
 1

 2

3

4

5

6

7

8

 9

10

11

12

XML Design Guidelines

 13

14

15

16

17

18

19
20
21
22

Issue 1_0

11 December 2003

©2003 RosettaNet. All Rights Reserved.

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Table of Contents 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42
43
44

45

46
47

48

49

50

51

1 Document Management ..1

1.1 Legal Disclaimer .. 1

1.2 Copyright ... 1

1.3 Trademarks .. 1

1.4 Document Version History... 1

1.5 The Modular PIP Production Process ... 1

1.6 Audience .. 2

1.7 Document Conventions... 2

1.8 Document Structure... 3

1.9 Acknowledgements .. 4

1.10 Approvals ... 4

2 Schema Design Philosophy ...5

3 XSD Document Structure ..6

3.1 Prologue and Encoding declaration ... 6
3.1.1 Prologue ... 6
3.1.2 Encoding Declaration .. 6

3.2 xs:schema element.. 6

3.3 Documentation.. 7
3.3.1 Schema Documentation .. 8
3.3.2 Component Documentation.. 10
3.3.3 Codelist Documentation .. 11

3.4 Component Ordering.. 12
3.4.1 Placement of various Schema components... 12
3.4.2 Ordering of components within Type definition ... 13

4 Reusing Schemas..14

4.1 Import ... 14

4.2 Include .. 14

4.3 Redefine... 14

©2003 RosettaNet. All Rights Reserved. - 1 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

5 Naming Conventions ...16 52

53

54
55

56

57

58

59
60

61

62

63
64
65
66
67
68
69

70

71

72
73
74
75

76

77

78

79

80

81

82
83
84
85
86

87

5.1 General Naming Guidelines ... 16
5.1.1 Internationalization Features ... 16
5.1.2 Acronyms.. 16

5.2 Element ... 16

5.3 Attribute .. 17

5.4 Type.. 17
5.4.1 Named Types .. 17
5.4.2 Naming Convention for Types .. 18

5.5 Model Group ... 18

5.6 Namespace... 18
5.6.1 Namespace Convention... 18

5.6.1.1 Namespace Prefix .. 18
5.6.1.2 Relative URIs .. 19
5.6.1.3 Uniform Resource Names.. 19
5.6.1.4 Default Namespace.. 19

5.6.2 Namespace exposure.. 20
5.6.3 Form Attribute ... 22

6 Versioning...23

6.1 Versioning Philosophy .. 23
6.1.1 Versioning Schemas ... 23
6.1.2 Versioning namespaces... 23
6.1.3 Relationship between Schema versions and namespace versions......................... 23
6.1.4 Versioning reusable types.. 24

7 Schema Construction Guidelines ...25

7.1 Use of XSD Built-In Types... 25

7.2 Use of Element versus Attributes ... 25

7.3 Use of Content Model: sequence, choice, all. ... 25

7.4 Reuse of Both Elements and Types... 26

7.5 Representing relationships .. 26
7.5.1 Use of Named Model Groups .. 26
7.5.2 Extensibility .. 27

7.5.2.1 Inheritance via Extension.. 27
7.5.2.2 Inheritance via Restriction .. 27

7.5.3 Use of abstract type and substitution groups.. 28
7.6 Use of Content .. 29

©2003 RosettaNet. All Rights Reserved. - 2 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

7.6.1 Use of Default Values.. 30 88

89

90

91

92

93

94

95
96
97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

7.7 Use of Nillability .. 31

7.8 Use of Any Element and Any Attribute .. 32

7.9 Message Constraint Representation .. 32
7.9.1 Data Type Constraints .. 32

8 Codelists ...34

8.1 Internal Codelist.. 34
8.1.1 Creation of Codelist .. 34
8.1.2 Extension of Codelist .. 35
8.1.3 Restriction of Codelist ... 35

8.2 External Codelist ... 36

9 Schema File Naming Conventions and Packaging..38

9.1 Schema Packaging Conventions... 38

9.2 Schema File Naming Conventions .. 38

9.3 System Structure Schemas ... 38

9.4 Universal Structure Schemas... 39

9.5 Domain Structure Schemas... 40

9.6 Interchange Structure Schemas... 40

10 XML instance documents (PIP Action Messages) ..42

10.1 XML & XSD ... 42

10.2 Naming conventions for XML Documents... 42

10.3 Referencing Schemas from PIP Messages .. 42

11 References..44

12 Glossary..46

13 Appendix...49

13.1 Rules Appendix ... 49

©2003 RosettaNet. All Rights Reserved. - 3 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1 Document Management 114

1.1 115

116
117
118
119
120

121
122

1.2 Copyright 123

124
125
126
127
128

129
130

1.3 Trademarks 131

132
133
134
135
136
137
138
139

1.4 140

141

Legal Disclaimer

RosettaNet™, its members, officers, directors, employees, or agents shall not be liable for
any injury, loss, damages, financial or otherwise, arising from, related to, or caused by the
use of this document or the specifications herein, as well as associated guidelines and
schemas. The use of said specifications shall constitute your express consent to the
foregoing exculpation.

© 2003 RosettaNet. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the inclusion of this copyright
notice. Any derivative works must cite the copyright notice. Any public redistribution or sale
of this publication or derivative works requires prior written permission of the publisher.

RosettaNet, Partner Interface Process, PIP and the RosettaNet logo are trademarks or
registered trademarks of "RosettaNet," a non-profit organization. All other product names
and company logos mentioned herein are the trademarks of their respective owners. In the
best effort, all terms mentioned in this document that are known to be trademarks or
registered trademarks have been appropriately recognized in the first occurrence of the
term.

Document Version History

Version Date Description
1_0 11 Dec 2003 Issued for Publication

 142
143
144

1.5 145

146
147
148
149
150
151
152
153
154

The Modular PIP Production Process

The PIP production process is explained in the following diagram:

©2003 RosettaNet. All Rights Reserved. - 1 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Milestone
Program

SRD

PIP Engineering
creates UML PIP Engineering

creates XML

PIP
Reverse

Engineering

PIP Engineering
Creates final delivery

package

XML Schema
Design Guidelines

U2X (UML2XML)
Design Guidelines

XML2XLS Guidelines

XML Schema PIP Choreography
XML Schema PIP Service Content Model

Business Dictionary

Universal Structure

Domain Models

UML Representation
Guidelines

U2X Mapping
Verification Rules &
Tools

BPSS Schema &
Mapping Rules

X2L (XML2XLS)
Mapping Verification
Guidelines

Legend
Bold: Normative and
Published to PIP users

PIP XML Schema
Creation Tool

PIP Reverse
Engineering Tools

PIP Specification
Guide Structure

Glossary

Issues List

UML Modeling Guidelines
X2L (XML2XLS)
Mapping Verification
Tools

 155
156

157
158
159
160
161
162
163
164

1.6 165

166
167
168
169

1.7 170

171
172

Figure 1: The Modular PIP Production Pipeline

Notes on Figure 1:
1. Note that the SRD has a different color than pale blue to signify it as a non PIP engineering

artifact.
2. The different stages are differentiated by the green and light-pink stripes.
3. Bold indicates an end user deliverable.

Audience

This document’s primary audience is the UML to XML tool developers of RosettaNet, Solution
Providers and PIP implementers.

Document Conventions

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY and OPTIONAL, when they appear in this document, are to be
interpreted as described in [RFC2119] as quoted here: 173

174
175
176
177
178
179
180
181

MUST This word, or the terms "REQUIRED" or "SHALL", means that the
definition is an absolute requirement of the specification.

MUST NOT This phrase, or the phrase "SHALL NOT", means that the definition is an
absolute prohibition of the specification.

SHOULD This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular
item, but the full implications must be understood and carefully weighed
before choosing a different course.

©2003 RosettaNet. All Rights Reserved. - 2 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

1.8 217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

SHOULD NOT This phrase, or the phrase "NOT RECOMMENDED", means that there

may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any
behavior described with this label.

MAY This word, or the adjective "OPTIONAL", mean that an item is truly
optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it
enhances the product while another vendor may omit the same item.
An implementation, which does not include a particular option, MUST be
prepared to interoperate with another implementation, which does
include the option, though perhaps with reduced functionality. In the
same vein an implementation, which does include a particular option,
MUST be prepared to interoperate with another implementation, which
does not include the option (except, of course, for the feature the option
provides).

XSD Refers to XML Schema Definition language

Schema Refers to XML Schema document compliant with W3C XML Schema

Recommendations.

xs Refers to W3C XML Schema namespace

xsi Refers to XML Schema instance namespace.This is a separate

namespace for four schema-related attributes that may appear in
instances. These attributes, whose names are commonly prefixed with
xsi, are: type, nil, schemaLocation, and noNamespaceSchemaLocation.

Schema Component Refers to the building blocks of the Schema like elements, types,

content models, model groups, annotation etc.

Document Structure

This document includes the following information:

1) XML Schema Design Rules

XML Schema Design Rules will be applied to all XML Schema generated by RosettaNet,
including the creation of following types of artifacts:

1. Universal Structure
2. System Structure
3. Domain Structure
4. Interchange Structure

2) XML instance documents (PIP Action Messages) defining rules

©2003 RosettaNet. All Rights Reserved. - 3 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1.9 Acknowledgements 235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

1.10 251

252

RosettaNet acknowledges the following individuals for contributing towards this document.
Content contributors:

Suresh Damodaran (on loan from Sterling Commerce)
Hussam El-leithy (RosettaNet)
Frank Yang (RosettaNet)
Nikola Stojanovic (RosettaNet)
Nidhi Gupta (on loan from Nokia)
Shishir Saxena (on loan from IBM)

Reviewers:
Barbara Heikkenen (on loan from Nokia)
Kenji Nagahashi (on loan from Fujitsu)
Shiv Rao (RosettaNet Malaysia)
Annabelle Marlow (RosettaNet)

Approvals

Title Name Signature (or type name) Date
Chief Technologist Suresh Damodaran Approved for publication use - SD 11 December 2003
 253

©2003 RosettaNet. All Rights Reserved. - 4 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

2 Schema Design Philosophy 254

255
256
257

Reuse of Schema components is a significant objective of the design of RosettaNet XML
Schema. To attain this objective, this document focuses on providing Schema design rules
and guidelines while permitting extensibility. In this document, we do not try to repeat the
XML Schema rules found in [XML Schema Primer (XSDP), XML Schema Structures (XSDS),
and XML Schema Datatypes (

258
XSDD)], except when such repetition enhances understanding of

the rules.
259
260

©2003 RosettaNet. All Rights Reserved. - 5 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

3 XSD Document Structure 261

3.1 262

263

264
265
266
267

Prologue and Encoding declaration

3.1.1 Prologue

The XML declaration always appears on the first line of an XML document. The XML declaration is a
mechanism that notifies the parser that the document is an XML document and that it conforms to
a specific version of XML.

268
269
270

Rule 3-1
RosettaNet developers MUST specify XML prologue at the beginning of each Schema to eliminate
any ambiguity that may arise in specific parser implementations. The RosettaNet Schemas SHOULD
conform to XML version 1.0. [XML] 271

272
273
274
275

276

Rationale
As XML Schema is also an XML document, the XML declaration must always be present within a
Schema.

3.1.2 Encoding Declaration

Rule 3-2 277
278
279
280

3.2 281

Either “UTF-8” or “UTF-16” MUST be used as the value for character set and encoding type for all
Schema and other XML documents.

xs:schema element

Rule 3-3 282
283
284
285
286

“xs” or “xsd” namespace prefix MAY be used to indicate the usage of W3C XML Schema namespace
in case when W3C XML Schema namespace is not the default namespace. These prefixes are
reserved and MUST NOT be used for declarations binding to other namespaces.

287 Note
288
289

For explanation on XML Schema namespace as default namespace see Rule 5-18.

290
291
292

Rule 3-4
The attribute xs:targetNamespace of xs:schema MUST be specified for all Schema documents, and
its value MUST conform to RosettaNet namespaces specified in the namespace specification
document [Namespace Specification and Management (NSSM)]. 293

294
295
296
297
298

Rule 3-5
“tns” namespace prefix SHOULD be used to indicate xs:targetNamespace when targetNamespace is
not the same as the default namespace of the Schema.

299
300
301

Rule 3-6
Default namespace MAY be specified as an attribute of xs:schema element.

302 Note
303
304
305

A more detailed explanation on namespaces and namespace exposure can be found in Namespace.

©2003 RosettaNet. All Rights Reserved. - 6 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

306
Rule 3-7 307
The xs:elementFormDefault attribute of xs:schema MUST have the value "qualified" and the 308
xs:attributeFormDefault attribute MAY have the value of either "qualified" or "unqualified". 309

310
311
312
313
314

Rule 3-8
The xs:version attribute of xs:schema MUST be present and its value MUST reflect the version of
the Schema.

315 Note
316
317

A more detailed explanation on versioning can be found in Versioning.

318
319
320
321
322
323

Rule 3-9
Order of xs:schema attributes MUST be as follows: targetNamespace declaration, declaration
binding “xs” namespace prefix, default namespace declaration, declaration binding “tns” prefix, any
other declarations binding prefixes to other namespaces, elementFormDefault declaration,
attributeFormDefault declaration and version declaration.

