	[R5a]

	[GNR3]
	UBL XML element, attribute and type names constructed from CCTS:DictionaryEntryNames MUST NOT include periods, spaces, other separators, or characters not allowed by W3C XML 1.0 for XML names.
	[R5b]

	[GNR4]
	UBL XML Element, attribute, and Simple and complex type names MUST NOT use acronyms, abbreviations, or other word truncations, except those in the list of exceptions published in Appendix B.
	[R5/87]

	[GNR5]
	Acronyms and abbreviations MUST only be added to the UBL approved acronym and abbreviation list after careful consideration for maximum understanding and reuse.
	[R88]

	[GNR6]
	Acronyms and abbreviations added to the UBL approved list MUST only be taken from the latest version of the Pocket Oxford English Dictionary. The first occurrence listed for a word MUST be used.
	[R89]

	[GNR7]
	The acronyms and abbreviations listed in Appendix B MUST always be used.
	[R90]

	[GNR8]
	UBL XML element, attribute and type names MUST be in singular form unless the concept itself is plural (example: Goods).
	[R8]

	[GNR9]
	The UpperCamelCase (UCC) convention MUST be used for naming elements and types.
	[R9]

	[GNR10]
	The lowerCamelCase (LCC) convention MUST be used for naming attributes.
	[R10]

	Specific Naming Rules

	Element Naming Rules

	[ELN1]
	A UBL global element name based on an CCTS:ABIE MUST be the same as the name of the corresponding xsd:complexType to which it is bound, with the word “Type” removed.
	[R15a]

	[ELN2]
	A UBL global element name based on a CCTS:BBIE MUST be the same as the name of the corresponding xsd:complexType to which it is bound, with the word “Type” removed.
	[R15b]

	[ELN3]
	A UBL global element name based on an CCTS:ASBIE MUST be declared and bound to the xsd:complexType of its associated CCTS:ABIE.
	[R15c]

	[ELN4]
	A UBL global element name based on an CCTS:ASBIE MUST be the CCTS:ASBIE dictionary entry name property term and qualifiers; and the object class term and qualifiers of its associated CCTS:ABIE. All CCTS:DictionaryEntryName separators MUST be removed. Redundant words in the CCTS:ASBIE property term or qualifiers and the associated CCTS:ABIE object class term or qualifiers MUST be dropped.
	[R15d]

	Attribute Naming Rules

	[ATN1]
	Each CCT:SupplementaryComponent xsd:attribute “name” MUST be the CCTS:SupplementaryComponent dictionary entry name property term and representation term, with the separators removed.
	[21h]

	Type Naming Rules

	[CTN1]
	A UBL xsd:complexType name based on an CCTS:ABIE MUST be the CCTS:DictionaryEntryName with the separators removed and with the “Details” suffix replaced with “Type”.
	[R14a], [R14b]

	[CTN2]
	A UBL xsd:complexType name based on a CCTS:BBIE MUST be the CCTS:DictionaryEntryName property term and qualifiers and representation term, with the separators removed and with the “Type” suffix appended after the representation term.
	[R14c]

	[CTN3]
	A UBL xsd:complexType name based on a primary representation term used in the UBL model MUST be the name of the corresponding CCTS:CCT, with the separators removed and with the “Type” suffix appended after the primary representation term name.
	[R14d]

	[CTN4]
	A UBL xsd:complexType name based on a secondary representation term used in UBL model MUST be the name of the secondary representation term, with the separators removed and with the “Type” suffix appended after the secondary representation term name.
	[R14e]

	[CTN5]
	A UBL xsd:complexType name based on a CCTS:CCT MUST be the Dictionary entry name of the CCTS:CCT, with the separators removed.
	[R14f]

Table A8 — Namespace Rules
	Rule Number
	Rule
	[Ed. Note]

	[NMS1]
	Every UBL defined or used Schema Module MUST have a namespace declared.
	[R34a]

	[NMS2]
	Every UBL defined or used Schema Module version MUST have its own unique namespace.
	[R 46]

	[NMS3]
	UBL namespaces MUST only contain UBL developed Schema Modules.
	[R34b]

	[NMS4]
	The namespace names for UBL Schemas holding draft status MUST be of the form:

urn:oasis:names:tc:ubl:schema:name:major:minor
	[R36]

