nt[image: image1.png]
Universal Business Language (UBL) Code List Representation

Version: 1.1 draft 5 April 2005
Document identifier:

wd-ublclsc-codelistReqs-20050405.doc
Location:

http://www.oasis-open.org/committees/ubl/

Editor:

Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com

Contributors:

Anthony Coates abcoates@londonmarketsystems.com

Mavis Cournane mavis.cournane@cognitran.com

Suresh Damodaran Suresh_Damodaran@stercomm.com

Anne Hendry anne.hendry@sun.com

G. Ken Holman gkholman@CraneSoftwrights.com

Serm Kulvatunyou serm@nist.gov

Eve Maler eve.maler@sun.com
Tim McGrath tmcgrath@portcomm.com.au

Mark Palmer mark.palmer@nist.gov

Sue Probert sue.probert@dial.pipex.com

Lisa Seaburg lseaburg@aeon-llc.com
Paul Spencer paul.spencer@boynings.co.uk

Alan Stitzer alan.stitzer@marsh.com

Frank Yang Frank.Yang@RosettaNet.org

Abstract:

This specification provides rules for developing and using reusable code lists. This specification has been developed for the UBL Library and derivations thereof, but it may also be used by other technologies and XML vocabularies as a mechanism for sharing code lists and for expressing code lists in W3C XML Schema form.

Note: This draft is an intermediate edit along the path of UBL 1.1. This version has incorporated the inputs from Tony’s revisions but recast back into the original structure of the document.

Status:

This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page (http://www.oasis-open.org/who/intellectualproperty.php

Table of Contents

51
Introduction

1.1
About the current version
5
1.2
Scope and Audience
6
1.3
Terminology and Notation
6
1.3.1
Definitions
6
2
Requirements for Code Lists
8
2.1
Overview
21
2.2
Use and management of Code Lists
21
2.2.1
[R1] First-order business information entities
21
2.2.2
[R2] Second-order business information entities
21
2.2.3
[R3] Data and Metadata model separate from Schema representation
21
2.2.4
[R4] XML and XML Schema representation
22
2.2.5
[R5 (Future)] Machine readable data model
22
2.2.6
[R6 (Future)] Conformance test for code lists
22
2.2.7
[R6a] Supplementary components or metadata available in instance documents
22
2.3
Types of code lists
23
2.3.1
[R7] UBL maintained Code List
23
2.3.2
[R8] Identify and use external standardized code lists
23
2.3.3
[R9] Private use code list
23
2.4
Technical requirements of Code Lists
23
2.4.1
[R10] Semantic clarity
23
2.4.2
[R11] Interoperability
23
2.4.3
[R12] External maintenance
23
2.4.4
[R13] Validatability
24
2.4.5
[R14] Context rules friendliness
24
2.4.6
[R15] Upgradability / Extensibility without modifying underlying references
24
2.4.7
[R16] Readability
24
2.4.8
[R17] Code lists must be unambiguously identified
24
2.4.9
[R18 (Future)] Ability to prevent extension or modification
25
2.5
Design Requirements of Code List Data Model
25
2.5.1
[R19] A set of the values (codes) forms each code list
25
2.5.2
[R20 (Future)] Multiple lists of equivalent values (codes) for a code list
25
2.5.3
[R21] Unique identifier(s) for a code list
26
2.5.4
[R22] Unique identifiers for individual entries in a code list
26
2.5.5
[R23] Names for a code list
26
2.5.6
[R24] Documentation for a code list
26
2.5.7
[R25] Documentation for individual entries on a code list
26
2.5.8
[R26 (Future)] The ability to import, extend, and/or restrict values and elements of other code lists
26
2.5.9
[R27 (Future)] Support for describing code lists that cannot be enumerated
26
2.5.10
[R28 (Future)] Support for references to equivalent code lists
27
2.5.11
[R29 (Future)] Support for individual values to be mapped to equivalent values in other code lists
27
2.5.12
[R30 (Future)] Support for users to attach their own metadata to a code list
27
2.5.13
[R31 (Future)] Support for describing the validity period of the values
27
2.5.14
[R32] Identifier for UN/CEFACT DE 3055.
27
3
Data and Metadata Model for Code Lists
28
3.1
Data Model Definition
28
3.2
Supplementary Components (Metadata) Model Definition
28
3.3
Examples of Use
29
4
XML Schema representation of Code Lists
31
4.1
Data Model Mapping
32
4.2
Supplementary Components Mapping
34
4.3
Namespace URN (Future)
35
4.4
Namespace Prefix
35
4.5
Code List Schema Generation
35
4.5.1
Data model and example values
35
4.5.2
Schema to generate
36
4.5.3
Schema file name
37
4.6
Code List Schema Usage
42
4.7
Instance
44
4.8
Deriving New Code Lists from Old Ones (future)
44
4.8.1
Extending code lists
44
4.8.2
Restricting code lists
45
5
Conformance to UBL Code Lists (future)
46
6
References
47
Appendix A.
Revision History
48
Appendix B.
Notices
49

1 Introduction

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded values, termed "code lists", from which values populate particular UBL data fields. Code lists are accessed using many technologies, including databases, programs and XML. Code lists are expressed in XML for UBL using W3C XML Schema for authoring guidance and processing validation purposes.

It is important to note that XML schema languages are not purely abstract data models. They provide only a particular representation of the data. In addition, there are many roughly equivalent design choices (e.g. elements versus attributes). The underlying logical model is obscured, and can be difficult to extract. Therefore, XML schema languages are principally useful as a way of specifying rules to an XML validation engine. Database schemas and programming language class models would have their own specific representations of the logical data models.

A good logical data model format should allow the information about code lists to be expressed in a format that is as simple and unambiguous as possible. To maximize the abstraction on one hand, and the utility of the code list representations on the other, this document first derives an abstract data model of a code list, and then, an XMLSchema representation of that data model.

Note that there are two major aspects of a model of code lists – the list of codes and descriptive information about the code list termed “supplementary components”. Supplementary components include information such as origin and version, for example. Supplementary components describe the metadata about the code lists and codes themselves. They appropriately describe the context within which individual codes can be understood.

The document begins with a section expositing the requirements adopted by the committee in order to make certain that design follows requirements. These requirements were used to steer the design choices elected in the balance of the document.

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for developing and using reusable code lists expressed using W3C XML Schema [XSD] syntax.

The contents combine requirements and solutions previously developed by UBL’s Library, Naming, and Design Rules subcommittee [CL5], the work of the National Institute of Standards “eBusiness Standards Convergence Forum” [eBSC] with contributions from Frank Yang and Suresh Damodaran of Rosettanet [eBSCMemo], and position papers by Anthony Coates [COATES], Gunther Stuhec [STUHEC], and Paul Spencer [SPENCER].

The data model attempts to be sufficiently general to be employable with other technologies (e.g. non-XML) and in other scenarios that are outside the scope of this committee's work.

·
·
·
·
1.1 About the current version

The Code List model described in this paper for UBL 1.0 has laid much of the groundwork for extensible code lists. It includes an extensibility mechanism based on XSD substitution groups that has not been adopted for UBL 1.0 but will serve as a starting point for work on a code list extension mechanism for UBL 1.1. The current specification places a priority on uniformity of code list metadata independent of the mechanism eventually adopted for code list extension.

The UBL team has embarked on an effort, in conjunction with NIST’s eBusiness Standards Convergence Forum (eBSC) to fulfill the goals of constructing a code list model that can be reused throughout industry. The current version contains an update to the descriptions of the requirements and some enhanced requirements discovered in the interim. For the time being, those features beyond the UBL1.0 are still labeled as FUTURE such designation to be removed further along in the version 1.1 process.

Persons wishing to engage in the further evolution of this specification are urged to join the OASIS Universal Business Language Technical Committee (http://oasis-open.org/).

1.2 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML and non-XML vocabularies as a mechanism for sharing code lists. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies. In addition, it is anticipated that these common definitions will find use in other non-XML applications that need to store or otherwise represent the same data as it traverses from application to application.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components [CCTS2.01] concepts and ISO 11179 [ISO 11179] concepts that underlie it. While mastery of these concepts is not essential to the understanding and use of this document, they are useful in explaining the concepts behind the organization and structure of this material.

1.3 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms.

Core Component names from ebXML are in italic.

Example code listings appear like this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].

The prefix xhtml: stands for the XHTML namespace.

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list.

1.3.1 Definitions

[1/2/05 MJB] Need to substantially populate this list with all acronyms and terminology used in this paper.

	BIE
	Business Information Entities.

	code
	A group of contiguous text characters that together uniquely specify the name and/or attributes of a particular field or “element” embedded in a stream of data.

	code list
	A set containing one or more codes or code values that is associated with one or more elements of data stream.

	code list mechanism
	A term used to distinguish this specification from the instances of actual code lists based on it.

	code value
	See the definition for “code” above.

	core components
	A building block such as account identification data that contains pieces of business information associated with a single concept. Core components are sufficiently general to be used across several or many different business sectors.

	data model
	A technique, set of rules and/or methods used to organize information objects and thereby define a structure for data. Such models are created to streamline the storage/retrieval, manipulation, use or comprehension of data and/or to provide information about its interrelationships, meaning, function or usage.

	ebXML
	An acronym for Electronic Business using eXtensible Markup Language. ebXML is a modular suite of specifications that enables enterprises at disparate geographical locations to conduct business over the Internet. ebXML, provides standard methods for exchanging business messages, for conducting trading relationships, for communicating data in common terms and for defining and registering business processes.

	enumeration
	A list or set, usually containing two or more entries, of associated data elements. Entries have been logically grouped or associated, and possibly named as a set, permitting later selection of a single member or entry for a purpose such as specifying the characteristics of an object.