324
325

Example XML Schema

<?xml version="1.0" encoding="UTF-8"?> 326
<xs:schema
targetNameSpace="urn:rosettanet:specification:interchange:ThresholdReleaseForecastNotificatio
n:xsd:schema:1.21" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tns="urn:rosettanet:specification:interchange:ThresholdReleaseForecastNotification:xsd:
schema:1.21" elementFormDefault="qualified" attributeFormDefault="unqualified"
version="1.21">

327
328
329
330
331
332

 <xs:element name="ThresholdReleaseForecastNotification"
type="itrfn:ThresholdReleaseForecastNotification"/>

333
334

</xs:schema> 335
336
337
338

Example XML Instance

<?xml version="1.0" encoding="UTF-8"?> 339
<ThresholdReleaseForecastNotification> 340
 …………………………… 341
</ThresholdReleaseForecastNotification> 342
 343

344

3.3 345

346
347
348
349
350

Documentation

The xs:annotation element has two child elements – xs:documentation element for human
readable user documentation and xs:appinfo element for machine readable documentation. A
single xs:annotation element may contain multiple xs:documentation and xs:appinfo elements, in
any order.

351
352
353
354

Rule 3-10
The xs:schema root element and all reusable components in the Schema MUST have xs:annotation
defined.

355
356
357
358
359
360

Rule 3-11
All Schema annotations MUST be in English and within the xs:annotation element. Schema
annotations SHOULD be both human readable and machine processable.

©2003 RosettaNet. All Rights Reserved. - 7 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

361
362
363
364
365
366

Rule 3-12
The documentation for a Schema component SHOULD be placed as close to the component as
possible, in order to insure consistency between the documentation and Schema component
declaration / definition and to provide for better understanding of the Schema.

367
368

Rule 3-13
Any constraints relevant to either the whole Schema or to an individual Schema component MUST
be expressed in Schematron syntax [STRON] under the “Constraint” subelement of the xs:appinfo.
Other application related information SHOULD be expressed as subelements of the xs:appinfo
element.

369
370
371
372
373
374
375
376

377

Rationale
The recommended way to add comments, documentation and other application information in a
Schema is by means of the xs:annotation element. This element can be added as a subelement to
most Schema components and can also be placed anywhere at the top level of Schemas.

3.3.1 Schema Documentation

Rule 3-14 378
379
380
381
382

Any human readable information relevant to the whole Schema MUST be contained in an
xs:documentation element, nested inside an xs:annotation element. The xs:annotation element
MUST be immediately under the xs:schema root element. This information SHOULD contain:

Field Name Element

Name
Element Value Requirement

Constraints Constraint Text description of the
Schematron constraints in
the xs:appinfo element that
are applicable to the whole
document.

optional

RosettaNet copyright
information

Copyright ©2003 RosettaNet. All
rights reserved. No part of
this publication may be
reproduced, stored in a
retrieval system, or
transmitted, in any form or
by any means, electronic,
mechanical, photocopying,
recording, or otherwise,
without the inclusion of this
copyright notice. Any
derivative works must cite
the copyright notice. Any
public redistribution or sale
of this publication or
derivative works requires
prior written permission of
the publisher.

mandatory

Legal Disclaimer Disclaimer RosettaNet™, its members,
officers, directors,
employees, or agents shall
not be liable for any injury,
loss, damages, financial or
otherwise, arising from,

mandatory

©2003 RosettaNet. All Rights Reserved. - 8 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

related to, or caused by the
use of this document or the
specifications herein, as
well as associated
guidelines and schemas.
The use of said
specifications shall
constitute your express
consent to the
foregoing exculpation.

RosettaNet Reference
Program

Program Milestone or Foundation
Program

mandatory

Purpose of Schema Purpose Text mandatory
383
384
385
386
387
388

Rule 3-15
Any application related information relevant to the whole Schema MUST be contained in an
xs:appinfo element, nested inside an xs:annotation element. The xs:annotation element MUST be
immediately under the xs:schema root element. This information SHOULD contain:

Field Name Element Name Element Value Requirement
Acronyms Acronym Name-Value pairs optional
Constraints Constraint Schematron constraints

that are applicable to
the whole document.

optional

RosettaNet Context
specification (describes
the content of the
Schema, e.g., universal
structures, and its
relationship with other
Schemas)-

Context Text optional

Date of Creation CreationDate dd/mm/yyyy mandatory
Keywords denoting
relationship to other
Schemas

Keyword Text optional

Date of Last Update LastUpdateDate dd/mm/yyyy mandatory
389
390

 <xs:annotation> 391
 <xs:documentation xml:lang="US_EN"> 392
 <Copyright>©2003 RosettaNet. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the
inclusion of this copyright notice. Any derivative works must cite the copyright
notice. Any public redistribution or sale of this publication or derivative works
requires prior written permission of the publisher.</Copyright>

393
394
395
396
397
398

 <Disclaimer>RosettaNet™, its members, officers, directors, employees, or agents
shall not be liable for any injury, loss, damages, financial or otherwise, arising
from, related to, or caused by the use of this document or the specifications herein,
as well as associated guidelines and schemas. The use of said specifications shall
constitute your express consent to the foregoing exculpation.</Disclaimer>

399
400
401
402
403

 <Program> MileStone/Foundational </Program> 404
 <Purpose> State the purpose here </Purpose> 405
 </xs:documentation> 406
 <xs:appinfo> 407
 <Constraint/> 408
 </xs:appinfo> 409

©2003 RosettaNet. All Rights Reserved. - 9 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 </xs:annotation> 410
411

412

3.3.2 Component Documentation

Rule 3-16 413
414
415
416
417

Any human readable information relevant to reusable types MUST be contained in an
xs:documentation element, nested inside an xs:annotation element. This information SHOULD
contain:

Field Name Element Name Element Value Requirement
Constraints Constraint Text description of the

Schematron constraints
in the xs:appinfo
element

optional

Purpose of
Component

Purpose Text optional

418
419
420
421
422

Rule 3-17
Any application related information relevant to reusable types MUST be contained in an xs:appinfo
element, nested inside an xs:annotation element. This information SHOULD contain:

Field Name Element Name Element Value Requirement
Constraints Constraint Schematron constraints optional
RosettaNet Context
specification
(describes the
content of the
Schema, e.g.,
universal structures,
and its relationship
with other
Schemas)-

Context Text optional

Date of Creation CreationDate dd/mm/yyyy mandatory
Definition of the
component

Definition Text mandatory

Keywords denoting
relationship to other
Schemas and
components

Keyword Text optional

Date of Last Update LastUpdateDate dd/mm/yyyy mandatory
Version TypeVersion Versioning Scheme

see:[Versioning]
mandatory

423
424
425
426
427
428

Rule 3-18
Only when the name of a reusable element is different than its default name (i.e. type name
without the suffix) the reusable element SHOULD have its own documentation. This rule SHOULD
also apply to any element defined within a complex type.

429
430
431
432

Rule 3-19
Component documentation for any lower level element SHOULD be defined only by “definition”
where deemed necessary to enhance understanding.

Field Name Element Name Element Value Requirement

©2003 RosettaNet. All Rights Reserved. - 10 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Constraints Constraint Text description of the
Schematron constraints
in the xs:appinfo
element

optional

RosettaNet Context
specification
(describes the
content of the
Schema, e.g.,
universal structures,
and its relationship
with other
Schemas)-

Context Text optional

Date of Creation CreationDate dd/mm/yyyy mandatory
Definition of the
component

Definition Text mandatory

Keywords denoting
relationship to other
Schemas and
components

Keyword Text optional

Date of Last Update LastUpdateDate dd/mm/yyyy mandatory
Version TypeVersion Versioning Scheme

see:[Versioning]
mandatory

433
434

<xs:annotation> 435
 <xs:appinfo xml:lang="US_EN"> 436
 <Constraint> Schematron constraint if any</Constraint> 437
 <Context> Reusable type here </Context> 438
 <CreationDate> 20/06/2003 </CreationDate> 439
 <Keyword> Invoicing </Keyword> 440
 <LastUpdateDate> 20/06/2003 </ LastUpdateDate > 441
 <Definition> State the definition here </Definition> 442
 <TypeVersion> 0.14 </TypeVersion> 443
 </xs:appinfo> 444
</xs:annotation> 445

446

447

3.3.3 Codelist Documentation

Rule 3-20 448
449
450
451

Any human readable information relevant to codelists MUST be contained in an xs:documentation
element, nested inside an xs:annotation element. This information SHOULD contain:

Field Name Element Name Element Value Requirement
Constraints Constraint Text description of the

Schematron constraints
in the xs:appinfo
element

optional

Purpose of codelist Purpose Text statement
describing the codelist
and stating its purpose

optional

452
453
454
455

Rule 3-21
Any application related information relevant to codelists MUST be contained in an xs:appinfo
element, nested inside an xs:annotation element. This information SHOULD contain:

©2003 RosettaNet. All Rights Reserved. - 11 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

456
Field Name Element Name Element Value Requirement
Constraints Constraint Schematron constraints optional
RosettaNet Context
specification
(describes the
content of the
Schema, e.g.,
universal structures,
and its relationship
with other
Schemas)-

Context Text explanation of
context and
dependencies of the
codelist

optional

Date of creation CreationDate dd/mm/yyyy mandatory
Definition of the
Codelist

Definition Text mandatory

Codelist identifier Identifier Identification Scheme mandatory
Date of Last Update LastUpdateDate dd/mm/yyyy mandatory
Registration
Authority

RegisteredBy Text name of the
registration authority of
the codelist

mandatory

Version TypeVersion Versioning Scheme
see:[Versioning]

mandatory

457
458

<xs:annotation> 459
 <xs:appinfo xml:lang="US_EN"> 460
 <Constraint> Schematron constraint if any </Constraint> 461
 <Context> Reusable type here </Context> 462
 <CreationDate> 20/06/2003 </CreationDate> 463
 <Identifier> Identification here </Identifier> 464
 <LastUpdateDate> 20/06/2003 </LastUpdateDate> 465
 <RegisteredBy> Registering agency </RegisteredBy> 466
 <TypeVersion> 1.1 </TypeVersion> 467
 </xs:appinfo> 468
</xs:annotation> 469

470
471

3.4 472

Component Ordering

Rule 3-22 473
474
475
476

Schemas MUST follow consistent physical placement and ordering rules for its constituent
components.

477
478
479

480

Rationale
Consistent placement / ordering of components helps with human readability and debuggability of
Schemas.

3.4.1 Placement of various Schema components

Rule 3-23 481
482
483
484
485

1. Logically related constructs SHOULD be placed together in the same file in order to support
better abstraction, reusability and clarity.

2. Logically related constructs within the same file SHOULD be placed in close proximity to
promote understanding.

©2003 RosettaNet. All Rights Reserved. - 12 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

3. The documentation for a Schema SHOULD be placed just after the top-level xs:schema
element. The documentation for individual components as listed above SHOULD be placed
immediately after the component name declaration / definition.

4. When not in violation of the previous rules, the following SHOULD be the desired order of global
Schema components.

Reusable global element(s),
Global element named groups,
Global reusable attributes,
Global attribute named groups,
Global simple types,
Global complex types with sequence content model,
Global complex types with choice content model,

All of these components are internally sorted alphabetically by names.

3.4.2 Ordering of components within Type definition

Rule 3-24 502
503
504
505
506
507
508
509

Within the type definition, the sequences, choice, groups and sub-content models SHOULD be
ordered in alphabetical order. Also within each content model (like sequence, choice, groups etc)
elements SHOULD be sorted in alphabetical order.
The only exception is in the order of attributes and attribute groups. In element declarations and
type definitions, the attributes and attribute groups SHOULD be listed alphabetically at the end,
after the content model and elements.

510
511

Rationale
This ordering scheme permits easy reading of Schemas for debugging purposes.

©2003 RosettaNet. All Rights Reserved. - 13 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

4 Reusing Schemas 512

4.1 Import 513

Rule 4-1 514
515
516
517

The xs:import element MUST contain the schemaLocation attribute that points to the imported
schema(s) via relative paths with respect to the location where the current Schema is stored.

518
519
520
521
522
523
524
525

Rule 4-2
Import SHOULD be used where needed. Circular imports MUST be avoided. Duplicate imports
SHOULD be avoided.

See Figure 1 below, where Schema A imports from Schema B twice. Figure 2 shows circular import
where Schema B imports Schema A, Schema C imports Schema B and Schema A imports Schema
C.

A

C

B

import

import

import

A

C

B

import

import

import

 526
527

528

Figure 1: Duplicate Import Figure 2: Circular Import

Rationale 529

530
531
532
533

4.2 Include 534

An xs:import is used to refer to components from another namespace. When other XML Schemas
are imported using xs:import, avoid the duplicate import trap shown in the picture. The symptom
usually is, when validating Schema A, it could give “duplicate definitions” error in some parsers.

Rule 4-3 535
536
537

xs:include MAY be used where needed.