	[NMS5]
	The namespace names for UBL Schemas holding specification status MUST be of the form:

urn:oasis:names:specification:ubl:schema:name:major:minor
	[R 37]

	[NMS6]
	UBL Schema modules MUST be hosted under the UBL committee directory:

http://www.oasis-open.org/committees/ubl/schema/<schema-mod-name>.xsd
	[R 39]

	[NMS7]
	UBL published namespaces MUST never be changed.
	[R 48]

	[NMS8]
	The CCTS:CCT Schema Module MUST reside in its own namespace.
	[R20c]

	[NMS9]
	The CCTS:CCT Schema Module namespace MUST be represented by the token “cct”.
	[R20d]

	[NMS10]
	The CCTS:RepresentationTerm Schema Module MUST reside in its own namespace.
	[R20i]

	[NMS11]
	The CCTS:RepresentationTerm Schema Module namespace MUST be represented by the token “rt”.
	[R20j]

	[NMS12]
	The UBL:Datatypes Schema Module MUST reside in its own namespace.
	[R20m]

	[NMS13]
	The UBL:Datatypes Schema Module namespace MUST be represented by the token “dt”.
	[R20n]

	[NMS14]
	The UBL:CommonBasicTypes Schema Module MUST reside in its own namespace.
	Added on 10/8/2003

	[NMS15]
	The UBL:CommonBasicTypes Schema Module MUST be represented by the token “cbt”.
	Added on 10/8/2003

	[NMS16]
	The UBL:CommonAggregateTypes Schema Module MUST reside in its own namespace.
	Added on 10/8/2003

	[NMS17]
	The UBL CommonAggregateTypes Schema Module MUST be represented by the token “cat”.
	Added on 10/8/2003

	[NMS18]
	Each UBL:CodeList Schema Module MUST be maintained in a separate namespace.
	[R29d]

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Table A9 — Root Element Declaration Rules
	Rule Number
	Rule

	Post Montreal Rule Number (This column will be deleted before publication)

	[RED1]
	Every UBL business document MUST have a single root element.
	[R11]

	[RED2]
	Every root element in a UBL document MUST be named according to the portion of the business process that it initiates.
	[R12]

Table A10 — Schema Structure Modularity Rules
	Rule Number
	Rule

	[Ed. Note]

	[SSM1]
	UBL Schema expressions MAY be split into multiple Schema Modules.
	[R35a]

	[SSM2]
	UBL Schema Modules MUST either be treated as external Schema Modules or as internal Schema Modules of the root Schema.
	[R35b]

	[SSM3]
	All UBL internal Schema Modules MUST be in the same namespace as their corresponding root Schema.
	[R35c]

	[SSM4]
	Each UBL internal Schema Module MUST be named {ParentSchemaModuleName}{InternalSchemaModuleFunction}{Schema Module}
	[R35d]

	[SSM5]
	A UBL Schema Module MAY be created for Reusable types.
	[R44a]

	[SSMxx]
	A Schema Module defining all ubl:CommonBasicTypes MUST be created.
	

	[SSMxx]
	The UBL:CommonBasicTypes Schema Module MUST be named “UBL:CommonBasicTypes Schema Module”
	

	[SSMxx]
	A Schema Module defining all ubl:CommonAggregateTypes MUST be created.
	

	[SSMxx]
	The UBL:CommonAggregateTypes Schema Module MUST be named UBL:CommonAggregateTypes Schema Module”
	

	[SSM6]
	A root schema in one UBL namespace that is dependent upon type definitions or element declaration defined in another namespace MUST only import the RootSchema from that namespace.
	[R44b]

	[SSM7]
	A UBL root schema in one UBL namespace that is dependant upon type definitions or element declarations defined in another namespace MUST NOT import Schema Modules from that namespace.
	[R44c]

	[SSM8]
	Imported Schema Modules MUST be fully conformant with UBL naming and design rules.
	[R44d]

	[SSM9]
	A Schema Module defining all CCTS:CCTs MUST be created.
	[R20a]

	[SSM10]
	The CCTS:CCT Schema Module MUST be named “CCTS:CCT Schema Module”
	[R20b]

	[SSM11]
	The xsd:facet feature MUST not be used in the CCTS:CCT Schema Module.
	[R20e]

	[SSM12]
	A Schema Module defining all CCTS:PrimaryRepresentationTerms and CCTS:SecondaryRepresentationTerms MUST be created.
	[R20g]

	[SSM13]
	The CCTS:RepresentationTerm Schema Module MUST be named “CCTS Representation Term Schema Module”
	[R20h]

	[SSM14]
	A Schema Module defining all UBL Datatypes MUST be created.
	[R20k] SG: I didn’t think we kept this rule? Please query.