	ISO 11179
	An International Organization for Standardization specification that provides rules and guidelines for the naming, definition, creation and registration of data elements. It also contains information about the type of metadata that should be specified for data elements.

	metadata
	Information, for example characteristics, content, context or structure, that is associated with a data object. In short, metadata is “data about data.”

	NDR
	Naming and design rules.

	OASIS
	An acronym for Organization for the Advancement of Structured Information Standards. OASIS is a not-for-profit, international consortium that drives the development, convergence, and adoption of e-business standards. It produces standards used for or by Web services, security, e-business, the public sector and application-specific markets.

	Perl
	The Practical Extraction and Report Language is an interpreted programming language that utilizes features from C, sed, awk, and sh. It scans arbitrary text files, extracts information from them and generates output based on the extracted information. As open source software its source code is available.

	supplementary components
	Supplementary components describe the metadata about the code lists and codes themselves. They appropriately describe the context within which individual codes can be understood.

	UBL
	A generic XML interchange format for business documents that can be extended to meet the requirements of particular industries. The UBL specification currently consists of a library of XML schemas for reusable data components (e.g. “address”, “payment”, etc.), a set of XML schemas for common business documents (e.g. “Order”, “Invoice”, etc.) and support for industry-specific extensions to the format.

	URI
	An acronym for Uniform Resource Identifier. Each URI is a unique identifier for a resource or object on the Internet. URIs are drawn from a universal set of names or addresses and the objects or resources to which they refer can be accessed with well-known protocols. Every URI is located in one or more registries of such names and/or addresses. A Uniform Resource Locator (URL) is one example of a URI.

	W3C
	An acronym for World Wide Web Consortium. This organization develops and distributes information, specifications, guidelines, software, and tools that enhance the operation of the Internet. It also acts as a forum for commerce, education and communication.

	XML
	An acronym for eXtensible Markup Language. XML is a set of rules for the creation of customized markup languages that are used in textual documents to name, describe the attributes of and specify the relationships between data elements contained in those documents. XML is derived from SGML (Standard Generalized Markup Language) and has been designed for the transport and sharing of data..

	XML Schema
	A textual description of the appearance, interrelationships and valid value ranges for the data elements in an XML stream.

1.4 Organization of this document

[4/5/05 MJB] Need to revise Tony’s comments here accordingly

This document is broadly divided into two sections. The first section describes general requirements for code lists, and proposes a general XML-based solution to management of code lists and their versions. This starts in section Error! Reference source not found..

After dealing with the general approach to code lists, the document then focuses on UBL's specific requirements for code lists, and on how UBL code lists are represented and managed using W3C XML Schema. This starts in section Error! Reference source not found. on page Error! Bookmark not defined..

This specification is organized as follows:

· Section 2 provides requirements for code lists;

· Section 3 provides a data and metadata model (supplementary components) of code lists;

· Section 4 is an XMLSchema representation of the model;

· Section 5 is the recommendations for code producers and the compliance rules.
1.5 Code modeling overview
[4/5/05 MJB] This section contains the contents of ABC’s General Model section. I think that this discussion is background and basis for the model that gets presented in the Data and Metadata model for code lists and the XML Schema representation sections. I am not sure that we can fold this entire section in as is. Not sure what to do with the WXS model stuff.
It is said that it takes only a minute to decide to spend a million dollars, because nobody really understands what a million dollars is. However, people can argue about the choice of office paperclips for hours, because everybody is an expert on paperclips. Code lists (enumerated values) are similar, because they are so obviously simple, and everyone knows everything about them.

If code lists were really so simple and obvious, there would be a single, well-known and accepted way of handling them in XML. There is no such agreed solution, though. The problem is that while code lists are a well understood concept, people don't actually agree on exactly what code lists are, and how they should be used.

1.5.1 A Code List Example

What is a code list, then? Most people would agree that the following is a code list:

Days of the week: english, uppercase

{'SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'}

This is a perfectly reasonable set of alphabetic codes for representing days of the week. However, so is:

Days of the week: english, mixed case
{'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'}

These two code lists are very similar, but certainly not identical. That said, they can both be used to represent the days of the week. Of course, you could also use:

Days of the week: french, mixed case
{'Dim', 'Lun', 'Mar', 'Mer', 'Jeu', 'Ven', 'Sam'}

which is created from abbreviations for the days of the week in French. Then again, you could use:

Days of the week: numeric
{0, 1, 2, 3, 4, 5, 6}

which is suitable as a computer representation, e.g. for a database column. On the other hand:

Days of the week: english, single character
{'S', 'M', 'T', 'W', 'T', 'F', 'S'}

is not suitable as a code list for the days of the week, because the values are not unique.

Now suppose that you are using codes to represent days of the week in an application, and you are displaying the days of the week using 3-letter abbreviations in English or French. In that context, should 'Error! Reference source not found.' and 'Error! Reference source not found.' be considered to be code lists, or should they be considered to be display values that would be keyed to either the 'Error! Reference source not found.' or 'Error! Reference source not found.' codes? The fact is, they could be either code lists or display values. A value which is a code in one context might only be an associated value for that code in another context. Nothing privileges any of these code lists over the others in terms of ability or suitability to be the code list (except the 'Error! Reference source not found.' values which are not suitable). There is a choice of code lists that can be used, and the answer to the question "which choice is the best?" depends on the needs of each particular situation.
1.5.2 Tabular View of Code Lists

What the examples in section Error! Reference source not found. showed was that for each conceptual code in a list, there are many possible associated values (we use the term conceptual code to express the idea that we are talking a single item that needs to be represented in the code list, rather than about any of the particular codes that can be used to identify that item). Some of those associated values are suitable for use in code lists, some are not. This leads to a tabular model, where each row of the table represents a conceptual code, and each column represents an associated value, as follows:

Table 1. Days of the week

	numeric (key)
	english, uppercase (key)
	english, mixed case (key)
	french, mixed case (key)
	english, single character

	0
	SUN
	Sun
	Dim
	S

	1
	MON
	Mon
	Lun
	M

	2
	TUE
	Tue
	Mar
	T

	3
	WED
	Wed
	Mer
	W

	4
	THU
	Thu
	Jeu
	T

	5
	FRI
	Fri
	Ven
	F

	6
	SAT
	Sat
	Sam
	S

Notice that the first 4 of the 5 columns have been labeled as 'key' columns. This means that the values in those columns can be used to uniquely identify the rows, and hence they can be used as code list values. The term key is used here is the same fashion as for a relational database table.

This is the most common case, where a single column can be used as a key. However, consider the following modification:

Table 2. Days of the week, version 2

	numeric (key)
	english, uppercase (key)
	english, single character #1
	english, single character #2

	0
	SUN
	S
	U

	1
	MON
	M
	O

	2
	TUE
	T
	U

	3
	WED
	W
	E

	4
	THU
	T
	H

	5
	FRI
	F
	R

	6
	SAT
	S
	A

Here, the first two columns are each a key column. The last two columns are not individually key columns, but together they form a compound key, i.e. while the individual columns do not contain unique values, the pair of values is unique within each row. This is again similar to what happens in some relational databases, that a key for the rows need not be constructed from a single column, but instead may be constructed by combining two or more columns.

Finally, there is no reason why a column should only contain simple values like strings or numbers. A column could also contain a complex compound group of data, such as a fragment of XML:

Table 3. Days of the week, version 3

	numeric (key)
	english, uppercase (key)
	XHTML

	0
	SUN
	Sunday

	1
	MON
	<i>Monday</i>

	2
	TUE
	Tuesday

	3
	WED
	<i>Wednesday</i>

	4
	THU
	Thursday

	5
	FRI
	<i>Friday</i>

	6
	SAT
	Saturday

Notice that the final XHTML column is not marked as a key column. The values are unique, so it certainly could be used as a key column. However, sometimes you may not wish to mark a column as a key column, even if the values are unique. The values in the column may not make particularly suitable keys. They might be too long to process quickly and conveniently, or they might not be able to be used in a particular context, such as for an XML attribute value. Also, it may be that while the values in a particular column are unique now, there is no guarantee or expectation that they will remain unique as the code list grows or changes in future.

1.5.3 Which Column is the 'Code'?

Once you see the tabular nature that underlies the information that can be associated with code lists, it becomes clear why they can be a source of so much debate. Different users need different subsets of the code list information, and people are inclined to assume that the information they need is all the information that anyone needs.

That kind of thinking doesn't work with code lists, because code lists are sufficiently generic a concept that they are used across messages/documents, applications, and databases. The code list details that you need for the XML schemas often will not be exactly the same as the details that you need for your database or your application. If the code list information cannot be shared easily across these different areas of the business, the result is duplication of effort and potential loss of synchronisation between different implementations of the same code list.

An XML schema may only require a set of 3-letter codes to represent the code list. A database may require a set of numeric codes, plus display labels (possibly in different languages). An application may need to know which 3-letter code corresponds to which numeric code, so that it can process the XML and update the database. All of this code list information needs to be able to be stored together in a single representation of the code list, so that all usages of the code list can be generated from the same source information. In section Error! Reference source not found., a canonical XML format for code lists is presented, as there needs to be a suitable format for interchange of code lists.

One last piece of experience from databases is that support for undefined values will be required. Sometimes users will have values that need to be associated with some of the codes in a code list, but won't have values for each code. In that case, the concept of a undefined value is needed.

1.5.4 Managing Change

Code lists change. One thing that distinguishes code lists from some other data used in applications is that applications can often continue to run correctly if a code list is changed. By contrast, your application is likely to fail if you change a complex data structure and don't update the application accordingly. Changes to code lists can nonetheless cause an application to fail if any of the application code requires a specific value to exist in the code list, or if it requires that a specific value does not exist.

The upshot, though, is that for a code list model to be useful, it has to account for the fact that the code lists will change over time. There is little use in having a code list model that works for a code list that is frozen in time, but not for a code list that changes over time. So the code list model has to support changes between versions of a code list.