Rationale 538

539
540
541

4.3 542

An xs:include is used when you want to include other Schemas in a Schema document that has the
same target namespace. Include may find some use in modularization of Schemas.

Redefine

Rule 4-4 543
544
545

xs:redefine MUST NOT be used.

546
547
548
549

Rationale
A xs:redefine is similar to an include, with the additional option of specifying new definitions of
some or all of the components in the redefined Schema. Besides of the possibly of changing the
semantics of redefined definitions, xs:redefine might also cause conflicts when further

©2003 RosettaNet. All Rights Reserved. - 14 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

modifications to redefined definitions are needed. Possibility of redefining already redefined
definitions makes the usage of xs:redefine even more problematic.

550
551

©2003 RosettaNet. All Rights Reserved. - 15 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

5 Naming Conventions 552

5.1 553

554

General Naming Guidelines

5.1.1 Internationalization Features

Rule 5-1 555
556
557

The name of an XML Schema component MUST be an NCName (XML Name minus the “:”).

558
559
560
561

Rule 5-2
All names MUST be composed of alphanumeric characters only. They MUST NOT include periods,
hyphens, underscores, spaces or other separators.

562
563
564
565

Rule 5-3
The name of an XML Schema component MUST correspond to the name in UML model. This
correspondence must be canonical and automate-able.

566
567
568

569

Rule 5-4
All Schema names and values created and maintained by RosettaNet SHOULD be understandable
by an English speaking audience.

5.1.2 Acronyms

Rule 5-5 570
571
572
573

Acronyms SHOULD be written using uppercase. Word abbreviations SHOULD be avoided. Definition
of an acronyms SHOULD be present in the corresponding Schema xs:appinfo element.

574
575

Example

<xs:element name="GTIN"/> 576

<xs:complexType name="GTINType"/> 577

578
Rationale 579

580
581
582

5.2 Element 583

While it is unavoidable to use established acronyms, it is very helpful to include their definitions in
the Schema in order to help with the understanding of their semantics.

Rule 5-6 584
585
586
587

For element names, the Upper Camel Case (“UCC”) convention MUST be used, i.e. the leading
character of each word is capitalized. The remainder of each word is lower case.

588
589

Example

<xs:element name="PartnerDescription" type="PartnerDescriptionType"/> 590

591
592
593
594

Rule 5-7
While creating names for inner elements, concatenating the name of the inner element to the
name of the outer element SHOULD be avoided. The exception to this rule is the following:

©2003 RosettaNet. All Rights Reserved. - 16 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

595
596
597
598
599
600

if the outer element name cannot be prefixed with all inner element names sensibly, then each
inner element name SHOULD be created by concatenating the outer element name to it.

In the example below, both elements “Address” and “Phone” are placed inside the same context
“Contact”; because of this, concatenating Contact with the Address and Phone is avoided.

601
602

Example

 <complexType name="ContactType">
 <complexContent>
 <extension base="us:SomeBaseType">
 <sequence>
 <element name="Address" type="xyz:AddressType"/>
 <element name="Phone" type="xyz:PhoneType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <element name="Contact" type="ContactType"/>
 603

5.3 604 Attribute

Rule 5-8 605
606
607
608

For attribute names, the Lower Camel Case (“LCC”) convention MUST be used, i.e. the leading
character of each word is capitalized except the first word, which starts with the lower case.

609
610

Example

 611
<xs:attribute name="languageSupport" type=”xs:string”/> 612
 613

614

5.4 Type 615

616

5.4.1 Named Types

Rule 5-9 617
618
619
620
621
622
623

All reusable, extendable, and restrictable types MUST be named. All such type names MUST be
global in scope. Where reused, the new element MUST NOT have “name” attribute. Defining new
elements for the same type SHOULD be avoided when RosettaNet has already defined an element
for that type, and "ref" SHOULD be used to reuse an element. A new element MAY be declared
when existing element name does not reflect a business term that is needed.

624
625

Example

<xs:complexType name="PartnerIdentificationType"> 626
 <xs:sequence> 627
 <xs:element ref="PartnerIdentifier"/> 628
 </xs:sequence> 629
</xs:complexType> 630
<xs:element name="PartnerIdentifier" type="xs:string"/> 631

632
633
634
635
636

©2003 RosettaNet. All Rights Reserved. - 17 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

637
638

639

5.4.2 Naming Convention for Types

Rule 5-10 640
641
642
643
644

For type names, the Upper Camel Case (“UCC”) convention MUST be used, i.e. the leading
character of each word is capitalized. The complex type and simple type names MUST be written as
component name (in UpperCamelCase) + Type, for example, TextualDescriptionType.

645
646

Example

 <xs:simpleType name="MonetaryAmountType"> 647
 <xs:restriction base="xs:nonNegativeInteger"> 648
 <xs:totalDigits value="20"/> 649
 </xs:restriction> 650
 </xs:simpleType> 651
 652
 <xs:complexType name="PhysicalAddressType"> 653
 <xs:sequence> 654
 <xs:element name="AddressLine1" type="xs:string" minOccurs="0"/> 655
 <xs:element name="AddressLine2" type="xs:string" minOccurs="0"/> 656
 <xs:element name="AddressLine3" type="xs:string" minOccurs="0"/> 657
 <xs:element name="CityName" type="xs:string" minOccurs="0"/> 658
 <xs:element name="GlobalCountryCode" type="GlobalCountryCodeType" minOccurs="0"/> 659
 <xs:element name="NationalPostalCode" type="NationalPostalCodeType" minOccurs="0"/> 660
 <xs:element name="PostOfficeBoxIdentifier" type="xs:string" minOccurs="0"/> 661
 <xs:element name="RegionName" type="xs:string" minOccurs="0"/> 662
 </xs:sequence> 663
 </xs:complexType> 664

665
666

5.5 667

Model Group

Rule 5-11 668
669
670
671
672

5.6 Namespace 673

674
675
676
677

For model group names, the Upper Camel Case (“UCC”) convention MUST be used, i.e. the leading
character of each word is capitalized. The name MUST be written as group name (in
UpperCamelCase) + Group, for example, TextualDescriptionGroup.

Namespaces act as a mechanism to control and manage the extensible nature of the XML
language. Namespaces resolve the problem of name collisions through a method of uniquely
identifying Schema components with a prefix. This prefix is then associated to a Uniform Resource
Name that truly guarantees unambiguous naming. More information on RosettaNet namespaces
can be found in the namespace specification document [NSSM]. 678

679

680

681

5.6.1 Namespace Convention

5.6.1.1 Namespace Prefix

682
683
684
685

Rule 5-12
Namespace prefix MAY be created by the first letters of the targetNamespace that appear between
“specification” and “xml”. If the abbreviation conflicts with other namespace prefixes, either integer
suffices MAY be added (preferably based on version numbers), or additional letters MAY be added

©2003 RosettaNet. All Rights Reserved. - 18 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

686
687
688

to make the namespace prefix unique within where it is used. The same namespace prefix SHOULD
be reused in all the Schemas into which the Schema is imported.

689
690

Example

urn:rosettanet:specification:universal:ContactInformation:xsd:schema:2.0 may have a namespace
prefix of “uc”.

691
692

693 5.6.1.2 Relative URIs

694
695

696

Rule 5-13
Relative URI references MUST NOT be used in namespace declarations.

5.6.1.3 Uniform Resource Names
697
698
699
700

Rule 5-14
All reusable Schema components are considered RosettaNet Resources and MUST have a URN
assigned to them.

701
702
703
704

Rule 5-15
Schema filename and targetNamespace URN MUST “canonically” match where for each
targetNamespace there is one and only one file.

705
706
707
708

Rationale
Files are split when a single schema file contains multiple structures that may find independent
use. This divergence in structures must be reflected in the namespace.

709
710
711
712

Rule 5-16
Schema targetNamespace URN SHOULD “canonically” match URN of one and only one of the
Schema reusable types. This type is known as the “main type”.

713
714
715
716
717
718

Rationale
If Schema contains only one reusable type definition then the name of that type is reflected in the
namespace. If Schema contains more then one reusable type, but only one of them is used to
define the root element of the instance document then the name of that type is reflected in the
namespace.

719
720
721
722

Rule 5-17
Schema targetNamespace URN MAY “canonically” match URN of entities that convey logical
grouping of resources.

723
724
725
726
727

Rationale
If Schema contains more then one reusable type definition then it is possible that those types are
grouped logically based on some business or infrastructure classification. In that case the name of
that classification group is reflected in the namespace.

728 Note
729

730

For further explanation of above rules consult the namespace specification document [NSSM].

5.6.1.4 Default Namespace
731
732
733
734
735
736

Rule 5-18
W3C XML Schema namespace MAY be the default namespace for any Schema.

©2003 RosettaNet. All Rights Reserved. - 19 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

737
738
739
740
741
742

Rule 5-19
xs:targetNamespace MAY be the default namespace for all Interchange Structure Schemas (E.g.,
PIP Schemas). Universal Structures and Domain Structure Schemas MUST NOT use
xs:targetNamespace as the default namespace.

743
744
745
746
747
748

Rationale
Using default namespace provides better readability and more clarity for PIP Schemas. However,
for Universal Structures and Domain Structure Schemas, the need to avoid accidental errors due to
conflicting names in multiple namespaces takes priority, and therefore all elements are to be
qualified with their namespace when used.

749
750
751
752

Example

For PIP Schemas

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://example.com" 753
 targetNamespace="http://example.com"> 754
 <xs:element name="person"> 755
 <xs:complexType> 756
 <xs:sequence> 757
 <xs:element name="familyName" type="xs:string" /> 758
 <xs:element name="firstName" type="xs:string" /> 759
 </xs:sequence> 760
 </xs:complexType> 761
 </xs:element> 762
</xs:schema> 763

764
765
766
767

For Universal Structures and Domain Structures

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 768
 xmlns:prod="http://example.com/prod" 769
 targetNamespace="http://example.com/prod"> 770
 771
 <xs:element name="person"> 772
 <xs:complexType> 773
 <xs:sequence> 774
 <xs:element name="number" type="xs:integer" /> 775
 <xs:element name="size" type="prod:SizeType" /> 776
 </xs:sequence> 777
 </xs:complexType> 778
 </xs:element> 779
 780
 <xs:simpleType name="SizeType"> 781
 <!-- … --> 782
 </xs:simpleType> 783
</xs:schema> 784

785

786

5.6.2 Namespace exposure

Rule 5-20 787
788
789
790
791

Namespaces of elements MUST be exposed in the XML instance files by setting elementFormDefault
to “qualified” in the xs:schema. Namespaces of attributes MAY be exposed by setting
attributeFormDefault attribute of the xs:schema element to “qualified”.

792
793

Example [Dare Obasanjo ()]OBA

©2003 RosettaNet. All Rights Reserved. - 20 - 11 December 2003

http://example.com/

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

794
795

This Schema

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 796
 targetNamespace="http://example.com"> 797
 <xs:element name="person"> 798
 <xs:complexType> 799
 <xs:sequence> 800
 <xs:element name="familyName" type="xs:string" /> 801
 <xs:element name="firstName" type="xs:string" /> 802
 </xs:sequence> 803
 </xs:complexType> 804
 </xs:element> 805
</xs:schema> 806

807
808
809

validates the following document

<foo:person xmlns:foo="http://example.com"> 810
 <familyName> KAWAGUCHI </familyName> 811
 <firstName> Kohsuke </firstName> 812
</foo:person> 813

814
815
816

which is unlikely what the Schema author intended. Altering the Schema to:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 817
 targetNamespace="http://example.com" 818
 elementFormDefault="qualified"> 819
 <xs:element name="person"> 820
 <xs:complexType> 821
 <xs:sequence> 822
 <xs:element name="familyName" type="xs:string" /> 823
 <xs:element name="firstName" type="xs:string" /> 824
 </xs:sequence> 825
 </xs:complexType> 826
 </xs:element> 827
</xs:schema> 828

829
830
831

allows it to validate

<person xmlns="http://example.com"> 832
 <familyName> KAWAGUCHI </familyName> 833
 <firstName> Kohsuke </firstName> 834
</person> 835
or 836
<foo:person xmlns:foo="http://example.com"> 837
 <foo:familyName> KAWAGUCHI </foo:familyName> 838
 <foo:firstName> Kohsuke </foo:firstName> 839
</foo:person> 840

841
842
843
844
845
846
847
848
849
850
851

Rationale
Qualified attributeFormDefault is desirable when attributes from some other namespaces are also
included. In other words, qualified attribute names are needed for those attributes that apply to a
variety of elements in a variety of namespaces, such as xml:lang or xsi:type. For locally declared
attributes, whose scope is only the type definition in which they appear, prefixes add extra text
without any additional meaning.

The elementFormDefault and attributeFormDefault attributes determine whether to localize (hide)
or expose the namespaces of elements and attributes within the XML instance documents.

©2003 RosettaNet. All Rights Reserved. - 21 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

852
853
854
855
856

857

858
859
860

Setting elementFormDefault and attributeFormDefault to “unqualified” ensures no namespace will
be exposed within instance documents.

Setting elementFormDefault and attributeFormDefault to “qualified” ensures all namespaces will be
exposed in instance documents.