	[SSM15]
	The UBL:Datatypes Schema Module MUST be named “UBL Datatypes” Schema Module”
	[R20l] to match SSM13.

Table A11 — Standards Adherence Rules
	Rule Number
	Rule

	Post Montreal Rule Number (This column will be deleted before publication)

	[STA1]
	All UBL schema design rules MUST be based on the W3C XML Schema Recommendations: XML Schema Part 1: Structures and XML Schema Part 2: Datatypes.
	[R1]

	[STA2]
	All UBL schema and messages MUST be based on the W3C suite of technical specifications holding recommendation status.
	[2]

Table A12 — Type Definition Rules

	Rule Number
	Rule
	[Ed. Note]

	General Type Definitions

	[GTD1]
	All types MUST be named.
	[R91]

	[GTD2]
	The xsd:any Type MUST NOT be used.

	[R95c]

	Simple Type Definitions

	[STD1]
	For every CCTS:CCT whose supplementary components are equivalent to the properties of a built-in xsd:datatype, the CCT:SupplementaryComponents MUST NOT be expressed as attributes, and the CCTS:CCT MUST be defined as a named simpleType in the CCTS:CCT Schema Module.
	[R21b]

	[STD2]
	xsd:simpleType restriction MUST NOT be used for CCTS:CCTs.
	[R 99]

	Complex Type Definitions

	[CTD1]
	For every class identified in the UBL model, a named xsd:complexType MUST be defined.
	[R13b]

	[CTD2]
	For every primary representation term used in the UBL model, a named xsd:complexType MUST be defined.
	[R13d]

	[CTD3]
	For every secondary representation term used in the UBL model, a named xsd:complexType MUST be defined.
	[R13e]

	[CTD4]
	Every CCTS:ABIE xsd:complexType definition content model MUST use the xsd:sequence element with appropriate global element references, or local element declarations in the case of ID and Code, to reflect each property of its class as defined in the corresponding UBL model.
	[R16a]

	[CTD5]
	Every CCTS:BBIE xsd:complexType definition content model MUST use the xsd:simpleContent element.
	[R16d]

	[CTD6]
	Every CCTS:BBIE ComplexType content model xsd:simpleContent element MUST consist of an xsd:extension element.
	[R16e]

	[CTD7]
	Every CCTS:BBIE xsd:complexType content model xsd:extension element MUST use the xsd:base attribute to define the basis of each primary or secondary representation term.
	[R16f]

	[CTD8]
	Every CCTS:BBIE xsd:complexType content model xsd:base attribute value MUST be the CCTS:CCT of the primary representation term or the datatype of the secondary representation term as appropriate.
	[R16g]

	[CTD9]
	For every CCTS:CCT whose supplementary components are not equivalent to the properties of a built-in xsd:datatype, the CCTS:CCT MUST be defined as a named xsd:complexType in the CCTS:CCT Schema Module.
	[R21c]

	[CTD10]
	Each CCTS:CCT xsd:complexType definition MUST contain one xsd:simpleContent element
	[R21e]

	[CTD11]
	The CCTS:CCT xsd:complexType definition xsd:simpleContent element MUST contain one xsd:extension element. This xsd:extension element MUST include an xsd:base attribute that defines the specific xsd:built-inDatatype required for the CCTS:ContentComponent of the CCTS:CCT.
	[R21f]

	[CTD12]
	Each CCT:SupplementaryComponent xsd:attribute “type” MUST define the specific xsd:built-in Datatype or the user defined xsd:simpleType for the CCTS:SupplementaryComponent of the CCTS:CCT.
	[R21i]

	[CTD13]
	Each CCTS:SupplementaryComponent xsd:attribute user-defined xsd:simpleType MUST only be used when the CCTS:SupplementaryComponent is based on a standardized code list for which a UBL conformant code list Schema Module has been created.
	[R21j]