Not all changes to a code list are version changes. Some changes may be local changes to a distributed code list. For example, the ISO 3-letter currency code list contains 'GBP' for British Pounds. However, prices on the London Stock Exchange are normally quoted in pence, not pounds. This has led to the practice of adding an extra code to the standard ISO list (e.g. 'GBp', 'GBX') in order support pence as well as pounds. This kind of customisation is far from uncommon, and the utility of any code list model is greatly reduced if it does not cater for local modifications of code lists. In terms of the tabular model of code lists used in section Error! Reference source not found., the following are typical local customisations:

· Add or remove a row (the set of values associated with a conceptual code);

· Add or remove a column (a type of value associated with each conceptual code);

· Add or remove a key. Adding a key involves specifying the column(s) to be used for the key;

· Add one or more rows from a set of code lists together. This implies that the columns are the same, or that null values will be used as required;

· Add one or more columns from a set of code lists together. This implies that there is at least one key in common in each row, and that there are no keys with conflicting values;

· Remove rows for which a key value matches the key value in another code list (this can be used to delete a particular pre-defined subset of the codes);

· Modify a cell value (one of the values associated with a code). Note that this may impact whether the affected column can be used as a key or not;

· Create a derived column whose values are generated from the values in other columns.

In addition to being able to make local customisations, there should be a way for users to understand easily how their local code list was derived from one or more other code lists. This means that the code list model needs to be able to model the ways that code lists are modified, and not just provide a model for code lists that are self-contained and independent of other code lists.

There are a couple of other potential requirements that are important, but aren't addressed in the model presented here. One is the ability to trace how a code list has changed over time, and how it will change in the future, so that you can determine the content of the code list at any point in time, past or future. A good reference for this topic is Martin Fowler's Patterns for things that change with time.

The other requirement is to allow for code lists that cannot be enumerated. This can be because the list is too large or quickly changing to be enumerated feasibly in a static document, or it can be because the code list is proprietary and its users are not licensed to see the entire entire contents of the code list. What is required for this situation is a protocol (e.g. a Web service or API) that allows a set of codes to be checked against the code list, with the result containing a yes/no indication for each checked code. Again, this is not a requirement that is yet addressed in the model presented here.

1.5.5 Some History

The initial impetus for looking at how to represent code lists came from two financial XML specifications, FpML (Financial Products Markup Language) and MDDL (Market Data Definition Language). FpML defined the approach of keeping enumerations out of the core Schema by using schemes. The idea is that the code list from which an element value is taken is indicated via a scheme attribute containing a URI which represents the scheme (code list), in the same way that URIs are used to represent XML namespaces. This was done so that a new version of FpML did not have to be released just because an enumeration had changed (e.g. a currency or country code). Also, it made it straightforward for groups of users to use alternate code lists as appropriate.

<Currency

 scheme="http://www.fpml.org/ext/iso4217-2001-08-15"

>USD</Currency>

One thing that FpML never formally defined was what happens if you dereference a scheme URI (i.e. type it into a Web browser). They have only defined a draft XML format for the contents of a scheme.

MDDL copied the FpML scheme approach. Like FpML, it does not have a formally defined scheme format, and has a (different) draft XML format for schemes. So, a key aim of this generic code list model is to produce a format that can be shared by FpML and MDDL, or can be used as a common base format from which they can both generate whatever XML scheme format they may ultimately decide to use. A sample FpML scheme is shown in the appendix “Error! Reference source not found.” on page Error! Bookmark not defined., while a sample MDDL scheme is shown in the appendix “Error! Reference source not found.” on page Error! Bookmark not defined..

Note that no XML schema language currently supports the notion of schemes in this sense, so applications have to implement their own validation of codes against schemes at present.

Around the same time, UBL (Univeral Business Language) was working on its own approach to code lists, so it was decided to try and unify all of these efforts, and reduce the duplication. UBL uses a more formal approach to code lists, in line with the CCTS (Core Components Technical Specification) methodology from the ebXML (Electronic Business using eXtensible Markup Language) framework.

UBL code lists also have metadata describing the code list as a whole: what it is, who publishes it, etc. So the code list model needs to support metadata describing the code list, as well as to provide a table of values for the codes themselves. A sample W3C XML Schema for a UBL code list is shown in the appendix “Error! Reference source not found.” on page Error! Bookmark not defined..

1.5.6 The Model in Detail

What follows is a model for code lists (“genericode”) which covers many (though not yet all) of the requirements that have been outlined. From the model comes an XML format for code lists. The intention of this format is that it can be used to encode and transmit code lists. It could be used as a run-time format from which codes are looked up directly, but it is probably more likely to be used as a source from which various run-time representations of code lists can be produced, such as XML schemata, relational database schemata, and programming language enumerations.

This document's approach to producing physical artifacts like XML schemata is to produce a logical (non-XML) model of my solution first, and then create the schema(s) based on the model. For the modelling, UML (Unified Modelling Language,) provides a convenient graphical notation for data-oriented modelling. The model here is intended to cover most of the code list requirements outlined in sections Error! Reference source not found. and Error! Reference source not found.. However, it does not cover temporal variations, nor does it cover non-enumerable code lists. It also doesn't provide a simple way to change an individual cell in a tabular code list, as it is better to change a whole row of column of a code list in one operation so that there is a more obvious context to the change. It also doesn't provide support for columns that are derived from other columns in some automated fashion.

Broadly speaking, the model is divided into 4 sections:

1. column sets (columns and keys);

2. simple code lists;

3. derived code lists;

4. sets of code lists.

The code list model is implemented here as a W3C XML Schema (WXS). The Schema can be used to encode either a column set (with ColumnSet as the root element) or a simple or derived code list (with CodeList as the root element), or a set of code lists (with CodeListSet as the root element). The full Schema is shown in the appendix “Error! Reference source not found.” on page Error! Bookmark not defined..

1.5.6.1 Column sets

A column set of a set of columns and keys for a code list table.

Figure 1. Column set model

[image: image2]
Each column set must have a unique ID. A column set can define any number of columns. It can also reference any number of columns from other column sets. A column set can also define any number of keys. Each key is defined by one or more of the columns in the column set (either defined or imported). Keys are used to uniquely identify the rows (conceptual codes) of code lists. Columns and keys are uniquely named within the column set that defines them.

The matching WXS representation of a column set definition is:

Figure 2. Column set WXS model — Identification detail

[image: image3]
This figure is in TurboXML™ notation. A column set definition contains optional user annotation information (Annotation), and then identification and location information (Identification). A column set has a short name and any number of long names. It is uniquely identified by a canonical URI. Particular versions of the column set are uniquely identified by a canonical version URI. Location URIs can also be provided to suggest URLs from which an XML column set instance may be retrieved (at the discretion of an application).

Figure 3. Column set WXS model — Column detail

[image: image4]
A column definition (Column) contains an ID for the column and its use (required or optional). It also contains a short name (token) for the column, and any number of long names. The datatype information for the column is contained in its Data element.

Figure 4. Column set WXS model — Data detail

[image: image5]
The Data structure is based on the data element in RELAX NG. The datatype is specified as a Type from a DatatypeLibrary. If the datatype library is not specified, it is inherited from the DatatypeLibrary attribute of the enclosing column set definition. It otherwise defaults to the WXS datatype library.

If the data is XML, and not a simple data type, the DataTypeLibrary should be set to the namespace URI for the XML (content without an explicit namespace is discouraged), and the Type should be set to the top-level global element name for the XML data.

Data definitions can contain Parameter elements which define facets that refine the datatype. When using the WXS datatype library, these are just the usual WXS datatype facets.

Figure 5. Column set WXS model — ColumnRef detail

[image: image6]
If a column is defined in an external column set or code list document, it can be referred to using a ColumnRef. The column reference must have an ID just as a column definition would, but it also has an ExternalRef which contains the column's ID in the external document. The external column set or code list is identified by a CanonicalVersionUri and/or by any LocationUri information that is provided.

Figure 6. Column set WXS model — Key detail

[image: image7]
A key definition (Key) contains an ID for the key. It also contains a short name (token) for the key, and any number of long names. The columns which together form the key are referenced using one or more ColumnRef elements. The Ref attribute of each contains the ID of either a Column or ColumnRef in the column set. Only required (not optional) columns may be used within a key, but this rule is not able to be enforced using the WXS Schema alone.

Figure 7. Column set WXS model — KeyRef detail

[image: image8]
If a key is defined in an external column set or code list document, it can be referred to using a KeyRef. The key reference must have an ID, and also has an ExternalRef which contains the key's ID in the external document. The external column set or code list is identified by a CanonicalVersionUri and/or by any LocationUri information that is provided.

1.5.6.2 Code lists

With the column set model established, we can move to the rest of the code list model. A code list can define its own column set. It can also import columns and keys from any number of external column sets. In the simplest case, what a code list provides is a set of rows, where each row defines a conceptual code in the code list. This is a Simple CodeList. However, what is commonly required is to create a new code list based on the content of one or more existing code lists. What this model of code lists provides, beyond the simple tabular model of a code list, is support for modelling a Derived CodeList, where the steps in the derivation are modelled so that they can be audited and repeated.

Figure 8. Code list model

[image: image9]
First we will look at the Simple CodeList model, and then at the Derived CodeList model.

Simple code lists

A Simple CodeList is modelled as follows:

Figure 9. Simple code list model

[image: image10]
A Simple CodeList contains zero or more rows (it is necessary to support empty code lists to allow for code lists that are empty now, but will be populated in future versions). Each Row defines a conceptual code in the code list.

A Row contains one or more values, one for each column in the code list. At least one value is required, because a code list has to have at least one key, and each key requires at least one column. So a code list must have at least one column, and a Row must have at least one Value. This is an indirect constraint on the number of colums in a code list which may not be immediately obvious from the UML model.

Each Value is associated with a single column of the code list. For each Key in the code list, the values associated with the columns for that key must form a unique set, i.e. no two rows are allowed to have the same set of values for the same key columns. Note that this uniqueness requirement cannot be enforced using (only) the WXS Schema for the code list model, which follows:

Figure 10. Simple code list WXS model

[image: image11]
Many of these elements have appeared already in Section , “Column sets”, so the explanations will not be repeated here. A code list can either define its own ColumnSet, or refer to an externally defined column set using ColumnSetRef.

Figure 11. Simple code list WXS model — ColumnSetRef detail

[image: image12]
A ColumnSetRef contains the canonical version URI which uniquely identifies the referenced column set or code list. It can also contain suggested URLs from which to retrieve the column set or code list.

Some simple code lists are used to hold the results of deriving a code list. When this is the case, a DerivedCodeListRef is used to indicate the related derived code list.

The WXS model of a SimpleCodeList is

Figure 12. Simple code list WXS model — SimpleCodeList detail

[image: image13]
A SimpleCodeList contains zero or more Row elements. Each Row contains one or more Value elements. The Value container element is needed to allow optional user annotations of individual values in the code list. It has a ColumnRef attribute which contains the unique document ID of the associated column. It then contains either a SimpleValue containing a textual value, or a ComplexValue containing a balanced XML fragment.

Note that the ColumnRef attribute of a Value is optional. If it is not provided, it is assumed that the column is the one which follows the column associated with the previous value in the row. If the first Value in a Row does not have a ColumnRef, it is assumed to be associated with the first column in the column set. It is an error if a row contains more than one value for the same column, or if it does not contain a value for a required column.

Derived code lists

Derived code lists are actually descriptions of the steps involved in deriving a code list from one or more source code lists and column sets. They allow the derivation of one code list from one or more others to be understood, audited, and accurately repeated.

Each step in the derivation of a code list yields an intermediate derived code list, which is then an input to the following derivation step. This means that each step in a code list derivation can be modelled using a subclass of Derived CodeList.

The first group of these are the row filters. These remove rows from the source code list.

Figure 13. Derived code list model — row filters

[image: image14]
A Row Filter CodeList is a CodeList containing a subset of the rows in the source code list, based on comparison with the control code list. The columns and keys of the derived code list are the same as in the source code list. The control code list must contain a (non-empty) subset of the keys in the source code list, and must contain only those columns required for the keys in the control code list.

A Row Inclusion CodeList contains those rows from the source code list which have all of the same key values as a row in the control code list, for those keys in the control code list.

A Row Match CodeList is a Row Inclusion CodeList for which it is an error if any of the rows in the control code list does not have the same key values as one of the rows in the source code list. This is used to guarantee that particular rows exist in the source code list.

A Row Exclusion CodeList contains those rows from the source code list which do not have any of the same key values as any of the rows in the control code list.

Figure 14. Derived code list model — row unions

[image: image15]
It is necessary to be able to add rows as well as remove them. A Row Union CodeList contains the union of the rows from all of the source code lists. Each of the source code lists must have the same keys and columns. It is an error if any two rows have all the same key values, but different values in any of the columns.

Figure 15. Derived code list model — column set filters

[image: image16]
Just as rows can be filtered, so can columns and keys. A Column Filter CodeList is a CodeList containing a subset of the columns/keys in the source code list, based on comparison with the control column set. The rows of the derived code list are the same as in the source code list. The control column set must contain a (non-empty) subset of the columns and keys in the source code list. The control column set must contain all columns required for the keys in the control column set.

A Column Inclusion CodeList contains those columns and keys from the source code list which appear in the control column set.

A Column Match CodeList is a Column Inclusion CodeList for which it is an error if any of the columns or keys in the control column set is not part of the source code list. This is used to guarantee that particular columns/keys exist in the source code list.

A Column Exclusion CodeList contains those columns/keys from the source code list which do not appear in the control column set. However, columns in the control column set are not excluded if they are required for keys which are not in the control column set. It is an error if all keys in the source code list are excluded.

Figure 16. Derived code list model — column set unions

[image: image17]
A Column Union CodeList contains the union of the columns and keys from all of the source code lists. Each pair of source code lists must have at least one key in common. Rows from each source code list are merged with any rows from the other source code lists with which they share one or more keys. It is not necessary for all code lists to have the same number of rows. However, it is an error if the union leads to an undefined value in any required column of a row, or if the union leads to two or more different values for the same column in a row.

These different kinds of code list derivation can be applied in an appropriate sequence to create the desired derived code list. The WXS Schema representation is as follows:

Figure 17. Derived code list WXS model

[image: image18]
The DerivedCodeList element contains (after an optional Annotation) a single element which defines the kind of derivation. Column filter elements (ColumnSetExclusion, ColumnSetInclusion, ColumnSetMatch) each contain a Source element (of type InputCodeList) and a Control element (of type InputColumnSet). Row filter elements (RowExclusion, RowInclusion, RowMatch) each contain a Source element (of type InputCodeList) and a Control element (of type InputCodeList). Union elements (ColumnSetUnion, RowUnion) each contain one or more Source elements (of type InputCodeList).

Figure 18. Derived code list WXS model — InputCodeList & InputColumnSet

[image: image19]
An element of type InputCodeList can contain a simple code list definition, a derived code list definition, or a reference to an external code list (either simple or derived). An element of type InputColumnSet can contain either a column set definition or a reference to an external column set or code list.

This recursive structure allows a single derived code list document to contain an arbitrarily complex set of derivation steps, with source/control inputs either defined explicitly or referenced from external documents.

1.5.6.3 Sets of code lists

Any version of a standard, or any version of an application, will typically be associated with particular versions of a number of code lists. In order to be able represent such a configuration versions, a CodeListSet element can be used as the root element to identify a related set of code list versions.

Figure 19. Code list set WXS model

[image: image20]
Note that a code list set does not contain definitions of code lists, it only refers to the code list versions which are a part of (that version of) the code list set. It should also be noted that a code list set may contain a reference to a code list version without specifying a location for a definition of that code version. This is allowable where (a) the code list definition is known to the users, and no location needs to be published, or (b) the code list is sufficiently well-known (e.g. ISO 3-letter country codes), so that users simply need to have it uniquely identified, and do not need to have it enumerated for them.

1.5.7 Example code list document

Here is the example UBL code list from the appendix “Error! Reference source not found.” on page Error! Bookmark not defined., expressed using the code list WXS Schema defined in this paper (see the appendix “Error! Reference source not found.” on page Error! Bookmark not defined.).

Please be aware that this sample has been wrapped to fit with a 75 character width limit, and will not be valid without slight reformatting.

<?xml version = "1.0" encoding = "UTF-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:ccts=

 "urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0">

 <Identification>

 <ShortName>CountryIdentificationCode</ShortName>

 <Version>1.0</Version>

 <CanonicalUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode

 </CanonicalUri>

 <CanonicalVersionUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </CanonicalVersionUri>

 </Identification>

 <ColumnSet>

 <Column Id="CountryIdentificationCodeContent" Use="required">

 <ShortName>CountryIdentificationCodeContent</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="CodeName" Use="required">

 <ShortName>CodeName</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="CountryIdentificationCodeContentKey">

 <ShortName>CountryIdentificationCodeContentKey</ShortName>

 <ColumnRef Ref="CountryIdentificationCodeContent"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>AD</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ANDORRA</SimpleValue>

 </Value>

 </Row>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>ZW</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ZIMBABWE</SimpleValue>

 </Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

Now a second version which includes the application information (metadata) that UBL assigns to code lists (prefixed with ccts). Some of this code list information may be integrated into a future version of the code list Schema's Identification element.

<?xml version = "1.0" encoding = "UTF-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:ccts=

 "urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0">

 <Annotation>

 <AppInfo>

 <ccts:Component>

 <ccts:ComponentType>DT</ccts:ComponentType>

 <ccts:DictionaryEntryName>

Country Identification_ Code. Type

 </ccts:DictionaryEntryName>

 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

 <ccts:DataTypeQualifier>

Country Identification

 </ccts:DataTypeQualifier>

 <ccts:DataType>Code. Type</ccts:DataType>

 </ccts:Component>

 <ccts:Instance>

 <ccts:CodeListID>ISO3166-1</ccts:CodeListID>

 <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

 <ccts:CodeListAgencyName>

United Nations Economic Commission for Europe

 </ccts:CodeListAgencyName>

 <ccts:CodeListName>Country</ccts:CodeListName>

 <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

 <ccts:CodeListURI>

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/li

st-en1-semic.txt

 </ccts:CodeListURI>

 <ccts:CodeListSchemeURI>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </ccts:CodeListSchemeURI>

 <ccts:LanguageID>en</ccts:LanguageID>

 </ccts:Instance>

 </AppInfo>

 </Annotation>

 <Identification>

 <ShortName>CountryIdentificationCode</ShortName>

 <Version>1.0</Version>

 <CanonicalUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode

 </CanonicalUri>

 <CanonicalVersionUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </CanonicalVersionUri>

 </Identification>

 <ColumnSet>

 <Column Id="CountryIdentificationCodeContent" Use="required">

 <ShortName>CountryIdentificationCodeContent</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="CodeName" Use="required">

 <ShortName>CodeName</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="CountryIdentificationCodeContentKey">

 <ShortName>CountryIdentificationCodeContentKey</ShortName>

 <ColumnRef Ref="CountryIdentificationCodeContent"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>AD</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ANDORRA</SimpleValue>

 </Value>

 </Row>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>ZW</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ZIMBABWE</SimpleValue>

 </Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

2 Requirements for Code Lists

“There can be no solution without a requirement!”

These have been collected not only from UBL, but also from other standards groups with which UBL has formal or informal relationships. Requirements are identified in the heading for each one as: [Rn], where ‘n’ is the requirement number. This draft contains requirements that have been accumulated for code lists in general. In order to allow for the interim publishing of this specification, several of the requirements have been labeled as future requirements: [Rn (Future)]

 [3/9/04 MJB] The requirements in this section need to be associated ultimately with the design in sections 3 and 4. This will be done by listing requirements addressed in each subsection below the subsection title line.

2.1 Overview

The goal of this document is to provide a representation model and mechanisms for code lists that are extensible, restrictable, traceable, and cognizant of the need for code lists to be maintained by various organizations who are authorities on their content. Code lists developed bye this means will be infused with the requirements outlined in this section.

Note that the code list mechanism of this specification needs to support all of the requirements in this section. However, any single code list based on this specification may not be required to meet all requirements simultaneously. The appropriate subset of requirements that a given code list must support is summarized in the use cases presented in the conformance section (5 Conformance to UBL Code Lists).

2.2 Use and management of Code Lists

This section describes requirements for the use and management of code lists.

2.2.1 [R1] First-order business information entities

Code list values may appear as first-order business information entities (BIEs). For example, one property of an address might be a code indicating the country. This information appears in an element, according to the Naming and Design Rules specification [NDR]. For example, in XML a country code might appear as:

<Country>UK</Country>

2.2.2 [R2] Second-order business information entities

Code list values may appear as second-order information that qualifies another BIE. For example, any information of the Amount core component type must have a supplementary component (metadata) indicating the currency code. For example, in XML a currency code might appear as an attribute – the value of element Currency is 2456000; the code EUR describes that these are in Euros:

<Currency code=”EUR”>2456000</Currency>

2.2.3 [R3] Data and metadata model separate from schema representation

Since all uses of code lists will not be exclusively within the XML domain – ie. databases, etc…, it is desirable to separate the description of the data model from its XML representative form. This will facilitate use for other purposes of the semantically identical information.

Code list interoperability comes about when different specifications or applications use the same enumerated values (or aliases thereof) to represent the same things/concepts/etc. Sharing XML schemas (or fragments) is one way of achieving this, but it is not a necessary method for achieving this goal.

Broader interoperability can be achieved instead by defining a format which models code lists independently of any validation or representation mechanisms that they may be used with. Such a data model should be able to be processed to produce the required XML Schemas, and should also be able to be processed to produce other artifacts, e.g. Java type-safe enumeration classes, database schemas, code snippets for HTML forms or XForms, etc.

The format should be appropriate for use across a range of standards activities, i.e. it should embody the most generic view of code lists, and not any particular group's specific view. It should also be useful for implementations of those standards, not just for the standards activity itself.

2.2.4 [R4] XML and XML Schema representation

A principal anticipated use of the code list model will be in XML applications – XML for usage, and XMLSchema for validation of instance documents. This paper should realize a proper XML / XMLSchema representation for the code list model. Note that there are other anticipated, non-XML based, uses of the code list model and representation mechanism.
2.2.5 [R5 (Future)] Machine readable data model

A data model is an abstraction and it must be converted to explicit representation for use. The principal such use anticipated by this effort is that of XML data exchange. A machine readable representation of the data model makes the lossless transfer of all meaning to the representation of choice easier since it can be automated. It is therefore desirable that the data model be expressed in a machine-readable form. By lossless transfer it is intended that once a transfer of a code list model into an alternate form, all original information or semantics is contained in the alternate for so that the original could then be recreated solely from the contents of the original form.

2.2.6 [R6 (Future)] Conformance test for code lists

An abstract model for code lists requires a method to ensure conformance and consistency of the rendering of instance Schemas based on the model. There shall be a definition of this conformance to qualify the results of the usage of this specification.

2.2.7 [R6a] Supplementary components or metadata available in instance documents

Instance documents often have fiduciary requirements. This requirement is independent of the need to be able to validate contents according to a referenced schema. This requires that some meta-information be explicitly contained in the instance document, irrespective of its availability in a referenced document. Therefore:

· The supplementary components of the code lists of code list values utilized in a UBL instance shall optionally be available in the XML instance proper without any processing from any external source including any schema expression.

· The supplementary components shall be optionally available for all code-list-value information items even when two or more such information items are found in the set of data and attribute information items for any given element.

2.3 Organizational classifications of code lists

2.3.1 [R7] Internal or organizational standard maintained Code List (i.e. UBL)
An organizational standard use of the code list mechanism will make use of code lists that describe information content specific to its needs. Such code lists are intended to become part of the UBL Library of models and/or schemas of that standard.

In some cases the Library may have to be extended to meet specific business requirements. In other cases where a suitable code list does not exist in the public domain, that code list and all its values may have to be added to the Library where it will be maintained. Both of these types of code lists would be considered internal code lists.
2.3.2 [R8] Identify and use external standardized code lists

Because the majority of code lists are expected to be owned and maintained by external agencies, an organization shall make maximum use of such external code lists where they exist. The Library SHOULD identify and use external standardized code lists rather than develop its own internal code lists.
2.3.3 [R9] Private use code list

This model must support the construction of private code lists where an existing external code list needs to be extended, or where no suitable external code list exists.

2.4 Technical requirements of Code Lists

Following are technical quality requirements for code lists.

2.4.1 [R10] Semantic clarity

The ability to “de-reference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

[1/1/05 MJB] Still need to elaborate this requirement.

2.4.2 [R11] Interoperability

Interoperability can be thought of as the sharing of a common understanding of the limited set of codes expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness
.

2.4.3 [R12] External maintenance

The ability for organizations to create code lists in a way that allows their reuse without modification on anyone’s part.
2.4.4 [R13] Validatability

The ability to use XML Schema validation (or correspondingly suitable tool if not an XML based representation of the code list) to validate that a code appearing in an instance is legitimately a member of the referenced code list.

2.4.5 [R14] Context rules friendliness

The XML schema mapping of the code list mechanism shall use expected normal mechanisms of the UBL Naming and Design Rules [NDR] without unnecessarily adding custom features just for code lists.

[1/3/05 MJB] Note: If any extension is necessary or agreed upon, changes in the NDR shall be required to evidence it.

2.4.6 [R15] Upgradability / Extensibility without modifying underlying references

The code list mechanism shall support the ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the source schema modules (or other original referenced material).

It is therefore necessary to establish a mechanism by which a given code or code list can be extended for use without having to alter the underlying source material. When such an extension is made, it is also necessary to be able to determine unambiguously the nature and source of the modification so that its use can be validated.

2.4.7 [R16] Readability

A representation of the codes that provides a clear, easily readable form. For example, representing codes as a sequence of arbitrary number sequences would fail this test as there would be no contextual information (i.e. “00341234” vs “AUSTRALIA”).

2.4.8 [R17] Code lists must be unambiguously identified (configuration management)
The generation of multiple versions of a code list and the coexistence of more than one version shall be supported. The procedure used to generate each such revision from an earlier version shall be deterministic and thus repeatable and auditable. Publication of related code lists, for example either multiple versions of a single code list or other appropriate groupings, shall be accommodated to, for example, simplify configuration management tasks.
The format should allow sets of related code lists (code list versions) to be published together (for configuration management purposes). These configuration sets should themselves be versioned and uniquely identifiable.
In any instance of a document that uses codes from a code list, it must be unambiguous what the set of valid codes are and the origin and version of the code list.
[4/5/05 ABC] this is no longer a requirement, you have turned it in to a technical solution by adding this detailed example. It should be removed.

[4/5/05 MJB] I think that the requirement is needed for both the data model and the XML mapping. Why do you say it is not a requirement?
 For example, presuming that version can be facilitated by the definition of a unique Uniform Resource Identifiers (URI), it is required that:

1. Any two uses of the same namespace URI represent the use of the same code list definition

2. No two differing code list definitions shall be represented by the same namespace URI

3. When two trading partners identify the use of a code list, there must not be any ambiguity.

4. Should either partner create a code list or change an existing code list, the identification of the resulting code list must be distinct from that of its origin.

2.4.9 [R18 (Future)] Ability to prevent extension or modification

Certain code lists should not be extensible. For example, the traditional English list of colors in a rainbow, RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. It should be possible to indicate that such a code list is not extensible so the users can be assured of this constancy in its usage. [ABC] I think this only applies to XML Schema, not to the generic XML model, for reasons we can discuss as required.

2.5 Design Requirements of Code List Data Model

What follows is a list of some of the features that a code list data model must and/or should provide.
[4/1/05 ABC] Marty, I'm having trouble distinguishing how to separate technical requirements from design requirements. What is your basis for classifying these?

[4/5/05 MJB] Perhaps the better term for technical requirements is quality requirements. This section deals with specifics about the content of code lists.
2.5.1 [R19] A set of the values (codes) forms each code list

Each code list must contain zero or more valid codes. The codes represent the content of the code list. Some useful code lists have been designed that have no specific predefined codes. Support for such lists is required.

2.5.2 [R20 (Future)] Multiple lists of equivalent values (codes) for a code list

Multiple representations for each code value must be supported in order to account for individual business requirements. For example, both integer & mnemonic representations may be needed as well as versions in more than one language. Clearly each value in a particular set of code values must be unique.

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

The format used to express each notional code or list entry should permit multiple values to be associated with or assigned to each such entry. List entries should be represented in a generic fashion that is appropriate both for all associated standards activities and for all conceivable code list implementations of the standard.

The format used for code lists should support any required level of complexity for both list entries and the code lists containing them. This format should make provision for the rapid construction of simple code lists and minimize the complexity of this process without increasing the difficulty of generating more complex lists. Any format should be portable and thus able to be processed on a broad range of computer systems.
The format should not distinguish any particular code as the preferred code, as this should be a late decision based on the application (usage) context.
2.5.3 [R21] Unique identifier(s) for a code list

Each code list and each version of such a list must contain at least one unique identifier (or set of identifiers which are collectively unique) able to reference that entire code list. It is equivalent to a key for the entire code list that can distinguish it from other code lists. There should be no restrictions as to which set of codes in the list can be used for this purpose, how many such keys will be used or which key(s) have higher priorities than others.

The unique identifier(s) for each code list shall support automated differentiation, i.e. by machine, of each code list or version thereof from all others.

2.5.4 [R22] Unique identifiers for individual entries in a code list

Each code within a code list must be represented by a unique identifier. This requirement means that no two codes within a single code list can have identical identifiers.

2.5.5 [R23] Names for a code list

Each code list must have a unique name. The same, as much as possible, should convey the content of the list.

2.5.6 [R24] Documentation for a code list

Each code list must contain documentation that describes, in detail, the business usage for that code list.

2.5.7 [R25] Documentation for individual entries on a code list

Each code entry on a code list shall support valid values, optional index values, and an optional long description to convey, in detail, the business meaning (as presented from the context of the code list author) and usage for this code value .

2.5.8 [R26 (Future)] The ability to import, extend, and/or restrict values and elements of other code lists

The model for code lists must provide the ability to extend, restrict or import additional values and/or elements of other code lists.

Each code list and the format used to represent it must support derivation of descendant code lists.

Derivation in this context shall include adding and/or removing notional codes and/or sets of values associated with the list as well as adding and/or removing keys, descriptive information, etc.

Any such derivation shall be done in a deterministic fashion that is repeatable and auditable (see [R17], [R21]).

2.5.9 [R27 (Future)] Support for describing code lists that cannot be enumerated

Provision shall be made for the creation of code lists that cannot be enumerated either in part or in their entirety because of size, volatility, or proprietary restrictions.

2.5.10 [R28 (Future)] Support for references to equivalent code lists

Each code list must be able to refer to other code lists that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.

If there are two code lists that can substitute for each other in a transaction, there shall be a mechanism by which this relationship can be expressed.

2.5.11 [R29 (Future)] Support for individual values to be mapped to equivalent values in other code lists

Each code list value must be able to refer to other code list values that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.

For example, a country might change its name, and hence be assigned a different country code, which is effectively a replacement for the previous one.

2.5.12 [R30 (Future)] Support for users to attach their own metadata to a code list

Each code list shall accommodate the addition of descriptive information by an individual user to account for unique business requirements.

Addition of such “metadata” to any combination of code lists, individual codes, and associated values shall be supported
.

2.5.13 [R31 (Future)] Support for describing the validity period of the values

An effective date and expiration date should be established so that the code list can be scoped in time. See, for example, “Patterns for things that change with time”, http://martinfowler.com/ap2/timeNarrative.html.

2.5.14 [R32] Identifier for UN/CEFACT DE 3055.

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an identifier for this standard UNTDED 3055 [UNTDED 3055]. This identifier uniquely identifies UN/EDIFACT standard code lists. The identifier should be part of the supplementary components or metadata of a given code list.
3 Data and Metadata Model for Code Lists

This section provides rules for developing and using reusable code lists. These rules were developed for the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining agencies as guidelines for any vocabulary wishing to share code lists. See section 5.0 Conformance.

Since the UBL Library is based on the ebXML Core Components Version 2.01, 15 November 2003; see [CCTS2.01]), the supplementary components identified for the Code. Type core component type are used to identify a code as being from a particular list.

Note that the model in this section is presented in two parts:

A data model for the codes themselves, and,

A data model for “supplementary components” that describe the entire list

3.1 Data Model Definition

The data model of codes in a code list is presented below.

	CCT
	UBL Name
	Object Class
	Property Term
	Represen-tation Term
	Primitive Type
	Card.
	Remarks

	Code. Content
	Content
	Code
	Content
	Text
	String
	1..1
	Required

	Code. Name. Text
	CodeName
	Code
	Name
	Text
	String
	0..n
	Optional

	N/A
	CodeDescription
	Code Description
	Description
	Text
	String
	0..n
	Optional

	N/A
	CodeIndex (Future)
	Code Index
	Index
	Numeric
	Number
	0..1
	Optional

3.2 Supplementary Components (Metadata) Model Definition

The following model contains the supplementary components description of a code list.

	CCT
	Data Name
	Object Class
	Property Term
	Represen-tation Term
	Primitive Type
	Card.
	Remarks

	N/A
	name
	Code
	Name
	Text
	String
	0..1
	Optional

	Code List. Identifier
	CodeListID
	Code List
	Identification
	Identifier
	String
	0..1
	Optional

	Code List. Agency. Identifier
	CodeListAgencyID
	Code List
	Agency
	Identifier
	String
	0..1
	Optional

	Code List. Agency Name. Text
	CodeListAgencyName
	Code List
	Agency Name
	Text
	String
	0..1
	Optional

	Code List. Name. Text
	CodeListName
	Code List
	Name
	Text
	String
	0..1
	Optional

	Code List. Version. Identifier
	CodeListVersionID

	Code List
	Version
	Identifier
	String
	0..1
	Optional

	Code List. Uniform Resource. Identifier
	CodeListURI
	Code List
	Uniform Resource
	Identifier
	String
	0..1
	Optional

	Code List Scheme. Uniform Resource. Identifier
	CodeListSchemeURI
	Code List Scheme
	Uniform Resource
	Identifier
	String
	0..1
	Optional

	Language. Identifier
	LanguageID
	Language
	Identifier
	Identifier
	String
	0..1
	Optional

	Code List . Namespace . Prefix. Identifier
	CodeListNamespacePrefixID
	Code List
	Namespace Prefix
	Identifier
	String
	0..1
	Optional

	N/A
	CodeListDescription
	Code List
	Description
	Text
	String
	0..1
	Optional

	N/A
	CodeListCredits
	Code List
	Credits
	Text
	String
	0..1
	Optional

3.3 Examples of Use

The data type “Code“ is used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, etc.). Code lists must have versions.

If the agency that manages the code list is not explicitly named and is specified using a role, then this takes place in an element type’s name.

The following types of code can be represented:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	CodeListID
	Code list for standard code

	CodeListVersionID
	Code list version

	CodeListAgencyID
	Agency from DE 3055 (excluding roles)

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	CodeListID
	Code list for the propriety code

	CodeListVersionID
	Version of the code list

	CodeListAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	CodeListSchemeURI
	ID schema for the schemeAgencyId

	CodeListURI
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	CodeListID
	Code list for the proprietary code

	CodeListVersionID
	Code list version

	CodeListAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	CodeListSchemeURI
	ID schema for the schemeAgencyId

	CodeListURI
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	CodeListID
	ID schema for the proprietary identifier

	CodeListVersionID
	ID schema version

4 XML Schema representation of Code Lists

[3/9/04 MJB] This section still needs correction to match the needs of the library content subcommittee when they settle on the specific set of supplementary components necessary when a code list is used as an element or as an attribute.

This section describes how the data model is mapped to XML schema [XSD]. The code list mechanism described in this paper assumes that it will be used in the UBL context according to the following graphic that describes the type derivation hierarchy for code list and related schemas [UBL1-SD]:

[image: image21.jpg]
Figure 1 UML Diagram of UBL Schemas type hierarchy

As shown in the figure, an abstract model of “any” UBL code list appears in a code list specific namespace.

Note that an instance of a code list is derived in several pieces – a simpleType that contains the actual content of the code list, and, a complexType with simple content that attaches the optional supplementary components to the enumeration. The following procedure describes the construction of a code list schema:

· Define an abstract element for inclusion in extensible schemas (future)

· Define a simpleType to hold the enumerated values

· Define a complexType to add the supplementary components

· Define a global attribute to contain the enumerated values as an attribute and for supplementary components as needed. (future)

· Define an element that substitutes for the abstract type to enable usage in unextended schemas (future)

· Define a comprehensive URN to hold supplementary components that can qualify uniqueness of usage (future)

4.1 Data Model Mapping

The following table summarizes the component mapping of the data model. Items in braces, “{}” are references to the data model components. For example:

{code.name} represents the contents of the name of the code list, i.e. CountryCode;

“{code.name} Type” represents the contents of the name of the code list, i.e. “CountryCodeType”;

	· UBL Name
	· XMLSchema Mapping

	· Code.Content
	· 1. Abstract element (Future)

 <xs:element name="{code.name}A" type="xs:token" abstract="true"/>

· 2. Simple type to hold code list values and optional annotations

 <xs:simpleType name="{code.name}Type">

 <xs:restriction base="xs:token">

 <xs:enumeration value="{code.content}"

 <xs:annotation>

 <xs:documentation>

 {code.description}

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="{code.content}"/>

 <xs:enumeration value="{code.content}"/>

 . . .

 </xs:restriction>

 </xs:simpleType>

· 3. Complex type to associate supplementary values with code list values that substitutes for the abstract type.

<xs:complexType name="{code.name}">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space

 are meant for instance-processing

 purposes, and are non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>{code.name}

 </ccts:CodeListQualifier>

 <ccts:CodeListAgency>{Code.listAgencyID}

 </ccts:CodeListAgency>

 <ccts:CodeListVersion>{Code.listVersionID}

 </ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="{Code.name}Type">

 <xs:attribute name="CodeListID"

 type="xs:token" fixed="{CodeListID}"/>

 <xs:attribute name="CodeListAgencyID"

 type="xs:token" fixed="{CodeListAgencyID}"/>

 <xs:attribute name="CodeListVersionID"

 type="xs:string" fixed="{CodeListVersionID}"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

· 4. Attribute (Future)

 <xs:attribute name="{Code.name}"

 type="{Code.name}ContentType"/>

· 5. Element to substitute for abstract element in non-exended schemas (Future)

 <xs:element name="{Code.name}" type="{Code.name}Type"

 substitutionGroup="{Code.name}TypeA"/>

	· Code.Description
	Xs:annotation/ xs:documentation/

	· Code.Value
	Xs:annotation/ xs:documentation/

4.2 Supplementary Components Mapping

The following table shows all supplementary components of the code type. It also shows the current representation by using attributes and the recommended optional representation by using namespaces and annotations.

	UBL Name
	Optional XMLSchema Mapping
	Optional

	
	URN mapping
	complex type attribute mapping

	name
	xs:annotation/
xs:documentation/
cc:codename
	· This is the default name of the implemented element and attribute above.

	CodeListID
	namespace (URN)
1. position
Mandatory
	<xs:attribute name="CodeListID" type="xs:normalizedString"/>

	CodeListName
	namespace (URN)
2. position
Optional
	<xs:attribute name="CodeListName" type="xs:string"/>

	CodeListVersionID
	namespace (URN)
3. position
Mandatory
	<xs:attribute name="CodeListVersionID" type="xs:normalizedString"/>

	CodeListAgencyID
	namespace (URN)
4. position
Optional
	<xs:attribute name="CodeListAgencyID" type="xs:normalizedString"/>

	 CodeListAgencyName
	namespace (URN)
5. position
optional
	<xs:attribute name="CodeListAgencyName" type="xs:string"/>

	 CodeListURI
	namespace (URN)
6. position
optional
	<xs:attribute name="CodeListURI " type="xs:anyURI"/>

	 CodeListSchemeURI
	namespace (URN)
7. position
optional
	<xs:attribute name=" CodeListSchemeURI " type="xs:normalizedString"/>

	LanguageID
	
	<xs:attribute name=”LanguageID” type=”xs:language”/>

	CodeListNamespacePrefixID
	
	<xs:attribute name=” CodeListNamespacePrefixID” type=”xs:normalizedString”/>

	CodeListDescription
	
	<xs:attribute name=” CodeListDescription” type=”xs:string”/>

	CodeListCredits
	
	<xs:attribute name=” CodeListCredits” type=”xs:string”/>

4.3 Namespace URN (Future)

The following construct represents the construct for the URN of a code list, according OASIS URN:

urn:oasis:tc:ubl:codeList:<CodeList.Identification.Identifier>:<CodeList.Name.Text>:<CodeList.Version.Identifier>:<CodeList.AgencyIdentifier>:<CodeList.AgencyName.Text>:<CodeList.AgencyScheme.Identifier>:<CodeList.AgencySchemeAgency.Identifier>

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141] and OASIS URN [see RFC 3121]:

· urn --> leading token of URNs

· oasis --> registered namespace ID “oasis”

· tc --> Technical Committee Work Products

· ubl --> From Technical Committee UBL (Universal Business Language)

· The parameter “codeList” identifies the schema type “code list”.

· The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency. Identifier> represents the specific code list supplementary components of the CCT codeType.

· Example:

urn:oasis:tc:ubl:codeList:ISO639:Language%20Code:3:ISO:International%20Standardization%20Organization::

4.4 Namespace Prefix

REWORD THIS. Namespace prefix could be freely defined. However, it is helpful for better understanding, to identity the code lists by a convention of namespace prefixes.

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended that this prefix should contain the information of the supplementary component <Code List. Identification Identifier> and if it is necessary for separation, the information of the supplementary component <Code List. Version. Identifier> separated by a dash “-“. All letters should be lower case.

Example:

iso639

iso639-3 (with version)

4.5 Code List Schema Generation

This section describes how to generate complete code list schemas from the data model of section 4.

4.5.1 Data model and example values

The code list model and supplementary components are listed in the following table. The first column contains the UBL name and the second column contains an example of the value(s) for that name. It is assumed that the UBL name is the proposed name for the schema element/attribute/simpleType/complexType etc….

The expressions ValueOf(<UBL Name>), and, {UBL Name}refer to the contents for a specific code list. The latter representation is used so that a substitution can be shown within the schema fragments generated.

	UBL Name
	Description
	Sample ValueOf(<UBL Name>)
≡
{UBL Name}

	Content
	A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an Attribute.
	<enumerated values>

	Name
	<enumerated value definitions> (if Content=”USD” then Name = “US Dollars”)
	The textual name of the code content.

	CodeListID
	The identification of a list of codes.
	ISO4217 Alpha

	CodeListAgencyID
	An agency that maintains one or more code lists.
	6

	CodeListAgencyName
	The name of the agency that maintains the code list.
	United Nations Economic Commission for Europe

	CodeListName
	The name of a list of codes.
	Currency

	CodeListVersionID
	The Version of the code list.
	0.3

	CodeListURI
	The Uniform Resource Identifier that identifies where the code list is located.
	http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc

	CodeListSchemeURI
	The Uniform Resource Identifier that identifies where the code list scheme is located.
	urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-11

	LanguageID
	The identifier of the language used in the corresponding text string
	En

	CodeListNamespacePrefixID
	The namespace prefix recommended for this code list. Should be based on the CodeListID.
	 cur

	CodeListDescription
	Describes the set of codes
	The set of world currencies

	CodeListCredits
	Acknowledges the source and ownership of codes
	Derived from the ISO 4217 currency code list and used under the terms of the ISO policy stated at http://www.iso.org/iso/en/commcentre/pressreleases/2003/Ref871.html.

4.5.2 Schema to generate

This section describes the specific steps required to generate a schema from the above model. Each step shows two schema fragments – one that is a template for generating the schema, and, the second one that is an example schema generated. In the template sections, the places where values from the spreadsheet model are inserted are shown in braces, and are colored green –

e.g. “{CodeListAgencyID}” means substitute the value “6”.

4.5.3 Schema file name

The name of this schema file should be:

UBL-CodeList-{CodeListName}-{CodeListVersionID}.xsd

For example:

UBL-CodeList-CurrencyCode-1.0.xsd

4.5.3.1 Generate XML header

Template, Sample are the same:

	<?xml version="1.0" encoding="UTF-8"?>

<!--

 Universal Business Language (UBL) Schema 1.0-draft-10.1

 Copyright (C) OASIS Open (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and

 derivative works that comment on or otherwise explain it or assist in its

 implementation may be prepared, copied, published and distributed, in whole or

 in part, without restriction of any kind, provided that the above copyright

 notice and this paragraph are included on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as by

 removing the copyright notice or references to OASIS, except as needed for the

 purpose of developing OASIS specifications, in which case the procedures for

 copyrights defined in the OASIS Intellectual Property Rights document must be

 followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by

 OASIS or its successors or assigns.

 This document and the information contained herein is provided on an "AS IS"

 basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT

 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR

 A PARTICULAR PURPOSE.

 ===

 For our absent friend, Michael J. Adcock - il miglior fabbro

 ===

 Universal Business Language Specification

 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl)

 OASIS Open (http://www.oasis-open.org/)

 Schema generated by GEFEG EDIFIX v5.0-beta

 (http://www.gefeg.com/en/standard/xml/ubl.htm)

 Document Type: CurrencyCode

 Generated On: Fri Mar 26 14:30:20 2004

-->

4.5.3.2 Generate XML Schema header

Template:

	<xs:schema

targetNamespace=”{CodeListSchemeURI}”

 xmlns=”{CodeListSchemeURI}”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

Sample:

	<xs:schema

targetNamespace=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”

 xmlns=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

4.5.3.3 Generate abstract element (Future)

Template:

	<xs:element name="{CodeListName}Abstract" type="xs:string" abstract="true"/> {i would prefer to make the meaning of this clear}

Sample:

	<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" abstract="true"/>

4.5.3.4 Generate simple type to contain the enumerated values

Template:

	
<xs:simpleType name=”{CodeListName}ContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”{first Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{first Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 …

<xs:enumeration value=”{last Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{last Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

</xs:restriction>

</xs:simpleType>

Sample:

	
<xs:simpleType name=”CurrencyCodeContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”AED”>

<xs:annotation>

<xs:documentation>

<CodeName>UAE Dirham</CodeName>

</xs:documentation>

</xs:annotation>

</ xs:enumeration>

<xs:enumeration value=”ALL”>

<xs:annotation>

<xs:documentation>

<CodeName>Albanian Lek</CodeName>

</xs:documentation>

</xs:annotation>

</xs:xs:enumeration>

<xs:enumeration value=”AMD”

<xs:annotation>

<xs:documentation>

<CodeName>Armenian Dram</CodeName>

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value=”ANG”/>

<xs:enumeration value=”AOA”/>

<xs:enumeration value=”XDR”/>

 …

<xs:enumeration value=”ZAR”/>

<xs:enumeration value=”ZMK”/>

<xs:enumeration value=”ZWD”/>

</xs:restriction>

</xs:simpleType>

4.5.3.5 Generate complex type to hold enumerated values and supplemental components

Template:

	
<xs:complexType name="{CodeListName}Type">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>{CodeListID}</ccts:CodeListID>

<ccts:CodeListAgencyID>{CodeListAgencyID}</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>{CodeListAgencyName}</ccts:CodeListAgencyName>

<ccts:CodeListName>{CodeListName}</ccts:CodeListName>

<ccts:CodeListVersionID>{CodeListVersionID}</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>{CodeListURI}</ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>{CodeListSchemeURI}

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>{LanguageID}</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="{CodeListName}ContentType">

<xs:attribute name="name" type="xs:string" use="optional"/> ?????????

<xs:attribute name="codeListID" type="xs:normalizedString" fixed="{CodeListID}"/>

<xs:attribute name="codeListAgencyID" type="xs:normalizedString"

fixed="{CodeListAgencyID}"/>

<xs:attribute name="codeListAgencyName" type="xs:normalizedString"

fixed="{CodeListAgencyName}"/>

<xs:attribute name="codeListName" type="xs:string" fixed="{CodeListName}">

<xs:attribute name="codeListVersionID" type="xs:string"

fixed="{CodeListVersionID}"/>

<xs:attribute name="codeListURI" type="xs:anyURI" fixed="{CodeListURI}">

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

fixed="{CodeListSchemeURI}">

<xs:attribute name="languageID" type="xs:language" fixed="{LanguageID}">

</xs:extension>

</xs:simpleContent>

</xs:complexType>

Sample:

	
<xs:complexType name="CurrencyCodeType">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID>

<ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>United Nations Economic Commission for Europe</ccts:CodeListAgencyName>

<ccts:CodeListName>Currency</ccts:CodeListName>

<ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>

http://www.bsi-global.com/Technical%2BInformation
/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>

urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>en</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="CurrencyCodeContentType">

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"

fixed="ISO 4217 Alpha"/>

<xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional"

fixed="6"/>

<xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"

fixed="United Nations Economic Commission for Europe"/>

<xsd:attribute name="codeListName" type="xsd:string" use="optional"

fixed="Currency"/>

<xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional"

fixed="0.3"/>

<xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"

fixed="http://www.bsi-global.com/

Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional"

fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/>

<xsd:attribute name="languageID" type="xsd:language" use="optional" fixed="en"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

4.5.3.6 Generate global attributes to allow usage of code lists as an attribute (Future)

Template:

	
<xs:attribute name=”{CodeListName}” type=”{CodeListName}ContentType”/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”{CodeListID}”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”{CodeListAgencyID}”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string”

fixed=”{CodeListAgencyName}”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”{CodeListVersionID}”/>
<xs:attribute name=”codeListName” type=”xs:string ” fixed=”{CodeListName}”/>

<xs:attribute name=”name” type=”xs:normalizedString ” fixed=”{name}”/>

<xs:attribute name=”codeListURI” type=”xs:anyURI” fixed=”{CodeListURI}”/>

<xs:attribute name=”codeListSchemeURI” type=”xs:anyURI” fixed=”{CodeListSchemeURI}”/>

<xs:attribute name=”languageID” type=”xs:normalizedString ” fixed=”{LanguageID}”/>

Sample:

	
<xs:attribute name=”CurrencyCode” type=”CurrencyCodeContentType”/>

<xs:attribute name="name" type="xs:normalizedString" fixed="cur"/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”ISO 4217 Alpha”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”6”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string ”

fixed=”United Nations Economic Commission for Europe”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”0.3”/>

<xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/>

<xs:attribute name="codeListURI" type="xs:anyURI"

fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

 fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>

<xs:attribute name="languageID" type="xs:language" fixed="en"/>

4.5.3.7 Generate global element to allow usage of code list as an element (Future)

Template:

	<xs:element name=”{CodeListName}” type=”{CodeListName}Type” substitutionGroup=”{CodeListName}Abstract”/>

Sample:

	<xs:element name=”CurrencyCode” type=”CurrencyCodeType”

substitutionGroup=”CurrencyCodeAbstract”/>

4.5.3.8 End of schema

Template:

	</xs:schema>

Sample:

	</xs:schema>

4.6 Code List Schema Usage

For every code list, there exists a specific code list schema. This code list schema must have a targetNamespace with the UBL specific code list namespace and have a prefix with the code list identifier itself.

The element in the code list schema can be used for the representation as a global declared element in the document schemas. The name of the element is the UBL tag name of the specific BIE for a code.

The simpleType represents the possible codes and the characteristics of the code content. The name of the simpleType must be always ended with “. Content”. Within the simpleType is a restriction of the XSD built-in data type “xs:token”. This restriction includes the specific facets “length”, “minLength”, “maxLength” and “pattern” for regular expressions to describe the specific characteristics of each code list.

Each code will be represented by the facet “enumeration” after the characteristics. The value of each enumeration represents the specific code value and the annotation includes the further definition of each code, like “Code. Name”, “Language. Identifier” and the description.

The schema definitions to support this might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="urn:oasis:ubl:codeList:ISO3166:Locale%20Code:3:5:ISO::"
xmlns:iso3166="urn:oasis:ubl:codeList:ISO3166: Locale%20Code:3:5:ISO::"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="LocaleCodeTypeA" type="xs:token"

 abstract="true">

 <xs:annotation>

 <xs:documentation>

An abstract place holder for a code list element

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:simpleType name="LocaleCodeContentType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="FR"/>

 <xs:enumeration value="US"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="LocaleCodeType">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space

 are meant for instance-processing purposes, and are

 non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>LocaleCode</ccts:CodeListQualifier>

 <ccts:CodeListAgency>ISO3166</ccts:CodeListAgency>

 <ccts:CodeListVersion>0.3</ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base=" LocaleCodeType">

 <xs:attribute name="CodeListID" type="xs:token" fixed="ISO3166"/>

 <xs:attribute name="CodeListAgencyID" type="xs:token" fixed="6"/>

 <xs:attribute name="CodeListVersionID" type="xs:string" fixed="0.3"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xs:element name="LocaleCode" type="LocaleCodeType"

substitutionGroup="LocaleCodeTypeA">

 <xs:annotation>

 <xs:documentation>

A substitution for the abstract element based

on aStdEnum

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:attribute name="{Code.name}" type="{Code.name}ContentType">

 <xs:annotation>

 <xs:documentation>

A global attribute for use inside an element

 </xs:documentation>

 </xs:annotation>

< xs:attribute/>

</xs:schema>

4.7 Instance

The enumerated list method results in instance documents with the following structures.

<LocaleCode>US</LocaleCode>

<iso3166:LocaleCode>US</iso3166:LocaleCode>

<PostCode iso3166:LocaleCode="FQ">20878</PostCode>

4.8 Deriving New Code Lists from Old Ones (future)

In order to promote maximum reusability and ease code lists maintenance, code list designers are expected to build new code lists from existing lists. They could for example combine several code lists or restrict an existing code list.

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used.

4.8.1 Extending code lists

The base schema shown above could be extended to support new codes as follows:

<xs:schema targetNamespace="cust"

 xmlns:std="std"

 xmlns="cust"

 xmlns:cust="custom"

 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>A substitute for the abstract LocaleCodeA

 that extends the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:union memberTypes="std:aStdEnum">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="IL"/>

 <xs:enumeration value="GR"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

</xs:element>

</xs:schema>

4.8.2 Restricting code lists

The base schema shown above could be restricted to support a subset of codes as follows:

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>

 A substitute for the abstract LocaleCodeA that restricts

 the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="US"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

5 Conformance to UBL Code Lists (future)

This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of different types of organizations.

We probably need a Conformance section in this document so that code list producers (who, in general, won’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and recommendations (SHOULD/MAY) in this specification. This spec is not for the UBL TC, but for code list producers (which may occasionally include UBL itself).

6 References

[3166-XSD]
UN/ECE XSD code list module for ISO 3166-1,

[CCTS2.01]
UN/CEFACT Core Components Technical Specification – Part 8 of the ebXML Framework, 15 November 2003, Version 2.01.

[CLSC]
OASIS UBL Code List Subcommittee. Portal: http://www.oasis-open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive: http://lists.oasis-open.org/archives/ubl-clsc/.

[SPENCER]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/5195/Spencer-CodeList-PositionPaper1-0.pdf

[STUHEC]
<need reference>

[COATES]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4522/draft-coates-codeListDataModels-0p2.doc

[CLTemplate]
OASIS UBL Naming and Design Rules code list module template, http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

[eBSC]
“eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.

[eBSCMemo]
M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”, http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4503/nistTOUbl20031119.zip

[NDR]
M. Cournane et al., Universal Business Language (UBL) Naming and Design Rules, OASIS, 2002, http://www.oasis-open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[CL5]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4502/wd-ublndrsc-codelist-05_las_20030702.doc

[ISO 11179]
 http://www.iso.org/iso/en/StandardsQueryFormHandler.StandardsQueryFormHandler?scope=CATALOGUE&keyword=&isoNumber=11179

[UBL1-SD]
http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg

[UNTDED 3055]
<need reference>

[XSD]
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. http://www.unece.org/etrades/unedocs/repository/codelist.htm.

Appendix A. Revision History

	Revision
	Editor
	Description

	2004-01-13
	Marty Burns
	First complete version converted from NDR revision 05

	2004-01-14
	Marty Burns
	Minor edit of chapter heading 3 & 4

	2004-01-20
	Marty Burns
	Incorporated descriptions from AS and KH

	2004-02-06
	Marty Burns
	Cleaned up requirements and other sections – removed some redundant content from merge of contributions. Explicitly identified Data Model and Metadata models separately from XML representations of the same.

	2004-02-11
	Marty Burns
	Added comments from 2/11 conference call

	2004-02-29
	Marty Burns
	Added resolutions from February Face to Face meeting

	2004-03-03
	Marty Burns
	Incorporated Tim McGrath’s corrections of data model

	2004-03-09
	Marty Burns
	Addressed Eve Maler’s comments
Addressed Tony Coates comments
Addressed 2004-03-03 telecon comments
Added some elaboration of the model usage in ubl

	2004-03-15
	Marty Burns
	Added example mapping schema paper to section 4.6

	2004-03-23
	Marty Burns
	Added data model for supplementary components,
Marked future features for UBL 1.1 as (future)
Added comment about UBL1.0 release vs. future.

	2004-04-01
	Marty Burns
	Clean up for UBL version 1.0

	2004-04-14
	Marty Burns
	Incorporated suggested edits from GKH

	2005-01-02
	Marty Burns
	Incorporated elaborations of requirements for better clarity to kick off the UBL 1.1 revisions. Incorporated comments from Tony Coates.

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�[ABC] Marty, this document should provide rules for UBL usage of both XML Schema and the XML code list format. I'm assuming here that the XML format will be documented separately, since it is really a generic piece of infrastructure, just as XML Schema is. This document can then focus on defining how these formats are used, rather than on describing the formats themselves.

�This paragraph expounds on interoperability but never states explicitly that it is a requirement. It also does not define the tests to be used to determine whether code lists are interoperable.

�We need to define what is meant by “associated values.”