5.6.3 Form Attribute

Form attribute can be used when control is required over whether an element or attribute should
be qualified in instance documents.

861
862
863

Rule 5-21
RosettaNet Schema developers MUST NOT use the form attribute.

864
865
866

Rationale
The namespace exposure is determined by the global xs:elementFormDefault and
xs:attributeFormDefault attributes for uniform look and feel of the XML Schemas.

©2003 RosettaNet. All Rights Reserved. - 22 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

6 Versioning 867

6.1 868

869
870
871

Versioning Philosophy

One basic rule for versioning is that any entity that has an independent lifecycle will have a
version. Entities that are closely related and that are likely to have a lifecycle that is dependent on
each other would have the same namespace and might be versioned together. The versioning
scheme for files is closely aligned with PIP versioning scheme [PIP Development Guide (PIPDEV)].
The versioning for Schema components is described in namespace specification document [

872
NSSM]. 873

874
875
876

877

878
879
880

Rule 6-1
Schemas, namespaces and reusable types MUST have version numbers assigned to them.

6.1.1 Versioning Schemas

Schemas are versioned as all other entities. Version of a Schema is declared as explained in section
3.2.

881
882
883
884

Rule 6-2
The Schema version MUST match the version of the “main type” if the “main type” exists inside the
Schema.

885 Note
886

887

888
889
890
891

892

For an explanation of the “main type” see Rule 5-16

6.1.2 Versioning namespaces

Sometimes namespaces contain multiple types that may change from one version of the
namespace to another. If we want to identify the change, from one version to another, the
contents need to be versioned and be independently identifiable. This allows faster change
verification.

6.1.3 Relationship between Schema versions and namespace versions

Rule 6-3 893
894
895
896

The targetNamespace of a Schema MUST include the same number that matches the value of the
built-in xs:schema “version” attribute.

897 Note
898
899

For an explanation of the “version” attribute see Rule 3-8

900
901

Example

urn:rosettanet:specification:universal:ContactInformation:xsd:schema:1.2 902

903
904
905
906
907
908
909
910
911

Rule 6-4
Major Schema version number MUST be changed when existing instance documents that validate
against the current Schema cannot validate against the new Schema. Minor Schema version
number MUST be changed when existing instance documents validate against the new Schema
while new instance documents cannot validate against the existing Schema.

©2003 RosettaNet. All Rights Reserved. - 23 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

912
913
914
915
916

917

918
919
920

Rationale
This approach invalidates the instance documents when any change to Schema is introduced,
which provides schema-based validation aid when old instances are incompatible with new
schemas.

6.1.4 Versioning reusable types

Reusable types (simple types and complex types) are versioned independently. Versioning of types
is independent of versioning of namespaces and versioning of Schemas.

921
922
923
924

Rule 6-5
“TypeVersion” element MUST be included under xs:appinfo element that annotates the reusable
type.

925 Note
Usage of the “Type Version” element is explained in Component Documentation, Codelist
Documentation and under the Rule 10-4.

926
927
928
929
930
931
932

Rule 6-6
“schemaVersion” attribute of the “token” type MUST be declared as an optional attribute for all
reusable types.

933
934
935
936

Rationale
Reusable types and elements have unique identifiers within a namespace so that they can be
referred to uniquely. This approach also indicates the fact that versioning of reusable types is
independent of versioning of the Schema in which they reside. For further explanation of the
application of this approach see Referencing Schemas from PIP Messages. 937

938
939
940

Note
More information on namespace versioning can be found in the namespace specification document.
[NSSM] More information on packaging and versioning of Schemas can be found in the PIP
Development Guide document. [

941
PIPDEV] 942

943

©2003 RosettaNet. All Rights Reserved. - 24 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

7 Schema Construction Guidelines 944

945
946
947
948

7.1 949

XML Schema definition language gives many ways to express the same content in XML
instance. The following sections give general guidelines regarding popular language
constructs.

Use of XSD Built-In Types

Rule 7-1 950
951
952
953

The built-in types outlined in W3C XML Schema Datatypes [XSDD] SHOULD be used in designing
Schemas as much as possible.

954 Rationale
The built-in types are well defined by the W3C Schema Datatypes specification [XSDD] and
therefore unanimously understood by application developers. Creating RosettaNet types where
W3C defined types can be used leads to confusion and misinterpretation during processing of data
received in form of XML message.

955
956
957
958
959

7.2 960

961
962
963
964
965
966
967
968
969

Use of Element versus Attributes

The following characteristics of elements and attributes SHOULD be used to decide what is better
as an attribute and what is better as an element.

1) attributes SHOULD only be used to specify meta-data. Meta-data provides context and facilitates
processing of data. An example of meta-data is language (xml:lang)
2) attributes MUST NOT be used where further extensions of the attributes is required.
3) ordering is implementable only in elements and not in attributes
4) attributes need not be persistent.
5) attributes are less verbose. When values are lengthy, elements tend to be more readable than
attributes. [Priscilla Walmsley (WAL)] 970

971 6) elements can be repeated [WAL]
972 7) elements can be used in substitution group [WAL]

8) elements can have nil values [WAL] 973
974
975

7.3 976

977
978

9) elements with all optional content SHOULD be avoided

Use of Content Model: sequence, choice, all.

The order and structure of the children of a complex type is known as its content model.

979
980
981
982

Rule 7-2
While composing groups of elements xs:sequence SHOULD be the preferred compositor, the use of
xs:all is NOT RECOMMENDED. The xs:choice SHOULD be used if needed.

983
984
985
986
987

Rationale
The biggest disadvantage of xs:all is that it cannot be repeated any further. This limits the use of
xs:all to the first occurrence of its set of elements. If a content model requires an element that
occurs more than once then xs:all cannot be used.

988
989

Example XML Schema

 <xs:complexType name="ContactInformationType"> 990
 <xs:sequence> 991

©2003 RosettaNet. All Rights Reserved. - 25 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 <xs:element name="ContactName" type="xs:string"/> 992
 <xs:element name="EmailAddress" type="EmailAddressType" minOccurs="0"/> 993
 <xs:element name="FacsimileNumber" type="CommunicationsNumberType" minOccurs="0"/> 994
 <xs:element name="TelephoneNumber" type="CommunicationsNumberType" minOccurs="0"/> 995
 </xs:sequence> 996
 </xs:complexType> 997

998
999

7.4 1000

Reuse of Both Elements and Types

Rule 7-3 1001
1002
1003
1004

Schemas MUST define named global types (simpleType or complexType). Corresponding to the
named global types, named global elements MUST be declared in all Schemas.

1005
1006
1007
1008

Rule 7-4
More then one global type definition and more then one global element declaration MAY be present
in a Schema.

1009 Note
This is a mixed approach of using Venetian Blind Design [MIT] and Garden of Eden [Universal
Business Language Schema (

1010
UBLS)]. 1011

1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024

The Venetian Blind Design allows for maximum reuse of type definitions. Types are much easier to
store in repository and reuse than elements.

The Garden of Eden allows declaration of reusable elements along with reusable types. The
advantage of using reusable element is to avoid inconsistency in naming the elements of the same
type. This will ensure uniform usage of element names corresponding to a particular type and will
curb any misuse (for example, Order is of Company Type). There are some instances in PIP
specifications where a structure (which is not a universal structure) is reused across PIPs, for
example, PartnerProductForecast is used in PIPs 4A1, 4A2 and 4A3. It is useful in this situation to
have a reusable element declared in the Domain Structure and reuse it instead of declaring three
different element names corresponding to same complex type.

1025
1026

Example XML Schema

 <xs:element name="LocationIdentification" type="LocationIdentificationType"/> 1027
 <xs:complexType name="LocationIdentificationType"> 1028
 <xs:sequence> 1029
 <xs:element name="LocationIdentifier" type="LocationIdentifierType"/> 1030
 <xs:element name="IdentifierAuthorityCode" type="IdentifierAuthorityCodeType"
minOccurs="0"/>

1031
1032

 </xs:sequence> 1033
 </xs:complexType> 1034

1035

7.5 1036

1037

Representing relationships

7.5.1 Use of Named Model Groups

Rule 7-5 1038
1039
1040
1041
1042
1043

The xs:group MAY be used when there is a need to reuse a set of elements when application design
requires presentation to be structured. xs:group provides code reuse whereas type definitions
provide definition reuse. xs:group SHOULD only be created when you need to group logically
related content models.

©2003 RosettaNet. All Rights Reserved. - 26 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1044
1045
1046
1047
1048
1049

Rationale
Schemas allow for grouping of elements and attributes. Grouping is performed using the xs:group
element. Groups represent a set of element declarations or attribute declarations so that they can
be incorporated as a group into complex type definitions. xs:group must be defined globally in
order to be reused within a Schema. This might not be acceptable in terms of the overall design.

1050
1051

Example XML Schema

<?xml version="1.0" encoding="UTF-8"?> 1052
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 1053
elementFormDefault="qualified" attributeFormDefault="unqualified"> 1054
 1055
 <xs:element name = "Customer"> 1056
 <xs:complexType> 1057
 <xs:group ref = "NameGroup"/> 1058
 </xs:complexType> 1059
 </xs:element> 1060
 1061
 <xs:group name = "NameGroup"> 1062
 <xs:sequence> 1063
 <xs:element name = "FirstName" type = "xs:string" /> 1064
 <xs:element name = "MiddleInitial" type = "xs:string" /> 1065
 <xs:element name = "LastName" type = "xs:string" /> 1066
 </xs:sequence> 1067
 </xs:group> 1068
 1069
</xs:schema> 1070

1071

1072

7.5.2 Extensibility

Rule 7-6 1073
1074
1075
1076

Extensibility SHOULD be implemented using XML Schema extension and restriction. Element
substitution MAY be used carefully when required for this purpose.

1077
1078
1079

1080

Rule 7-7
For extensibility of RosettaNet Schemas, a Schema change request MUST be submitted to
RosettaNet.

7.5.2.1 Inheritance via Extension

1081
1082
1083

1084

Rule 7-8
Complex type extension SHOULD be used. It is not possible to extend the value space of a simple
type using extension.

7.5.2.2 Inheritance via Restriction

1085
1086

Rule 7-9
Simple type restriction SHOULD be used. Use of complex type restriction is discouraged, as it is
complex. [OBA] 1087

1088
1089
1090

Example XML Schema

 <xs:simpleType name="MonetaryAmountType"> 1091
 <xs:restriction base="xs:nonNegativeInteger"> 1092
 <xs:totalDigits value="20"/> 1093
 </xs:restriction> 1094
 </xs:simpleType> 1095

1096

©2003 RosettaNet. All Rights Reserved. - 27 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

7.5.3 Use of abstract type and substitution groups 1097

1098
1099
1100
1101
1102
1103

Both element declarations and complex type definitions can be made abstract. An abstract element
declaration cannot be used to validate an element in an XML instance document and can only
appear in content models via substitution. An abstract complex type definition similarly cannot be
used to validate an element in an XML instance document; but it can be used as the abstract
parent of an element's derived type or in cases where the element's type is overridden in the
instance using xsi:type. [OBA] 1104

1105
1106
1107
1108

Rule 7-10
The abstract complex type definitions MAY be used in RosettaNet Schemas as needed.

1109
1110

The following example from [MIT] illustrates the use of abstract complex type.

1111
1112

Example XML Schema

<xs:complexType name="PublicationType" abstract="true"> 1113
 ... 1114
</xs:complexType> 1115
<xs:complexType name="BookType"> 1116
 <xs:complexContent> 1117
 <xs:extension base="PublicationType" > 1118
 ... 1119
 </xs:extension> 1120
 </xs:complexContent> 1121
</xs:complexType> 1122
<xs:complexType name="MagazineType"> 1123
 <xs:complexContent> 1124
 <xs:restriction base="PublicationType"> 1125
 ... 1126
 </xs:restriction> 1127
 </xs:complexContent> 1128
 </xs:complexType> 1129
 <xs:element name="Catalogue"> 1130
 <xs:complexType> 1131
 <xs:sequence> 1132
 <xs:element ref="Publication" maxOccurs="unbounded"/> 1133
 </xs:sequence> 1134
 </xs:complexType> 1135
 </xs:element> 1136

1137
1138
1139

Example XML Instance

<?xml version="1.0" encoding="UTF-16"?> 1140
<Catalogue xmlns="http://www.catalogue.org" 1141
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1142
 xsi:schemaLocation="http://www.catalogue.org Catalogue.xsd"> 1143
 <Publication xsi:type="BookType"> 1144
 <Title>Illusions The Adventures of a Reluctant Messiah</Title> 1145
 <Author>Richard Bach</Author> 1146
 <Date>1977</Date> 1147
 <ISBN>0-440-34319-4</ISBN> 1148
 <Publisher>Dell Publishing Co.</Publisher> 1149
 </Publication> 1150
 <Publication xsi:type="MagazineType"> 1151
 <Title>Natural Health</Title> 1152
 <Date>1999</Date> 1153
 </Publication> 1154
 <Publication xsi:type="BookType"> 1155
 <Title>The First and Last Freedom</Title> 1156

©2003 RosettaNet. All Rights Reserved. - 28 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 <Author>J. Krishnamurti</Author> 1157
 <Date>1954</Date> 1158
 <ISBN>0-06-064831-7</ISBN> 1159
 <Publisher>Harper Row</Publisher> 1160
 </Publication> 1161
</Catalogue> 1162

1163
1164

1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

Use of substitution group

Substitution groups are a flexible way to designate element declarations as substitutes for other
element declarations from other Schemas or other namespaces without changing the original
content model. Substitution groups are useful for simplifying content models, making choice groups
more flexible, and allowing more descriptive elements to be used, including localized names. The
members of substitution group must have types that are either the same as the type of the head,
or derived from it by either extension or restriction. They can be directly derived from it, or derived
indirectly through multiple levels of restriction or extension. Only global element declarations can
serve as heads of the substitution groups.

Substitution groups are a powerful tool and one may want to control their use using attributes
xs:block and xs:final. The xs:final attribute can be used to prevent other people from defining
Schemas that use your element declaration as the head of a substitution group. The xs:block
attribute limits the use of substituted elements in instances. [WAL] 1179

1180
1181
1182

Substitution groups make content models more flexible and allow extensibility in directions the
Schema author may not have anticipated. This flexibility is a two-edged sword: although it allows
greater extensibility, it makes processing documents based on such Schemas more difficult. [OBA] 1183

1184
1185
1186
1187

Another complication is that members of a substitution group can be of a type derived from the
substitution group's head when the type derivation can be both extension and restriction. The
restriction of substitution groups is not recommended, since it may lead to interoperability issues
between the Schema processors due to the fuzzy definition in the recommendations. [Eric van der
Vlist (VLIS)] 1188

1189
1190
1191
1192
1193
1194
1195

Rule 7-11
The abstract element declarations and substitution group definitions MAY be used with caution. The
use of block and final attributes SHOULD be used sparingly as and when needed.

A RosettaNet example for substitution group is as follows:

<xs:element name="TelephoneNumberType" type ="xs:string" abstract="true"/> 1196
<xs:element name="WorkNumberType" type ="xs:string" substitutionGroup="TelephoneNumberType"/> 1197
<xs:element name="FaxNumberType" type ="xs:string" substitutionGroup="TelephoneNumberType"/> 1198

1199
1200

7.6 1201

Use of Content

There are four types of content for complex types: simple, element-only, mixed and empty. [WAL] 1202
1203
1204
1205
1206

Rule 7-12
Complex type with simple content SHOULD be used wherever needed.

 <xs:complexType name="SizeType"> 1207
 <xs:simpleContent> 1208
 <xs:extension base="xs:integer"> 1209
 <xs:attribute name="system" type="xs:token"/> 1210
 </xs:extension> 1211

©2003 RosettaNet. All Rights Reserved. - 29 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 </xs:simpleContent> 1212
 </xs:complexType> 1213
 <xs:element name="Size" type="SizeType"/> 1214

1215
 <Size system=”US-DRESS”>10</Size> 1216

1217
1218
1219
1220
1221
1222

Rationale
Simple content allows character data only, with no children. Generally, the only thing that
distinguishes a simple type from a complex type with simple content is that the latter may have
attributes.

1223
1224
1225

Rule 7-13
Complex type with element-only content SHOULD be used as needed.

 <xs:complexType name="ProductType"> 1226
 <xs:sequence> 1227
 <xs:element name="Number" type="ProdNumType"/> 1228
 <xs:element name="Name" type="xs:string"/> 1229
 <xs:element ref="Size"/> 1230
 <xs:element ref="Color"/> 1231
 </xs:sequence> 1232
 </xs:complexType> 1233
 <xs:element name="Product" type="ProductType"/> 1234

1235
<Product> 1236
 <Number>4566</Number> 1237
 <Name>Long Skirt</Name> 1238
 <Size system=”US-DRESS”>10 </Size> 1239
 <Color value=”blue”/> 1240
</Product> 1241

1242
1243
1244
1245

Rationale
The element-only content allows children elements only, with no character data content.

1246
1247
1248
1249

Rule 7-14
Mixed content MUST NOT be used, as the character data in mixed content is completely
unrestricted.

1250
1251
1252

Rationale
Mixed content allows character data as well as child elements.

1253
1254

Rule 7-15
Complex type with empty content SHOULD be used as needed. Example of Empty content is

element in XHTML. [XHTML] 1255

1256
1257
1258
1259

1260

Rationale
Empty content allows neither character data nor child elements. Elements with empty content may
or may not have values in attributes.

7.6.1 Use of Default Values

Rule 7-16 1261
1262
1263
1264
1265
1266

The use of default values and fixed values is discouraged. The default values and fixed values
SHOULD NOT be used. All the attribute and element values SHOULD be explicitly indicated.

©2003 RosettaNet. All Rights Reserved. - 30 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1267
1268
1269
1270

Rationale
Default values of both attributes and elements are declared using the default attribute, although
this attribute has a slightly different consequence in each case. Default attribute values apply when
attributes are missing, and default element values apply when elements are empty. [XSDP] 1271

1272
1273
1274
1275
1276
1277
1278
1279
1280

The fixed attribute is used in both attribute and element declarations to ensure that the attributes
and elements are set to particular values. This declaration means that the appearance of a fixed
attribute in an instance document is optional, although if the attribute does appear, its value must
be the same as in the corresponding declaration, and if the attribute does not appear, the Schema
processor will provide a value from the corresponding declaration. Note that the concepts of a fixed
value and a default value are mutually exclusive, and so it is an error for a declaration to contain
both fixed and default attributes.

1281
1282
1283

Rule 7-17
XML Schema built-in default values MUST be specified consistently.

Rationale 1284

1285
1286
1287

7.7 1288

1289
1290

Having mixed approach when indicating XML Schema built-in default values, like sometimes
indicating minOccurs=”1” and sometimes not, is often confusing for the human audience.

Use of Nillability

XML Schema provides a way of indicating nillability. By marking an element as “nil”, you are telling
the processor “I know this element is empty, but I want it to be valid anyway.” The actual reason
why this is empty and what the application should do, is entirely up to you. [WAL] It may indicate
that the information is unknown, or not applicable, or the element may be absent for some other
reason. Sometimes it is desirable to represent an unshipped item, unknown information, or
inapplicable information explicitly with an element, rather than by an absent element. For example,
it may be desirable to represent a "null" value being sent to or from a relational database with an
element that is present. Such cases can be represented using XML Schema's nil mechanism, which
enables an element to appear with or without a non-nil value. [

1291
1292
1293
1294
1295
1296

XSDP] 1297
1298
1299
1300

XML Schema's nil mechanism involves an "out of band" nil signal. In other words, there is no actual
nil value that appears as element content, instead there is an attribute to indicate that the element
content is nil. [XSDP] 1301

1302
1303
1304

Example

<xs:element name="shipDate" type="xs:date" nillable="true"/> 1305

1306
1307

And to explicitly represent that shipDate has a nil value in the instance document, we set the nil
attribute (from the W3C XML Schema namespace for instances) to true. [XSDP] 1308

1309
1310
1311

Example

<shipDate xsi:nil="true"></shipDate> 1312

1313
1314
1315
1316

Rule 7-18
Nillability SHOULD not be used.

1317
1318
1319

Rationale
The tool support for nillability is poor so this should be used with caution. The functionality for
nillability can be achieved to some extent by using optional elements.

©2003 RosettaNet. All Rights Reserved. - 31 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 1320

7.8 1321 Use of Any Element and Any Attribute

Rule 7-19 1322
1323
1324
1325
1326
1327

7.9 1328

1329

“any” wildcard (for both attributes and element) MUST NOT be used as it is a loose form of
extension. If there is a need for additional elements or attributes not mentioned in the RosettaNet
provided Schemas, request MUST be submitted to RosettaNet for addition in the Schema
definitions.

Message Constraint Representation

7.9.1 Data Type Constraints

Rule 7-20 1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340

User-defined data types MUST be based on built-in atomic types, i.e. exclusively use built-in
xs:date for dates or types that are derived from xs:date. If any further formatting constraint is
needed which cannot be expressed in XSD then it MUST be expressed as Schematron constraints in
the “Constraint” child element inside the xs:appinfo child element of the xs:annotation element of
the Schema. The processing of these Schematron constraints SHOULD be deferred to the
application level. The format of indicating an instant of time in Schemas MUST conform to a built-in
datatype, xs:dateTime. The xs:dateTime UTC (Coordinated Universal Time) format MUST be
followed for representing date and time in international trade. For local trade the use of UTC format
is up to the trading partners.

1341
1342

Example XML Schema

 <xs:simpleType name="DateTimeStampType"> 1343
 <xs:restriction base="xs:dateTime"> 1344
 ----- 1345
 ----- 1346
 </xs:restriction> 1347
 </xs:simpleType> 1348

1349
1350
1351

Note
Schematron rules provide formatting and path/relationship based integrity constraints, that are not
available in XSD. The following example is taken from [MIT]. 1352

1353
<?xml version="1.0" encoding="UTF-8"?> 1354
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" 1355
 targetNamespace="http://www.demo.org" 1356
 xmlns="http://www.demo.org" 1357
 xmlns:sch="http://www.ascc.net/xml/Schematron” 1358
 elementFormDefault="qualified"> 1359
 <xs:annotation> 1360
 <xs:appinfo> 1361
 <Constraint> 1362
 <sch:title>Schematron validation</sch:title> 1363
 <sch:ns prefix="d" uri="http://www.demo.org"/> 1364
 </Constraint> 1365
 </xs:appinfo> 1366
 </xs:annotation> 1367
 1368
 <xs:element name="Demo"> 1369
 <xs:annotation> 1370
 <xs:appinfo> 1371
 <Constraint> 1372
 <sch:pattern name="Check A greater than B"> 1373

©2003 RosettaNet. All Rights Reserved. - 32 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 <sch:rule context="d:Demo"> 1374
 <sch:assert test="d:A > d:B" diagnostics="lessThan">A should be
greater than B</sch:assert>

1375
1376

 </sch:rule> 1377
 </sch:pattern> 1378
 <sch:diagnostics> 1379
 <sch:diagnostic id="lessThan"> 1380
 Error! A is less than B. A = <sch:value-of select="d:A"/> B =
<sch:value-of select="d:B"/>

1381
1382

 </sch:diagnostic> 1383
 </sch:diagnostics> 1384
 </Constraint> 1385
 </xs:appinfo> 1386
 </xs:annotation> 1387
 <xs:complexType> 1388
 <xs:sequence> 1389
 <xs:element name="A" type="xs:integer" /> 1390
 <xs:element name="B" type="xs:integer" /> 1391
 </xs:sequence> 1392
 </xs:complexType> 1393
 </xs:element> 1394
</xs:schema> 1395

1396

©2003 RosettaNet. All Rights Reserved. - 33 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

8 Codelists 1397

8.1 1398

1399

Internal Codelist

8.1.1 Creation of Codelist

Rule 8-1 1400
1401
1402
1403
1404

An xs:simpleType with enumerations MUST be defined to contain the content of the codelist. Its
base type SHOULD be xs:token. Its name SHOULD consist of the codelist name and a suffix
“ContentType” and SHOULD not be used to define any element directly.

1405
1406

Rule 8-2
An xs:complexType MUST be defined as extension of the content type with three fixed value
attributes: identifier, agency and version, whose types SHOULD be xs:token. Its name SHOULD
consist of the codelist name and a suffix “Type”.

1407
1408
1409
1410
1411
1412

Rule 8-3
An abstract element MUST be declared with the content type. Its name SHOULD
consist of the codelist name and a suffix "A". The type of this element MUST match the content
type defined under the Rule 8-1.

1413
1414
1415
1416
1417
1418

Rule 8-4
A default element MUST be declared with the type. Its name MUST be the same as the codelist
name. Its substitution group MUST be the abstract element.

1419
1420

Example XML schema

<xs:element name="TransportEventA" type="TransportEventContentType"
abstract="true"></xs:element>

1421
1422

 1423
<xs:element name="TransportEvent" type="TransportEventType"
substitutionGroup="TransportEventA"></xs:element>

1424
1425

 1426
<xs:simpleType name="TransportEventContentType"> 1427
 <xs:restriction base="xs:token"> 1428
 <xs:enumeration value="DOC"/> 1429
 <xs:enumeration value="PIC"/> 1430
 <xs:enumeration value="SHP"/> 1431
 </xs:restriction> 1432
</xs:simpleType> 1433
 1434
<xs:complexType name="TransportEventType"> 1435
 <xs:simpleContent> 1436
 <xs:extension base="TransportEventContentType"> 1437
 <xs:attribute name="identifier" type="xs:token" fixed="TransportEvent"/> 1438
 <xs:attribute name="agency" type="xs:token" fixed="RosettaNet"/> 1439
 <xs:attribute name="version" type="xs:token" fixed="1.0"/> 1440
 </xs:extension> 1441
 </xs:simpleContent> 1442
</xs:complexType> 1443

1444
1445
1446
1447
1448

©2003 RosettaNet. All Rights Reserved. - 34 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1449

1450

8.1.2 Extension of Codelist

1451
1452
1453
1454
1455
1456

Rule 8-5
An xs:simpleType MUST be defined as a union whose xs:memberTypes are the original content
type and an anonymously defined xs:simpleType with new enumerations whose base type SHOULD
be xs:token. Its name SHOULD consist of the codelist name and a suffix “ContentType” and
SHOULD not be used to declare any element directly.

1457
1458

Rule 8-6
An xs:complexType MUST be defined as extension from the content type with three fixed value
attributes: identifier, agency and version, whose types SHOULD be xs:token. Its name SHOULD
consist the codelist name and a suffix “Type”.

1459
1460
1461
1462
1463
1464
1465
1466

Rule 8-7
A default element MUST be declared with the type. Its name MUST be the same as the codelist
name. Its substitution group MUST be the original abstract element.

1467
1468

Example XML schema

<xs:element name="ExtTransportEvent" type="TransportEventType"
substitutionGroup="TransportEventA"></xs:element>

1469
1470

 1471
<xs:simpleType name="ExtTransportEventContentType"> 1472
 <xs:union memberTypes="TransportEventContentType"> 1473
 <xs:simpleType> 1474
 <xs:restriction base="xs:token"> 1475

 <xs:enumeration value="EXT"/> 1476
 </xs:restriction> 1477
 </xs:simpleType> 1478
 </xs:union> 1479
</xs:simpleType> 1480
 1481
<xs:complexType name="ExtTransportEventType"> 1482
 <xs:simpleContent> 1483
 <xs:extension base="ExtTransportEventContentType"> 1484
 <xs:attribute name="identifier" type="xs:token" fixed="ExtTransportEvent"/> 1485
 <xs:attribute name="agency" type="xs:token" fixed="RosettaNet"/> 1486
 <xs:attribute name="version" type="xs:token" fixed="1.0"/> 1487
 </xs:extension> 1488
 </xs:simpleContent> 1489
</xs:complexType> 1490

1491

1492

8.1.3 Restriction of Codelist

Rule 8-8 1493
1494
1495
1496
1497
1498

An xs:simpleType MUST be defined as restriction of the original content type. Its name SHOULD
consist of the codelist name and a suffix “ContentType” and SHOULD not be used to declare any
element directly. The set of enumeration values in a restricted codelist MUST be a proper subset of
the set of enumeration values in the original codelist.

1499
1500

Rule 8-9
An xs:complexType MUST be defined as extension from the content type with three fixed value
attributes: identifier, agency and version, whose types SHOULD be xs:token. Its name SHOULD 1501

©2003 RosettaNet. All Rights Reserved. - 35 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1502
1503

consist of the codelist name and a suffix “Type”.

1504
1505
1506
1507
1508

Rule 8-10
A default element MUST be declared with the type. Its name MUST be the codelist name. Its
substitution group MUST be the original abstract element.

1509
1510

Example XML schema

<xs:element name="ForecastTransportEvent" type="ForecastTransportEventType"
substitutionGroup="TransportEventA"></xs:element>

1511
1512

 1513
<xs:simpleType name="ForecastTransportEventContentType"> 1514
 <xs:restriction base="TransportEventContentType"> 1515
 <xs:enumeration value="DOC"/> 1516
 <xs:enumeration value="PIC"/> 1517
 </xs:restriction> 1518
</xs:simpleType> 1519
 1520
<xs:complexType name="ForecastTransportEventType"> 1521
 <xs:simpleContent> 1522
 <xs:extension base="ForecastTransportEventContentType"> 1523
 <xs:attribute name="identifier" type="xs:token" fixed="ForecastTransportEvent"/> 1524
 <xs:attribute name="agency" type="xs:token" fixed="RosettaNet"/> 1525
 <xs:attribute name="version" type="xs:token" fixed="1.0"/> 1526
 </xs:extension> 1527
 </xs:simpleContent> 1528
</xs:complexType> 1529

1530
1531

8.2 1532

External Codelist

Rule 8-11 1533
1534
1535

The targetNamespace SHOULD be used to denote the external source.

1536
1537
1538
1539

Rule 8-12
Creation procedure of an external codelist MUST be the same as of internal ones except that there
is no need to declare enumerations in its content type since they are declared externally.

1540
1541
1542

Rule 8-13
Extension procedure of an external codelist MUST be the same as of internal ones.

1543
1544
1545

Rule 8-14
Restriction procedure of an external codelist MUST be the same as of internal ones.

1546
1547

Example XML Schema

<xs:schema targetNamespace="http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-
code-lists/country" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

1548
1549
1550

 1551
 <xs:element name="CountryA" type="CountryContentType" abstract="true"></xs:element> 1552
 1553
 <xs:element name="Country" type="CountryType" substitutionGroup="CountryA"></xs:element> 1554
 1555
 <xs:simpleType name="CountryContentType"> 1556
 <xs:restriction base="xs:token"></xs:restriction> 1557
 </xs:simpleType> 1558
 1559

©2003 RosettaNet. All Rights Reserved. - 36 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

 <xs:complexType name="CountryType"> 1560
 <xs:simpleContent> 1561
 <xs:extension base="CountryContentType"> 1562
 <xs:attribute name="identifier" type="xs:token" fixed="Country"/> 1563
 <xs:attribute name="agency" type="xs:token" fixed="ISO"/> 1564
 <xs:attribute name="version" type="xs:token" fixed="1.0"/> 1565
 </xs:extension> 1566
 </xs:simpleContent> 1567
 </xs:complexType> 1568
</xs:schema> 1569

1570

©2003 RosettaNet. All Rights Reserved. - 37 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

9 Schema File Naming Conventions and Packaging 1571

9.1 1572

1573

Schema Packaging Conventions

Schemas will be packaged in the following way (for further explanation see PIP Development
Guide) [PIPDEV]: 1574

1575
1576
1577
1578
1579
1580
1581
1582
1583

9.2 1584

- XML
o Domain

� xxxDomain
• Codelist

o Interchange
o System
o Universal

� Codelist

Schema File Naming Conventions

Definition: System Structure Schemas 1585
1586
1587
1588

The Schema definitions of System Structure types and elements are called System Structure
Schemas – as these are reused in order to construct all other Schemas defined below.

1589
1590
1591
1592

Definition: Universal Structure Schemas
The Schema definitions of Universal Structure types and elements are called Universal Structure
Schemas – as these are reused in order to construct more complex data structures in all PIPs.

1593
1594
1595
1596

Definition: Domain Structure Schemas
The Schema definitions of Domain types and elements are called Domain Structure Schemas – as
these are reused in order to construct more complex data structures to create specific PIPs.

1597
1598
1599
1600

Definition: Interchange Structure Schemas
The Schema definitions of Interchange types and elements are called Interchange Structure
Schemas – as these are used to construct PIP Messages to be exchanged between partners.

1601
1602
1603
1604

Rule 9-1
Schema file naming SHOULD be in UpperCamelCase, i.e. the leading character of each word is
capitalized and file extension SHOULD be xsd.

1605
1606
1607
1608

Rule 9-2
For each codelist there MUST be one and only one Schema. Codelist Schema filename MUST
include prefix that denotes the codelist provider.

1609
1610

Example

ISO_CountrySubdivision.xsd 1611

1612

9.3 1613

1614
1615
1616
1617

System Structure Schemas

System structures contain the basic reusable building blocks to be used across all other Schemas.
System structures include reusable elements, attributes and complex types.

©2003 RosettaNet. All Rights Reserved. - 38 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1618
1619
1620
1621
1622

Rule 9-3
System Structures Schemas MAY contain reusable definitions / declarations of several system
structures.

1623
1624
1625
1626

Rule 9-4
Reusable system structures SHOULD be defined / declared in separate Schemas for better
readability and differential namespace treatment.

1627
1628
1629

Rule 9-5
Naming Convention for the files storing System Structure Schemas is:

 Subfield Name Subfield Format Subfield Value
Subfield 1 System Structure Name Unabbreviated

Alphanumeric string

Subfield 2 File Extension 3 characters xsd
1630
1631
1632

Example

StandardDocumentHeader.xsd 1633

1634

9.4 1635

1636
1637
1638

Universal Structure Schemas

Universal structures contain the basic reusable building blocks to be used across all the PIPs.
Universal structures include reusable elements, complex types, simple types and codelists.

1639 Note
1640
1641

Codelist Schemas are fully explained in Codelists.

1642
1643
1644
1645

Rule 9-6
Universal Structure Schemas SHOULD contain reusable definitions / declarations of several
universal structures.

1646
1647
1648
1649

Rule 9-7
Reusable universal structures SHOULD be defined / declared in separate Schemas for better
readability and differential namespace treatment.

1650
1651
1652
1653

Rule 9-8
All reusable universal structures and data types MUST be grouped by categories. There SHOULD be
one Schema for each category.

1654
1655
1656
1657
1658

Rule 9-9
Universal Structure Schemas MUST NOT belong to the same namespace. The reusable elements
and the types that are required for the definition of those elements and only for those elements
MUST be in the same file and namespace.

1659
1660
1661

Rule 9-10
File names of Universal Structure Schemas MUST include the category name.

1662
1663
1664

Rule 9-11
Naming Convention for the files storing Universal Structure Schemas is:

 Subfield Name Subfield Format Subfield Value
Subfield 1 Category Name Unabbreviated

©2003 RosettaNet. All Rights Reserved. - 39 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Alphanumeric string
Subfield 2 File Extension 3 characters xsd

1665
Example 1666
ContactInformation.xsd 1667

1668

9.5 1669

1670
1671
1672

Domain Structure Schemas

Domain Structure Schemas contain the basic reusable building blocks specific to a particular
domain. Domain Structure Schemas include reusable elements, complex types and codelists.

1673
1674
1675

Note
Codelist Schemas are fully explained in section 8.

1676
1677
1678
1679

Rule 9-12
Domain Structure Schemas SHOULD contain reusable definitions / declarations of several domain
structures.

1680
1681
1682
1683

Rule 9-13
Reusable domain structures SHOULD be defined / declared in separate Schemas for better
readability and differential namespace treatment.

1684
1685
1686
1687

Rule 9-14
All reusable domain structures and data types MUST be grouped by domains. There SHOULD be
one Schema for each domain.

1688
1689
1690

Rule 9-15
File names of Domain Structure Schemas MUST include the domain name.

1691
1692
1693

Rule 9-16
Naming Convention for the files storing Domain Structure Schemas is:

 Subfield Name Subfield Format Subfield Value
Subfield 1 Domain Name Unabbreviated

Alphanumeric
String

Subfield 2 File Extension 3 characters xsd
1694

Example 1695
1696

CollaborativeForecasting.xsd 1697
1698

9.6 1699

Interchange Structure Schemas

Rule 9-17 1700
1701
1702

There MUST be only one Schema per PIP Action Message.

1703
1704
1705

Rule 9-18
The Interchange Structure Schemas SHOULD declare only one named global element.

1706
1707

Rule 9-19
File naming convention for Interchange Structure Schemas SHOULD follow the PIP naming
convention explained in PIP Development Guide. [PIPDEV] 1708

1709

©2003 RosettaNet. All Rights Reserved. - 40 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1710
1711

Naming Convention for the files storing Interchange Structure Schemas is:

 Subfield Name Subfield

Format
Subfield Value

Subfield 1 Interchange Structure term 3 characters PIP
Subfield 2 Interchange Structure code

(Segment, Cluster, Number)
3 characters

Subfield 3 Business Document Name
(Action Message name)

Full name – as
many characters

Subfield 4 File Extension 3 characters xsd
1712
1713
1714

Example

 PIP4A3ThresholdReleaseForecastNotification.xsd 1715

1716
1717

©2003 RosettaNet. All Rights Reserved. - 41 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

10 XML instance documents (PIP Action Messages) 1718

Note 1719
1720
1721
1722
1723
1724
1725

10.1 1726

1727
1728
1729
1730
1731
1732

10.2 1733

1734
1735
1736

10.3 1737

This section is intended for an audience that is different then the audience for the previous
sections. Also, it addresses only a subset (incomplete list) of all aspects related to composition of
XML instance documents that conform to Schema constrains explained in the rest of this document.
Because of these two facts, it is possible that this section will be considerably larger as this
documents is being revised or it might be promoted into different document(s).

XML & XSD

Both XSD and XML instance documents use the same syntax – therefore XML and XSD coding
conventions and document structure will be largely the same for both XML and XSD documents.
XSDs capture the syntax and semantics for a particular class of XML documents in W3C XML
Schema language and provide the means for XML Schema processors to validate the corresponding
XML instance documents.

Naming conventions for XML Documents

Documentation, Naming conventions, and component ordering of XML instance documents are the
same as that of Schemas.

Referencing Schemas from PIP Messages

Rule 10-1 1738
1739
1740
1741
1742

PIP XML Action Message documents MUST NOT have the absolute path defined in
xsi:schemaLocation attribute. The xsi:schemaLocation attribute MAY contain the relative paths with
respect to the location where the current Schema is stored.

1743
1744
1745
1746
1747
1748
1749

Rationale
The xsi:schemaLocation attribute provides a hint to the processor as to where to find a Schema
that declares components for that namespace. The path of the root should be specified in the
packaging. The reason behind this decision is security concerns as well as ease of processing.
Though desirable that xsi:schemaLocation contains relative path, the tool support is not sufficiently
good at this time.

1750
1751
1752
1753
1754

Rule 10-2
PIP XML Action Message documents SHOULD set the value of the “schemaVersion” attribute. The
“schemaVersion” attribute MAY contain more then one value of the Schema versions that the PIP
XML Action Message instance is compatible with.

1755
1756
1757
1758

Rule 10-3
PIP XML Action Message documents MUST set the value of the “pipVersion” element inside the
“Service Header” to match the “PIP Umbrella Version”.

1759
1760
1761
1762
1763
1764

Rule 10-4
PIP XML Action Message documents MUST set the value of the “TypeVersion” element inside the
“Standard Document Header” to match the “PIP Umbrella Version”.

©2003 RosettaNet. All Rights Reserved. - 42 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

1765
1766
1767

Note
“PIP Umbrella Version” denotes the PIP version (e.g. R11.01) of the whole PIP Package. For further
explanation of “PIP Umbrella Version” see [PIPDEV]. For explanation of “pipVersion” see [RNIF].
For explanation of “Standard Document Header” see [

1768
SBDH]. 1769

1770
1771
1772
1773
1774
1775
1776
1777

Rationale
This approach allows gradual transitioning to new Schemas. It can also support future needs of
correlating a given PIP XML Action Message fragment to the type definitions in a particular
namespace. In some cases the PIP XML Action Message fragment might become extracted from the
source PIP XML Action Message document in which it was originally sent so “schemaVersion” could
be used by destination processing application in order to take appropriate action(s).

1778
1779

Example XML Instance

<Thing xmlns="urn:rosettanet:specification:domain:ThingType:xsd:schema:0.3"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:rosettanet:specification:domain:ThingType:xsd:schema:0.3
file:///C:/ThingType.xsd" schemaVersion="0.1"/>

1780
1781
1782
1783
1784
1785

©2003 RosettaNet. All Rights Reserved. - 43 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

11 References 1786

Source Description
[MIT] Author: xml-dev list group

Title: “XML Schemas: Best Practices.”
The MITRE Corporation
Retrieved October 20, 2003 from:
http://www.xfront.com/BestPracticesHomepage.html

[NAM] Editors: Tim Bray, Dave Hollander, Andrew Layman
Title: “Namespaces in XML”
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/1999/REC-xml-names-19990114

[NSSM] RosettaNet Namespace Specification and Management
October 2003.

[OBA] Author: Dare Obasanjo
Title: “W3C XML Schema Design Patterns: Avoiding Complexity”
O’REILLY xml.com
Retrieved October 20, 2003 from:
http://www.xml.com/pub/a/2002/11/20/schemas.html

[PIPDEV] PIP Development Guide
[RFC2119] Author: Scott Bradner

Title: “Key words for use in RFCs to Indicate Requirement Levels”
The Internet Engineering Task Force
Retrieved October 20, 2003 from:
http://www.ietf.org/rfc/rfc2119.txt

[RNIF] Title: “RosettaNet Implementation Framework”
RosettaNet Consortium
Retrieved October 20, 2003 from:
http://www.rosettanet.org/rnif

[SBDH] Title: “UN/CEFACT Standard Business Document Header” Revision 2.1
UN/CEFACT
Retrieved October 20, 2003 from:
http://webster.disa.org/cefact-groups/atg/downloads/Generic_Header_TS_rev2.1.zip

[STRON] Author: Rick Jelliffe
Title: “The Schematron - An XML Structure Validation Language using Patterns in
Trees”
Retrieved October 20, 2003 from:
http://www.ascc.net/xml/resource/schematron/schematron.html

[UBLS] Author: Eve Maler
Title: “Schema Design Rules for UBL and May be for You”
Retrieved October 20, 2003 from:
http://www.idealliance.org/papers/xml02/dx_xml02/papers/05-01-02/05-01-02.html

[VLIS] Author: Eric van der Vlist (2002)
Title: “XML Schema”
O’Reilly Publications

[WAL] Author: Priscilla Walmsley (2002)
Title: “Definitive XML Schema”
The Charles Goldfarb definitive XML Series.

[XHTML] Authors : Members of the W3C HTML Working Group
Title : “XHTML™ 1.0 The Extensible HyperText Markup Language”

©2003 RosettaNet. All Rights Reserved. - 44 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/xhtml1/

[XML] Editors : Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eva Maler
Title : “Extensible Markup Language (XML) 1.0” W3C Recommendation 6th October
2000.
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/2000/REC-xml-20001006

[XSD] Editors : Ashok Malhotra, Murray Maloney
Title : “XML Schema Requirements”
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/NOTE-xml-schema-req

[XSDD] Editors : Paul V. Biron, Ashok Malhotra
Title : “XML Schema Part 2: Datatypes”
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/xmlschema-2/

[XSDP] Editor : David C. Fallside
Title : “XML Schema Part 0: Primer”
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/xmlschema-0/

[XSDS] Editors : Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn
Title : “XML Schema Part 1: Structures”
World Wide Web Consortium
Retrieved October 20, 2003 from:
http://www.w3.org/TR/xmlschema-1/

 1787

©2003 RosettaNet. All Rights Reserved. - 45 - 11 December 2003

http://www.w3.org/TR/NOTE-xml-schema-req
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

12 Glossary 1788

Term Definition
Abstract types Allow use of complex types in such a way that a single element name

can be used to represent various types in an XML document instance.
Annotation Information for human and/or mechanical consumers. The

interpretation of such information is not defined in the XML Schema
specifications. The annotation element can contain one or more
<documentation> or <appinfo> elements.

Attribute A name=”value” field within an XML element, providing information
associated with that XML element.

Attribute Group A set of attribute declarations, enabling re-use of the same set in
several complex type definitions.

Attribute Group
Definition

An attribute group definition is an association between a name and a set
of attribute declarations, enabling re-use of the same set in several
complex type definitions.

Built-in Datatypes Datatypes that are defined either in the XML Schema specification (as
primitive types) or in this specification, and can be either primitive or
derived.

Character set The encoding method for the data values of the document, based on
Unicode format.

Complex Type An XML element type that allows nested elements in their content and
may carry attributes.

Complex Type
Definition

A complex type definition is a set of attribute declarations and a content
type, applicable to the attributes and children of an element information
item respectively. The content type may require the children to contain
neither element nor character information items (that is, to be empty),
to be a string that belongs to a particular simple type or to contain a
sequence of element information items that conforms to a particular
model group, with or without character information items as well.

Complex type
extension

Extension adds attributes, and adds elements to the end of the content
model of the base type.

Complex type
restriction

Restriction limits a base type to a more restrictive set of valid values.

component Component means a basic building block of the Schema like named
type, named element, named group etc.

Datatype A datatype is a 3-tuple, consisting of a) a set of distinct values, called
its value space, b) a set of lexical representations, called its lexical
space, and c) a set of facets that characterize properties of the value
space, individual values or lexical items.

Default attribute
values

Data values that imply a default value if they do not explicitly appear in
the XML instance document.

Derived Data
Types

Derived datatypes are those that are defined in terms of other
datatypes. A datatype is said to be derived by restriction from another
datatype when values for zero or more constraining facets are specified
that serve to constrain its value space and/or its lexical space to a
subset of those of its base type.
Every datatype that is derived by restriction is defined in terms of an
existing datatype, referred to as its base type. Base types can be
either primitive or derived.

Element A fundamental unit of XML information, which has an element name,

©2003 RosettaNet. All Rights Reserved. - 46 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

optional attributes, optional data value, and an associated type
definition. Elements may be nested, one inside another.

Element
Declaration

An element declaration is an association of a name with a type
definition, either simple or complex, an (optional) default value and a
(possibly empty) set of identity-constraint definitions.

Facet A facet is a single defining aspect of a value space. Generally speaking,
each facet characterizes a value space along independent axes or
dimensions.

Fixed attribute
values

An attribute value that always has the same value.

Globally defined
attributes

Attribute definitions that are defined at the highest level in the XML
Schema document, so that the definitions can be reused.

Globally defined
elements

Element definitions that are defined at the highest level in the XML
Schema document, so that the definitions can be reused.

Groups XML Schema allows fragments of content models to be named and
referenced from multiple complex types.

Main type A reusable type that is used to define the root element of the XML
instance document (PIP Action Message). In case when Schema
contains only one reusable type definition than that type is by default
the Schema main type.

Message
Guidelines

The Message guidelines are the semantic documentation of the PIPs,
which cannot be captured in Schemas.

Mixed Content A combination of child elements and character data nested within an
element.

Name Represents names in XML. A Name is a token that begins with a letter,
underscore, or colon and continues with name characters (letters, digits,
and other characters). This data type is derived from token.

NCName Represents noncolonized names. This data type is the same as Name,
except it cannot begin with a colon. This data type is derived from
Name.

Named Types Named types may be defined once and used many times.
Namespaces An XML namespace is a collection of names identified by a URI

reference, which are used in XML documents as element types and
attribute names.

normalizedString Represents white space normalized strings. This data type is derived
from string.

Simple Type Simple types cannot have element content and cannot carry attributes.
Simple Type
Definition

A simple type definition is a set of constraints on strings and information
about the values they encode, applicable to the normalized value of an
attribute information item or of an element information item with no
element children. Informally, it applies to the values of attributes and
the text-only content of elements.
An element can be declared to be a substitute for another element, the
"head" element, allowing the new element to appear anywhere the head
element may appear.

targetNamespace The namespace of an instance document.
token Represents tokenized strings. This data type is derived from

normalizedString.
Type Derivation XML Schema allows a type to be derived from another type (its base

type), either by extension or restriction.
Type Redefinition XML Schema allows a Schema author to redefine the types or groups of

another Schema document.

Substitution
groups

©2003 RosettaNet. All Rights Reserved. - 47 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Type Substitution Allows a base type to be substituted by any derived type.
PIP Umbrella
Version

The PIP version (e.g. R11.01) of the whole PIP Package.

Union types The union operation is supported by XML Schema for element types. For
example, a codelist may be defined as the union of two other codelists.

User-derived
Datatypes

User-derived datatypes are those derived datatypes that are defined by
individual Schema designers.

Value Space A value space is the set of values for a given datatype. Each value in
the value space of a datatype is denoted by one or more literals in its
lexical space.

XML Schema An XML document that defines the allowable content of a class of XML
documents. A class of documents refers to all possible permutations of
structure in documents that will still confirm to the rules of the Schema.

 1789

©2003 RosettaNet. All Rights Reserved. - 48 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

13 Appendix 1790

13.1 1791

1792
1793
1794

Rules Appendix

This section summarizes the rules for a quick review. For complete information regarding particular
aspect refer to the appropriate section.

Prologue and
Encoding

Rule 3-1 MUST specify XML prologue at the beginning of each schema
Rule 3-2 Either “UTF-8” or “UTF-16” MUST be used as the value for
character set and encoding type

xs:schema element Rule 3-3 “xs” or “xsd” namespace prefix MAY be used to indicate the usage
of W3C XML Schema namespace
Rule 3-4 The attribute xs:targetNamespace of xs:schema MUST be
specified for all Schema documents
Rule 3-5 “tns” namespace prefix SHOULD be used to indicate
xs:targetNamespace when targetNamespace is not the same as the default
namespace of the Schema
Rule 3-6 Default namespace MAY be specified as an attribute of xs:schema
element
Rule 3-7 The xs:elementFormDefault attribute of xs:schema MUST have
the value "qualified" and the xs:attributeFormDefault attribute MAY have
the value of either "qualified" or "unqualified".
Rule 3-8 The xs:version attribute of xs:schema MUST be present
Rule 3-9 Order of xs:schema attributes MUST be as follows:
targetNamespace declaration, declaration binding “xs” namespace prefix,
default namespace declaration, declaration binding “tns” prefix, any other
declarations binding prefixes to other namespaces, elementFormDefault
declaration, attributeFormDefault declaration and version declaration.

Documentation Rule 3-10 The xs:schema root element and all reusable components in the
Schema MUST have xs:annotation defined.
Rule 3-11 All Schema annotations MUST be in English and within the
xs:annotation element
Rule 3-12 The documentation for a Schema component SHOULD be placed
as close to the component as possible
Rule 3-13 Any constraints relevant to either the whole Schema or to an
individual Schema component MUST be expressed in Schematron syntax

Schema
Documentation

Rule 3-14 Any human readable information relevant to the whole Schema
MUST be contained in an xs:documentation element
Rule 3-15 Any application related information relevant to the whole
Schema MUST be contained in an xs:appinfo element

Component
Documentation

Rule 3-16 Any human readable information relevant to reusable types
MUST be contained in an xs:documentation element
Rule 3-17 Any application related information relevant to reusable types
MUST be contained in an xs:appinfo element
Rule 3-18 Only when the name of a reusable element is different than its
default name (i.e. type name without the suffix) the reusable element
SHOULD have its own documentation
Rule 3-19 nent documentation for any lower level element SHOULD be
defined only by “definition”

CodeList
Documentation

Rule 3-20 Any human readable information relevant to codelists MUST be
contained in an xs:documentation element

©2003 RosettaNet. All Rights Reserved. - 49 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Rule3-21 Any application related information relevant to codelists MUST be
contained in an xs:appinfo element

Component Ordering Rule 3-22 Schemas MUST follow consistent structuring rules
Rule 3-23 Placement of various Schema components (follow link for
details)
Rule 3-24 Within the type definition, the sequences, choice, groups and
sub-content models SHOULD be ordered in alphabetical order. Also within
each content model (like sequence, choice, groups etc) elements SHOULD
be sorted in alphabetical order

Reusing Schemas Rule 4-1 The xs:import attribute MUST contain the schemaLocation
attribute that points to the imported schema(s) via relative paths
Rule 4-2 Import SHOULD be used where needed. Circular imports MUST be
avoided. Duplicate imports SHOULD be avoided.
Rule 4-3 xs:include is allowed and MAY be used where needed.
Rule 4-4 xs:redefine MUST NOT be used

Internationalization
Features

Rule 5-1 The name of an XML Schema component MUST be an NCName
(XML Name minus the “:”)
Rule 5-2 All names MUST be composed of alphanumeric characters only
Rule 5-3 The name of an XML Schema component MUST be taken out of
the UML model
Rule 5-4 All Schema names and values created and maintained by
RosettaNet SHOULD be understandable by an English speaking audience

Acronyms Rule 5-5 Acronyms SHOULD be written using uppercase
Element Rule 5-6 For element names, the Upper Camel Case (“UCC”) convention

MUST be used
Rule 5-7 While creating names for inner elements, concatenating the name
of the inner element to the name of the outer element SHOULD be avoided

Attribute Rule 5-8 For attribute names, the Lower Camel Case (“LCC”) convention
MUST be used

Type Rule 5-9 All reusable, extendable, and restrictable types MUST be named.
All such type names MUST be global in scope
Rule 5-10 For type names, the Upper Camel Case (“UCC”) convention
MUST be used

Model Group Rule 5-11 For model group names, the Upper Camel Case (“UCC”)
convention MUST be used

Namespace
Convention

Rule 5-12 Name space prefix MAY be created by the first letters of the
targetNamespace that appear between “specification” and “xml”.
Rule 5-13 Relative URI references MUST NOT be used in namespace
declarations
Rule5-14 All reusable Schema components are considered RosettaNet
Resources and MUST have a URN assigned to them
Rule5-15 Schema filename and targetNamespace URN MUST “canonically”
match where for each targetNamespace there is one and only one file
Rule5-16 Schema targetNamespace URN SHOULD “canonically” match URN
of one and only one of the Schema reusable types
Rule5-17 Schema targetNamespace URN MAY “canonically” match URN of
entities that convey logical grouping of resources
Rule5-18 W3C XML Schema namespace MAY be the default namespace for
any Schema
Rule5-19 xs:targetNamespace MAY be the default namespace for all
Interchange Structure Schemas

Namespace exposure Rule 5-20 Namespaces of elements MUST be exposed in the XML instance
files by setting elementFormDefault to “qualified” in the xs:schema

Form Attribute Rule 5-21 RosettaNet Schema developers MUST NOT use the form

©2003 RosettaNet. All Rights Reserved. - 50 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

attribute
Versioning Philosophy Rule 6-1 Schemas, namespaces and reusable types MUST have version

numbers assigned to them
Versioning Schemas Rule 6-2 The Schema version MUST match the version of the “main type” if

the “main type” exists inside the Schema
Rule 6-3 The targetNamespace of a Schema MUST include the same
number that matches the major number of the value of the built-in
xs:schema “version” attribute
Rule 6-4 Major Schema version number MUST be changed when existing
instance documents that validate against the current Schema cannot
validate against the new Schema

Versioning reusable
types

Rule 6-5 “TypeVersion” element MUST be included under xs:appinfo
element that annotates the reusable type
Rule 6-6 “schemaVersion” attribute of the “token” type MUST be declared
as an optional attribute for all reusable types

Use of XSD Built-In
Types

Rule 7-1 The built-in types outlined in W3C XML Schema Datatypes
[XSDD] SHOULD be used in designing Schemas as much as possible

Use of Content
Model: sequence,
choice, all.

Rule 7-2 While composing groups of elements xs:sequence SHOULD be the
preferred compositor, the use of xs:all is NOT RECOMMENDED
Rule 7-3 Schemas MUST define named global types (simpleType or
complexType)
Rule7-4 More then one global type definition and more then one global
element declaration MAY be present in a Schema

Use of Named Model
Groups

Rule7-5 The xs:group MAY be used when there is a need to reuse a set of
elements when application design requires presentation to be structured

Use of Named Model
Groups

Rule7-6 Extensibility SHOULD be implemented using XML Schema
extension and restriction

Extensibility Rule7-6 Extensibility SHOULD be implemented using XML Schema
extension and restriction
Rule7-7 Extensibility of RosettaNet Schemas by Trading Partners that use
Schemas is allowed only for Codelists

Inheritance via
Extension

Rule 7-8 Complex type extension SHOULD be used

Inheritance via
Restriction

Rule 7-9 Simple type restriction SHOULD be used. Use of complex type
restriction is discouraged, as it is complex

Use of abstract type
and substitution
groups

Rule 7-10 The abstract complex type definitions MAY be used in RosettaNet
Schemas as needed
Rule 7-11 The abstract element declarations and substitution group
definitions MAY be used with caution

Use of Content Rule 7-12 Complex type with simple content SHOULD be used wherever
needed
Rule 7-13 Complex type with element-only content SHOULD be used as
needed
Rule 7-14 Mixed content MUST NOT be used, as the character data in
mixed content is completely unrestricted
Rule 7-15 Complex type with empty content SHOULD be used as needed.
Example of Empty content is
 element in XHTML

Use of Default Values Rule 7-16 The use of default values and fixed values is discouraged
Rule 7-17 XML Schema built-in default values MUST be specified
consistently

Use of Nillability Rule 7-18 Nillability SHOULD not be used
Use of Any Element
and Any Attribute

Rule 7-19 “any” wildcard (for both attributes and element) MUST NOT be
used as it is a loose form of extension
Rule 7-20 User-defined data types MUST be based on built-in atomic types Data Type

©2003 RosettaNet. All Rights Reserved. - 51 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Constraints
Creation of Codelist Rule 8-1 A simpleType (the content type) with enumerations MUST be

defined to contain the content of the code list
Rule 8-2 A complexType (the type) MUST be defined as extension of the
content type with three attributes: identifier, agency and version, whose
types SHOULD be xs:token and with fixed values
Rule 8-3 An abstract element MUST be declared with the content type. Its
name SHOULD consist of the codelist name and a suffix "A".
Rule 8-4 A default element MUST be declared with the type

Extension of Codelist Rule 8-5 A simpleType (the content type) MUST be defined as a union
whose memberTypes is the original content type and an anonymously
defined xs:simpleType with new enumerations whose base type SHOULD
be xs:token
Rule 8-6 An xs:complexType MUST be defined as extension from the
content type with three fixed value attributes: identifier, agency and
version, whose types SHOULD be xs:token
Rule 8-7 A default element MUST be declared with the type. Its name
MUST be the same as the codelist name

Restriction of Codelist Rule 8-8 A simpleType (the content type) MUST be defined as restriction of
the original content type
Rule 8-9 An xs:complexType MUST be defined as extension from the
content type with three fixed value attributes: identifier, agency and
version, whose types SHOULD be xs:token
Rule 8-10 A default element MUST be declared with the type. Its name
MUST be the codelist name

External Codelist Rule 8-11 The targetNamespace SHOULD be used to denote the external
source
Rule 8-12 Creation procedure of an external codelist MUST be the same as
of internal ones except that there is no need to declare enumerations in its
content type since they are declared externally
Rule 8-13 Extension of an external code list MUST be the same as internal
ones
Rule 8-14 Restriction of an external code list MUST be the same as internal
ones

Schema File Naming
Conventions

Rule 9-1 Schema file naming SHOULD be in UpperCamelCase
Rule 9-2 For each codelist there MUST be one and only one Schema.
Codelist Schema filename MUST include prefix that denotes the codelist
provider

System Structures
Schemas

Rule 9-3 System Structures Schemas MAY contain reusable definitions /
declarations of several system structures
Rule 9-4 Reusable system structures SHOULD be defined / declared in
separate Schemas for better readability and differential namespace
treatment
Rule 9-5 Naming Convention for the files storing System Structure
Schemas (Follow link for details)

Universal Structures
Schemas

Rule 9-6 Universal Structures Schemas SHOULD contain reusable
definitions / declarations of several universal structures
Rule 9-7 Reusable universal structures SHOULD be defined / declared in
separate Schemas for better readability and differential namespace
treatment
Rule 9-8 All reusable universal structures and data types MUST be grouped
by categories. There SHOULD be one Schema for each category
Rule 9-9 Universal structures Schemas MUST NOT belong to the same
namespace

©2003 RosettaNet. All Rights Reserved. - 52 - 11 December 2003

RosettaNet Modular PIPs®
Engineering Specification Issue 1_0 XML Design Guidelines

Rule 9-10 File names of Universal Structures Schemas MUST include the
category name
Rule 9-11 Naming Convention for the files storing Universal Structure
Schemas (follow link for details)

Domain Structure
Schemas

Rule 9-12 Domain structures Schemas SHOULD contain reusable
definitions / declarations of several domain structures
Rule 9-13 Reusable domain structures SHOULD be defined / declared in
separate Schemas for better readability and differential namespace
treatment
Rule 9-14 All reusable domain structures and data types MUST be grouped
by domains. There SHOULD be one Schema for each domain
Rule 9-15 File names of Domain Structure Schemas MUST include the
domain name
Rule 9-16 Naming Convention for the files storing Domain Structure
Schemas (follow link for details)

Interchange Structure
Schemas

Rule 9-17 There MUST be only one Schema per PIP Action Message
Rule 9-18 The Interchange Structure Schemas SHOULD declare only one
named global element
Rule 9-19 File naming convention for Interchange Structure Schemas
SHOULD follow the PIP naming convention explained in PIP Development
Guide

Referencing Schemas
from PIP Messages

Rule 10-1 PIP XML Action Message documents MUST NOT have the
absolute path defined in xsi:schemaLocation attribute
Rule 10-2 PIP XML Action Message documents SHOULD set the value of the
“schemaVersion” attribute
Rule 10-3 PIP XML Action Message documents MUST set the value of the
“pipVersion” element inside the “Service Header” to match the “PIP
Umbrella Version”
Rule 10-4 PIP XML Action Message documents MUST set the value of the
“TypeVersion” element inside the “Standard Document Header” to match
the “PIP Umbrella Version”

1795
1796

©2003 RosettaNet. All Rights Reserved. - 53 - 11 December 2003

	Document Management
	Legal Disclaimer
	Copyright
	Trademarks
	Document Version History
	The Modular PIP Production Process
	Audience
	Document Conventions
	Document Structure
	Acknowledgements
	Approvals

	Schema Design Philosophy
	XSD Document Structure
	Prologue and Encoding declaration
	Prologue
	Encoding Declaration

	xs:schema element
	Documentation
	Schema Documentation
	Component Documentation
	Codelist Documentation

	Component Ordering
	Placement of various Schema components
	Ordering of components within Type definition

	Reusing Schemas
	Import
	Include
	Redefine

	Naming Conventions
	General Naming Guidelines
	Internationalization Features
	Acronyms

	Element
	Attribute
	Type
	Named Types
	Naming Convention for Types

	Model Group
	Namespace
	Namespace Convention
	Namespace Prefix
	Relative URIs
	Uniform Resource Names
	Default Namespace

	Namespace exposure
	Form Attribute

	Versioning
	Versioning Philosophy
	Versioning Schemas
	Versioning namespaces
	Relationship between Schema versions and namespace versions
	Versioning reusable types

	Schema Construction Guidelines
	Use of XSD Built-In Types
	Use of Element versus Attributes
	Use of Content Model: sequence, choice, all.
	Reuse of Both Elements and Types
	Representing relationships
	Use of Named Model Groups
	Extensibility
	Inheritance via Extension
	Inheritance via Restriction

	Use of abstract type and substitution groups

	Use of Content
	Use of Default Values

	Use of Nillability
	Use of Any Element and Any Attribute
	Message Constraint Representation
	Data Type Constraints

	Codelists
	Internal Codelist
	Creation of Codelist
	Extension of Codelist
	Restriction of Codelist

	External Codelist

	Schema File Naming Conventions and Packaging
	Schema Packaging Conventions
	Schema File Naming Conventions
	System Structure Schemas
	Universal Structure Schemas
	Domain Structure Schemas
	Interchange Structure Schemas

	XML instance documents (PIP Action Messages)
	XML & XSD
	Naming conventions for XML Documents
	Referencing Schemas from PIP Messages

	References
	Glossary
	Appendix
	Rules Appendix