	[CTD14]
	Each CCTS:SupplementaryComponent xsd:attribute user defined xsd:simpleType MUST be the same xsd:simpleType from the appropriate UBL conformant code list Schema Module for that type.
	[R21k]

	[CTD15]
	Each CCTS:Supplementary Component xsd:attribute “use” MUST define the occureance of that CCTS:SupplementaryComponent as either “required”, or “optional.
	[R21l]

	[CTD16]
	Each CCTS:CCT simpleType definition name MUST be the CCTS:CCT dictionary entry name with the separators removed.
	[R23a]

Table A13 — Versioning Rules
	Rule Number
	Rule

	[Ed. Note]

	[VER1]
	Every UBL Schema and Schema Module Major version MUST have the URI of:

urn:oasis:names:tc:ubl:name:major-number:0
	[R40]

	[VER2]
	The first minor version release of a UBL Schema or Schema Module MUST have the URI of:

urn:oasis:names:tc:ubl:name:major-number:non-zero
	[R41a]

	[VER3]
	For UBL Minor version changes, the name of the version construct MUST NOT change (short name not qualified name), unless the intent of the change is to rename the construct.
	[41b]

	[VER4]
	Every UBL Schema and Schema Module major version number MUST be a non-negative integer.
	[R43a]

	[VER5]
	Every UBL Schema and Schema Module minor version number MUST be a non-negative integer.
	[R43b]

	[VER6]
	Each UBL minor version MUST be given a separate namespace.
	[R47]

	[VER7]
	When a UBL URN changes to reflect a change in the namespace, this change MUST be reflected in the version number, either major or minor.
	[R49]

	[VER8]
	UBL Schema and Schema Module minor versioning MUST be limited to declaring new optional constructs, extending existing constructs, and refinements of an optional nature.
	[R50]

	[VER9]
	UBL Schema and Schema Module minor version changes MUST not break semantic compatibility with prior versions.
	[R51]

	[VER10]
	UBL minor version namespaces MUST reference immediately preceding minor version root Schemas.
	[R52]

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	
	

	
	
	

	

	
	
	

	
	

	

	

	
	
	

	
	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	

	

	
	
	

	
	
	

Appendix D. Approved Acronyms and Abbreviations

The following Acronyms and Abbreviations have been approved for UBL use:

· A Dun & Bradstreet number must appear as "DUNS". [TBD: need example.]
· "Identifier" must appear as "ID".
· "Uniform Resource Identifier" must appear as "URI"
[Example] the "Uniform Resource. Identifier" portion of the Binary Object. Uniform Resource. Identifier supplementary component becomes "URI" in the resulting XML name). The use of URI for Uniform Resource Identifier takes precedence over the use of "ID" for "Identifier".
Appendix E. Technical Terminology

	Ad hoc schema processing
	Doing partial schema processing, but not with official schema validator software; e.g., reading through schema to get the default values out of it.

	Application-level validation
	Adherence to business requirements, such as valid account numbers.

	Assembly
	Using parts of the library of reusable UBL components to create a new kind of business document type.

	Common attribute
	 An attribute that has identical meaning on the multiple elements on which it appears. A common attribute might or might not correspond to an XSD global attribute.

	Context
	A particular set of context driver values.

	DTD validation
	Adherence to an XML 1.0 DTD.

	Generic BIE
	A semantic model that has a “zeroed” context. We are assuming that it covers the requirements of 80% of business uses, and therefore is useful in that state.

	Instance constraint checking
	Additional validation checking of an instance, beyond what XSD makes available, that relies only on constraints describable in terms of the instance and not additional business knowledge; e.g., checking co-occurrence constraints across elements and attributes. Such constraints might be able to be described in terms of Schematron.

	Instance root/doctype
	This is still mushy. The transitive closure of all the declarations imported from whatever namespaces are necessary. A doctype may have several namespaces used within it.

	Intermediate element
	 An element not at the top level that is of a complex type, only containing other elements and attributes.

	Internal schema module:
	A schema module that does not declare a target namespace.

	Leaf element
	 An element containing only character data (though it may also have attributes). Note that, because of the XSD mechanisms involved, a leaf element that has attributes must be declared as having a complex type, but a leaf element with no attributes may be declared with either a simple type or a complex type.

	Lower-level element
	 An element that appears inside a business message.

	Namespace schema module:
	A schema module that declares a target namespace and is likely to pull in (by including or importing) schema modules.

	Root Schema
	A schema document corresponding to a single namespace, which is likely to pull in (by including or importing) schema modules. Issue: Should a root schema always pull in the “meat” of the definitions for that namespace, regardless of how small it is?

	Schema
	Never use this term unqualified!

	Schema Module
	A “schema document” (as defined by the XSD spec) that is intended to be taken in combination with other such schema documents to be used.

	Schema module:
	A schema document containing type definitions and element declarations.

	Schema Processing
	Schema validation checking plus provision of default values and provision of new infoset properties.

	Schema Validation
	Adherence to an XSD schema.

	Top-level element
	 An element that encloses a whole UBL business message. Note that UBL business messages might be carried by messaging transport protocols that themselves have higher-level XML structure. Thus, a UBL top-level element is not necessarily the root element of the XML document that carries it.

	Syntax Neutral Model
	TBD Need definition.

	Aggregate Business Information Entity (ABIE)
	A collection of related pieces of business information that together convey a distinct business meaning in a specific Business Context. Expressed in modelling terms, it is the representation of an Object Class, in a specific Business Context.

	Object Class
	The logical data grouping (in a logical data model) to which a data element belongs (ISO11179). The Object Class is the part of a Core Component’s Dictionary Entry Name that represents an activity or object in a specific Context.

	Well-Formedness Checking
	Basic XML 1.0 adherence.

	
	

Appendix F. References

[CCTS]
UN/CEFACT Draft Core Components Specification 30 September, 2002, Version 1.85

[CCFeedback]
Feedback from OASIS UBL TC to Draft Core Components Specification 1.8, version 5.2, May 4, 2002, http://oasis-open.org/committees/ubl/lcsc/doc/ubl-cctscomments-5p2.pdf.
[GOF]
Design Patterns, Gamma, et al. ISBN 0201633612
[ISONaming]
ISO/IEC 11179, Final committee draft, Parts 1-6.
(RFC) 2119
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[UBLChart]
UBL TC Charter, http://oasis-open.org/committees/ubl/charter/ubl.htm
[XML]
Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, October 6, 2000

(XSD)
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.

(XHTML)
XHTML™ Basic, W3C Recommendation 19 December 2000: http://www.w3.org/TR/2000/REC-xhtml-basic-20001219
Appendix G. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� ebXML, Core Components Technical Specification – Part 8 of the ebXML Technical Framework, V2.0, 11 August 2003

� Core Components Technical Specification, Part 8 of the ebXML Technical Framework Version 2.0, UN/CEFACT, 11 August 2003

� Core Components Technical Specification, Part 8 of the ebXML Technical Framework Version 2.0, UN/CEFACT, 11 August 2003

� Core Components Technical Specification, Part 8 of the ebXML Technical Framework Version 2.0, UN/CEFACT, 11 August 2003

22

12
wd-ublndrsc-ndrdoc-V1.0Drafta
64
1 October 2003

_1096124014.vsd
urn:oasis:�names:tc:ubl:Order�

�

Internal Module�

�

Root schema�

Order�

Common�Aggregate�Types�

Common�LeafTypes�

�

import�

�

include�

urn:oasis:�names:tc:ubl:�Invoice�

X:y:z�

Namespace�

urn:oasis:names:tc:ubl:�CommonAggregateTypes�

urn:oasis:names:tc:ubl:�CommonLeafTypes�

Invoice�

_1126483657.unknown

_1096123930.vsd
�

�

�

�

�

�

Static Structure�

�

�

SchemaModule�

�

�

�

RootSchema�

�

�

�

�

�

InternalModule�

�

�

�

�

�

1�

-included�

0..*�

�

�

0..*�

-imported�

0..*�

�

�

File�

�

�

�

1�

�

1�

�

�

Namespace�

�

�

�

1�

�

1�

�

�

TypeDefinition�

�

�

�

ElementDeclaration�

�

�

�

1�

�

0..*�

�

�

1�

�

0..*�

