
[image: image1.png]

Universal Business Language (UBL) Code List Representation

Version: 1.1 draft March 27, 2005
Document identifier:

wd-ublclsc-codelist-20050327-abc.sxw
Location:

http://www.oasis-open.org/committees/ubl/

Editor:

Marty Burns for National Institute of Standards and Technology, NIST, burnsmarty@aol.com

Contributors:

Anthony Coates abcoates@londonmarketsystems.com

Mavis Cournane mavis.cournane@cognitran.com

Suresh Damodaran Suresh_Damodaran@stercomm.com

Anne Hendry anne.hendry@sun.com

G. Ken Holman gkholman@CraneSoftwrights.com

Serm Kulvatunyou serm@nist.gov

Eve Maler eve.maler@sun.com
Tim McGrath tmcgrath@portcomm.com.au

Mark Palmer mark.palmer@nist.gov

Sue Probert sue.probert@dial.pipex.com

Lisa Seaburg lseaburg@aeon-llc.com
Paul Spencer paul.spencer@boynings.co.uk

Alan Stitzer alan.stitzer@marsh.com

Frank Yang Frank.Yang@RosettaNet.org

Abstract:

This specification provides rules for developing and using reusable code lists. This specification has been developed for the UBL Library and derivations thereof, but it may also be used by other technologies and XML vocabularies as a mechanism for sharing code lists and for expressing code lists in W3C XML Schema form.

Status:

This document was developed by the OASIS UBL Code List Subcommittee [CLSC]. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-clsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights (OASIS-IPR) section of the Security Services TC web page (http://www.oasis-open.org/who/intellectualproperty.php

Table of Contents

1Introduction
5

1.1About the current version
5

1.2Scope and Audience
6

1.3Terminology and Notation
6

1.3.1Definitions
6

2Organization of This Document
8

3Requirements for Code Lists
9

3.1Overview
9

3.2Use and management of Code Lists
9

3.2.1[R1] Solution must be broadly applicable
9

3.2.2[R2] Data and Metadata model separate from schema representation
9

3.2.3Types of code lists
10

3.2.4[R4] Private use code list
10

3.3Technical requirements of Code Lists
10

3.3.1[R5] Interoperability
10

3.3.2[R6] Validatability
10

3.3.3[R7] Readability
10

3.3.4[R8] Machine Readability
10

3.3.5[R9] Code lists must be unambiguously identified
10

3.3.6[R10] Configuration Management
11

3.4Design Requirements of Code List Data Model
11

3.4.1[R11] Simple code lists should be simple, complex code lists should be possible
11

3.4.2[R12] A set of the values (codes) forms each code list
11

3.4.3[R13] Multiple lists of equivalent values (codes) for a code list
11

3.4.4[R14] Support associated values for code list entries
11

3.4.5[R15] Unique identifier(s) for a code list
11

3.4.6[R16] Unique identifiers for individual entries in a code list
12

3.4.7[R17] Allow reference to undefined code lists
12

3.4.8[R18] Support for users to attach their own metadata to a code list
12

3.4.9[R19] The ability to import, extend, and/or restrict values and elements of other code lists
12

3.4.10[R20 (Future)] Language support for associated values
12

3.4.11[R21 (Future)] Support for describing code lists that cannot be enumerated
12

3.4.12[R22 (Future)] Support for references to equivalent code lists
12

3.4.13[R23 (Future)] Support for individual values to be mapped to equivalent values in other code lists
12

3.4.14[R24 (Future)] Support for describing the validity period of the values
13

4A General Model for Code Lists
14

4.1Introduction
14

4.2A Code List Example
14

4.3Tabular View of Code Lists
15

4.4Which Column is the 'Code'?
16

4.5Managing Change
16

4.6Some History
17

4.7The Model in Detail
18

4.7.1Column sets
18

4.7.2Code lists
23

4.7.2.1Simple code lists
24

4.7.2.2Derived code lists
27

4.7.3Sets of code lists
33

4.8Example code list document
34

5Requirements for UBL Code Lists
38

5.1Use and management of Code Lists
38

5.1.1[R25] First-order business information entities
38

5.1.2[R26] Second-order business information entities
38

5.1.3[R27] XML and XML Schema representation
38

5.1.4[R28 (Future)] Conformance test for code lists
38

5.1.5[R6a] Supplementary components or metadata available in instance documents
38

5.2Types of code lists
39

5.2.1[R29] UBL maintained Code List
39

5.2.2[R30] Identify and use external standardized code lists
39

5.3Technical requirements of Code Lists
39

5.3.1[R31] Semantic clarity
39

5.3.2[R32] External maintenance
39

5.3.3[R33] Context rules friendliness
39

5.3.4[R34] Upgradability / Extensibility without modifying underlying references
39

5.3.5[R35 (Future)] Ability to prevent extension or modification
40

5.4Design Requirements of Code List Data Model
40

5.4.1[R36] Names for a code list
40

5.4.2[R37] Documentation for a code list
40

5.4.3[R38] Documentation for individual entries on a code list
40

5.4.4[R39] Identifier for UN/CEFACT DE 3055.
40

6Data and Metadata Model for Code Lists
41

6.1Data Model Definition
41

6.2Supplementary Components (Metadata) Model Definition
41

6.3Examples of Use
42

7XML Schema representation of Code Lists
44

7.1Data Model Mapping
45

7.2Supplementary Components Mapping
47

7.3Namespace URN (Future)
48

7.4Namespace Prefix
48

7.5Code List Schema Generation
48

7.5.1Data model and example values
48

7.5.2Schema to generate
49

7.5.3Schema file name
49

7.5.3.1Generate XML header
50

7.5.3.2Generate XML Schema header
50

7.5.3.3Generate abstract element (Future)
51

7.5.3.4Generate simple type to contain the enumerated values
51

7.5.3.5Generate complex type to hold enumerated values and supplemental components
52

7.5.3.6Generate global attributes to allow usage of code lists as an attribute (Future)
53

7.5.3.7Generate global element to allow usage of code list as an element (Future)
54

7.5.3.8End of schema
54

7.6Code List Schema Usage
54

7.7Instance
56

7.8Deriving New Code Lists from Old Ones (future)
56

7.8.1Extending code lists
56

7.8.2Restricting code lists
57

8Conformance to UBL Code Lists (future)
58

9References
59

Appendix A.Revision History
60

Appendix A.Revision History
60

Appendix B.Notices
61

Appendix B.Notices
61

Appendix C.Sample FpML scheme
62

Appendix C.Sample FpML scheme
62

Appendix D.Sample MDDL scheme
64

Appendix D.Sample MDDL scheme
64

Appendix E.Sample UBL code list Schema
67

Appendix E.Sample UBL code list Schema
67

Appendix F.Code list and column set WXS Schema
71

Appendix F.Code list and column set WXS Schema
71

1 Introduction

Trading partners utilizing the Universal Business Language (UBL) must agree on restricted sets of coded values, termed "code lists", from which values populate particular UBL data fields. Code lists are accessed using many technologies, including databases, programs and XML. Code lists are expressed in XML for UBL using W3C XML Schema for authoring guidance and processing validation purposes.

It is important to note that XML schema languages are not purely abstract data models. They provide only a particular representation of the data. In addition, there are many roughly equivalent design choices (e.g. elements versus attributes). The underlying logical model is obscured, and can be difficult to extract. Therefore, XML schema languages are principally useful as a way of specifying rules to an XML validation engine. Database schemas and programming language class models would have their own specific representations of the logical data models.

A good logical data model format should allow the information about code lists to be expressed in a format that is as simple and unambiguous as possible. To maximize the abstraction on one hand, and the utility of the code list representations on the other, this document first derives an abstract data model of a code list, and then, an XML Schema representation of that data model.

Note that there are two major aspects of a model of code lists – the list of codes and descriptive information about the code list termed “supplementary components”. Supplementary components include information such as origin and version, for example. Supplementary components describe the metadata about the code lists and codes themselves. They appropriately describe the context within which individual codes can be understood.

The document begins with a section expositing the requirements adopted by the committee in order to make certain that design follows requirements. These requirements were used to steer the design choices elected in the balance of the document.

This specification was developed by the OASIS UBL Code List Subcommittee [CLSC] to provide rules for developing and using reusable code lists expressed using W3C XML Schema [XSD] syntax. [ABC] Marty, this document should provide rules for UBL usage of both XML Schema and the XML code list format. I'm assuming here that the XML format will be documented separately, since it is really a generic piece of infrastructure, just as XML Schema is. This document can then focus on defining how these formats are used, rather than on describing the formats themselves.

The contents combine requirements and solutions previously developed by UBL’s Library, Naming, and Design Rules subcommittee [CL5], the work of the National Institute of Standards “eBusiness Standards Convergence Forum” [eBSC] with contributions from Frank Yang and Suresh Damodaran of Rosettanet [eBSCMemo], and position papers by Anthony Coates [COATES], Gunther Stuhec [STUHEC], and Paul Spencer [SPENCER].

The data model attempts to be sufficiently general to be employable with other technologies (e.g. non-XML) and in other scenarios that are outside the scope of this committee's work. This specification is organized as follows:

· Section 2 provides requirements for code lists;

· Section 3 provides a data and metadata model (supplementary components) of code lists;

· Section 4 is an XML Schema representation of the model;

· Section 5 is the recommendations for code producers and the compliance rules.

1.1 About the current version

The Code List model described in this paper for UBL 1.0 has laid much of the groundwork for extensible code lists. It includes an extensibility mechanism based on XSD substitution groups that has not been adopted for UBL 1.0 but will serve as a starting point for work on a code list extension mechanism for UBL 1.1. The current specification places a priority on uniformity of code list metadata independent of the mechanism eventually adopted for code list extension.

The UBL team has embarked on an effort, in conjunction with NIST’s eBusiness Standards Convergence Forum (eBSC) to fulfill the goals of constructing a code list model that can be reused throughout industry. The current version contains an update to the descriptions of the requirements and some enhanced requirements discovered in the interim. For the time being, those features beyond the UBL1.0 are still labeled as FUTURE such designation to be removed further along in the version 1.1 process.

Persons wishing to engage in the further evolution of this specification are urged to join the OASIS Universal Business Language Technical Committee (http://oasis-open.org/).

1.2 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML and non-XML vocabularies as a mechanism for sharing code lists. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies. In addition, it is anticipated that these common definitions will find use in other non-XML applications that need to store or otherwise represent the same data as it traverses from application to application.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components [CCTS1.9] concepts and ISO 11179 [ISO 11179] concepts that underlie it. While mastery of these concepts are not essential to the understanding and use of this document, they are useful in explaining the concepts behind the organization and structure of this material.

1.3 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms.

Core Component names from ebXML are in italic.

Example code listings appear like this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].

The prefix xhtml: stands for the XHTML namespace.

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list.

1.3.1 Definitions

[1/2/05 MJB] Need to substantially populate this list with all acronyms and terminology used in this paper.

BIE
business information entities

code

code list

code list mechanism
distinguishes this specification from the instances of actual code lists based on it.

core components

data model

ebXML

enumeration

ISO 11179

metadata

NDR
Naming and design rules

OASIS

Perl

Schematron

supplementary components
Supplementary components describe the metadata about the code lists and codes themselves. They appropriately describe the context within which individual codes can be understood.

UBL

URI

WC3

XML

XML Schema

2 Organization of This Document

This document is broadly divided into two sections. The first section describes general requirements for code lists, and proposes a general XML-based solution to management of code lists and their versions. This starts in section 3.

After dealing with the general approach to code lists, the document then focuses on UBL's specific requirements for code lists, and on how UBL code lists are represented and managed using W3C XML Schema. This starts in section 5 on page 38.

3 Requirements for Code Lists

This section summarizes general requirements for code lists. These have been collected not only from UBL, but also from other standards groups with which UBL has formal or informal relationships. Requirements are identified in the heading for each one as: [Rn], where ‘n’ is the requirement number. In order to allow for the interim publishing of this specification, several of the requirements have been labeled as future requirements: [Rn (Future)]

3.1 Overview

The goal of this document is to provide a representation model and mechanisms for code lists that are extensible, restrictable, traceable, and cognizant of the need for code lists to be maintained by various organizations who are authorities on their content.

Note that the code list mechanism of this specification needs to support all of the requirements in this section. However, any single code list based on this specification may not be required to meet all requirements simultaneously.

3.2 Use and management of Code Lists

This section describes requirements for the use and management of code lists.

3.2.1 [R1] Solution must be broadly applicable

The format should be appropriate for use across a range of standards activities, i.e. it should embody the most generic view of code lists, and not any particular group's specific view. It should also be useful for implementations of those standards, not just for the standards activity itself.

3.2.2 [R2] Data and Metadata model separate from schema representation

Since all uses of code lists will not be exclusively within the XML domain – i.e. databases, etc…, it is desirable to separate the description of the data model from its XML representative form. This will facilitate use for other purposes of the semantically identical information.

Code list interoperability comes about when different specifications or applications use the same enumerated values (or aliases thereof) to represent the same things/concepts/etc. Sharing XML schemas (or fragments) is one way of achieving this, but it is not a necessary method for achieving this goal.

Broader interoperability can be achieved instead by defining a format which models code lists independently of any validation or representation mechanisms that they may be used with. Such a data model should be able to be processed to produce the required XML Schemas, and should also be able to be processed to produce other artifacts, e.g. Java type-safe enumeration classes, database schemas, code snippets for HTML forms or XForms, etc.

The format should be appropriate for use across a range of standards activities, i.e. it should embody the most generic view of code lists, and not any particular group's specific view. It should also be useful for implementations of those standards, not just for the standards activity itself.[R3 (Future)] Machine readable data model

A data model is an abstraction and it must be converted to explicit representation for use. The principal such use anticipated by this effort is that of XML data exchange. A machine readable representation of the data model makes the lossless transfer of all meaning to the representation of choice easier since it can be automated. It is therefore desirable that the data model be expressed in a machine-readable form. By lossless transfer it is intended that once a transfer of a code list model into an alternate form, all original information or semantics is contained in the alternate for so that the original could then be recreated solely from the contents of the original form.

By way of a negative example, consider the following translation that is not lossless:

Assume that a number represented in syntax A 98.6. Syntax B is restricted by its designers to only integral number representations. Thus the translation of 98.6 would result in 98. Clearly, the translation was not lossless since the fractional part (although not needed by applications using Syntax B) was truncated. There is no way to deduce 98.6 solely from the number 98. [ABC] I completely disagree with this example. I found it more confusing than helpful.

3.2.3 Types of code lists

3.2.4 [R4] Private use code list

This model must support the construction of private code lists where an existing external code list needs to be extended, or where no suitable external code list exists.

3.3 Technical requirements of Code Lists

Following are technical quality requirements for code lists.

3.3.1 [R5] Interoperability

Interoperability can be thought of as the sharing of a common understanding of the limited set of codes expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

3.3.2 [R6] Validatability

The ability to use an XML schema (or correspondingly suitable tool if not an XML based representation of the code list) to validate that a code appearing in an instance is legitimately a member of the referenced code list.

3.3.3 [R7] Readability

A representation in the XML instance that provides code information in a human readable form. For example, representing codes as a sequence of arbitrary number sequences would fail this test as there would be no contextual information.

3.3.4 [R8] Machine Readability

The format should be interchangeable and machine processable across a broad range of systems.

3.3.5 [R9] Code lists must be unambiguously identified

The generation of multiple versions of a code list and the coexistence of more than one version shall be supported. The procedure used to generate each such revision from an earlier version shall be deterministic and thus repeatable and auditable. Publication of related code lists, for example either multiple versions of a single code list or other appropriate groupings, shall be accommodated to, for example, simplify configuration management tasks.

In any instance of a document that uses codes from a code list, it must be unambiguous what the set of valid codes are and the origin and version of the code list. For example, presuming that version can be facilitated by the definition of a unique Uniform Resource Identifiers (URI), it is required that: [ABC] this is no longer a requirement, you have turned it in to a technical solution by adding this detailed example. It should be removed.

1. Any two uses of the same namespace URI represent the use of the same code list definition

2. No two differing code list definitions shall be represented by the same namespace URI

3. When two trading partners identify the use of a code list, there must not be any ambiguity.

4. Should either partner create a code list or change an existing code list, the identification of the resulting code list must be distinct from that of its origin.

3.3.6 [R10] Configuration Management

The format should allow sets of related code lists (code list versions) to be published together (for configuration management purposes). These configuration sets should themselves be versioned and uniquely identifiable.

3.4 Design Requirements of Code List Data Model

What follows is a list of some of the features that a code list data model must and/or should provide. [ABC] Marty, I'm having trouble distinguishing how to separate technical requirements from design requirements. What is your basis for classifying these?

3.4.1 [R11] Simple code lists should be simple, complex code lists should be possible

The format should support the full complexity of code lists, but should not make it complex to define a simple code list (i.e. just a single set of codes, with no other associated values).

3.4.2 [R12] A set of the values (codes) forms each code list

Each code list must contain zero or more valid codes. The codes represent the content of the code list. Some useful code lists have been designed that have no specific predefined codes. Support for such lists is required.

3.4.3 [R13] Multiple lists of equivalent values (codes) for a code list

Multiple representations for each code value must be supported in order to account for individual business requirements. For example, both integer & mnemonic representations may be needed as well as versions in more than one language. Clearly each value in a particular set of code values must be unique.

The format used to express each notional code or list entry should permit multiple values to be associated with or assigned to each such entry. List entries should be represented in a generic fashion that is appropriate both for all associated standards activities and for all conceivable code list implementations of the standard.

The format should not distinguish any particular code as the preferred code, as this should be a late decision based on the application (usage) context.

3.4.4 [R14] Support associated values for code list entries

Each code value must be able to have associated with it other data items which may or may not be used as part of a code (see [R13] Multiple lists of equivalent values (codes) for a code list). An example is a human-readable name, which may not be unique (e.g. a city name), but which may be required for display purposes.

3.4.5 [R15] Unique identifier(s) for a code list

Each code list and each version of such a list must contain at least one unique identifier (or set of identifiers which are collectively unique) able to reference that entire code list. It is equivalent to a key for the entire code list that can distinguish it from other code lists. There should be no restrictions as to which set of codes in the list can be used for this purpose, how many such keys will be used or which key(s) have higher priorities than others.

The unique identifier(s) for each code list shall support automated differentiation, i.e. by machine, of each code list or version thereof from all others.

3.4.6 [R16] Unique identifiers for individual entries in a code list

Each code within a code list must be represented by a unique identifier. This requirement means that no two codes within a single code list can have identical identifiers.

3.4.7 [R17] Allow reference to undefined code lists

The format should allow a configuration set (see [R10] Configuration Management) to refer to a code list that does not have an explicit definition. This is primarily for use with well-known code lists, e.g. ISO country codes, where the important thing is to identify the code list in use, rather than to enumerate the allowed values.

3.4.8 [R18] Support for users to attach their own metadata to a code list

Each code list shall accommodate the addition of descriptive information by an individual user to account for unique business requirements.

Addition of such “metadata” to any combination of code lists, individual codes, and associated values shall be supported
.

3.4.9 [R19] The ability to import, extend, and/or restrict values and elements of other code lists

The model for code lists must provide the ability to extend, restrict or import additional values and/or elements of other code lists.

Each code list and the format used to represent it must support derivation of descendant code lists.

Derivation in this context shall include adding and/or removing notional codes and/or sets of values associated with the list as well as adding and/or removing keys, descriptive information, etc.

Any such derivation shall be done in a deterministic fashion that is repeatable and auditable (see [R17], [R21]).
.

3.4.10 [R20 (Future)] Language support for associated values

Human readable text (in metadata or associated values, see [R14] Support associated values for code list entries and [R18] Support for users to attach their own metadata to a code list) should support the xml:lang attribute to specify the language of the text.

3.4.11 [R21 (Future)] Support for describing code lists that cannot be enumerated

Provision shall be made for the creation of code lists that cannot be enumerated either in part or in their entirety because of size, volatility, or proprietary restrictions.

3.4.12 [R22 (Future)] Support for references to equivalent code lists

Each code list must be able to refer to other code lists that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.

If there are two code lists that can substitute for each other in a transaction, there shall be a mechanism by which this relationship can be expressed.

3.4.13 [R23 (Future)] Support for individual values to be mapped to equivalent values in other code lists

Each code list value must be able to refer to other code list values that may or may not be used in place of it. These references are not necessarily exactly the same, but may be equivalent based on business usage.

For example, a country might change its name, and hence be assigned a different country code, which is effectively a replacement for the previous one.

3.4.14 [R24 (Future)] Support for describing the validity period of the values

An effective date and expiration date should be established so that the code list can be scoped in time. See, for example, “Patterns for things that change with time”, http://martinfowler.com/ap2/timeNarrative.html.

4 A General Model for Code Lists

4.1 Introduction

It is said that it takes only a minute to decide to spend a million dollars, because nobody really understands what a million dollars is. However, people can argue about the choice of office paperclips for hours, because everybody is an expert on paperclips. Code lists (enumerated values) are similar, because they are so obviously simple, and everyone knows everything about them.

If code lists were really so simple and obvious, there would be a single, well-known and accepted way of handling them in XML. There is no such agreed solution, though. The problem is that while code lists are a well understood concept, people don't actually agree on exactly what code lists are, and how they should be used.

4.2 A Code List Example

What is a code list, then? Most people would agree that the following is a code list:

1. Days of the week: english, uppercase
{'SUN', 'MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT'}

This is a perfectly reasonable set of alphabetic codes for representing days of the week. However, so is:

2. Days of the week: english, mixed case
{'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'}

These two code lists are very similar, but certainly not identical. That said, they can both be used to represent the days of the week. Of course, you could also use:

3. Days of the week: french, mixed case
{'Dim', 'Lun', 'Mar', 'Mer', 'Jeu', 'Ven', 'Sam'}

which is created from abbreviations for the days of the week in French. Then again, you could use:

4. Days of the week: numeric
{0, 1, 2, 3, 4, 5, 6}

which is suitable as a computer representation, e.g. for a database column. On the other hand:

5. Days of the week: english, single character
{'S', 'M', 'T', 'W', 'T', 'F', 'S'}

is not suitable as a code list for the days of the week, because the values are not unique.

Now suppose that you are using codes to represent days of the week in an application, and you are displaying the days of the week using 3-letter abbreviations in English or French. In that context, should 'Days of the week: english, mixed case' and 'Days of the week: french, mixed case' be considered to be code lists, or should they be considered to be display values that would be keyed to either the 'Days of the week: english, uppercase' or 'Days of the week: numeric' codes? The fact is, they could be either code lists or display values. A value which is a code in one context might only be an associated value for that code in another context. Nothing privileges any of these code lists over the others in terms of ability or suitability to be the code list (except the 'Days of the week: english, single character' values which are not suitable). There is a choice of code lists that can be used, and the answer to the question "which choice is the best?" depends on the needs of each particular situation.

4.3 Tabular View of Code Lists

What the examples in section 4.2 showed was that for each conceptual code in a list, there are many possible associated values (we use the term conceptual code to express the idea that we are talking a single item that needs to be represented in the code list, rather than about any of the particular codes that can be used to identify that item). Some of those associated values are suitable for use in code lists, some are not. This leads to a tabular model, where each row of the table represents a conceptual code, and each column represents an associated value, as follows:

Table 1. Days of the week

numeric (key)
english, uppercase (key)
english, mixed case (key)
french, mixed case (key)
english, single character

0
SUN
Sun
Dim
S

1
MON
Mon
Lun
M

2
TUE
Tue
Mar
T

3
WED
Wed
Mer
W

4
THU
Thu
Jeu
T

5
FRI
Fri
Ven
F

6
SAT
Sat
Sam
S

Notice that the first 4 of the 5 columns have been labelled as 'key' columns. This means that the values in those columns can be used to uniquely identify the rows, and hence they can be used as code list values. The term key is used here is the same fashion as for a relational database table.

This is the most common case, where a single column can be used as a key. However, consider the following modification:

Table 2. Days of the week, version 2

numeric (key)
english, uppercase (key)
english, single character #1
english, single character #2

0
SUN
S
U

1
MON
M
O

2
TUE
T
U

3
WED
W
E

4
THU
T
H

5
FRI
F
R

6
SAT
S
A

Here, the first two columns are each a key column. The last two columns are not individually key columns, but together they form a compound key, i.e. while the individual columns do not contain unique values, the pair of values is unique within each row. This is again similar to what happens in some relational databases, that a key for the rows need not be constructed from a single column, but instead may be constructed by combining two or more columns.

Finally, there is no reason why a column should only contain simple values like strings or numbers. A column could also contain a complex compound group of data, such as a fragment of XML:

Table 3. Days of the week, version 3

numeric (key)
english, uppercase (key)
XHTML

0
SUN
Sunday

1
MON
<i>Monday</i>

2
TUE
Tuesday

3
WED
<i>Wednesday</i>

4
THU
Thursday

5
FRI
<i>Friday</i>

6
SAT
Saturday

Notice that the final XHTML column is not marked as a key column. The values are unique, so it certainly could be used as a key column. However, sometimes you may not wish to mark a column as a key column, even if the values are unique. The values in the column may not make particularly suitable keys. They might be too long to process quickly and conveniently, or they might not be able to be used in a particular context, such as for an XML attribute value. Also, it may be that while the values in a particular column are unique now, there is no guarantee or expectation that they will remain unique as the code list grows or changes in future.

4.4 Which Column is the 'Code'?

Once you see the tabular nature that underlies the information that can be associated with code lists, it becomes clear why they can be a source of so much debate. Different users need different subsets of the code list information, and people are inclined to assume that the information they need is all the information that anyone needs.

That kind of thinking doesn't work with code lists, because code lists are sufficiently generic a concept that they are used across messages/documents, applications, and databases. The code list details that you need for the XML schemas often will not be exactly the same as the details that you need for your database or your application. If the code list information cannot be shared easily across these different areas of the business, the result is duplication of effort and potential loss of synchronisation between different implementations of the same code list.

An XML schema may only require a set of 3-letter codes to represent the code list. A database may require a set of numeric codes, plus display labels (possibly in different languages). An application may need to know which 3-letter code corresponds to which numeric code, so that it can process the XML and update the database. All of this code list information needs to be able to be stored together in a single representation of the code list, so that all usages of the code list can be generated from the same source information. In section 4.7, a canonical XML format for code lists is presented, as there needs to be a suitable format for interchange of code lists.

One last piece of experience from databases is that support for undefined values will be required. Sometimes users will have values that need to be associated with some of the codes in a code list, but won't have values for each code. In that case, the concept of a undefined value is needed.

4.5 Managing Change

Code lists change. One thing that distinguishes code lists from some other data used in applications is that applications can often continue to run correctly if a code list is changed. By contrast, your application is likely to fail if you change a complex data structure and don't update the application accordingly. Changes to code lists can nonetheless cause an application to fail if any of the application code requires a specific value to exist in the code list, or if it requires that a specific value does not exist.

The upshot, though, is that for a code list model to be useful, it has to account for the fact that the code lists will change over time. There is little use in having a code list model that works for a code list that is frozen in time, but not for a code list that changes over time. So the code list model has to support changes between versions of a code list.

Not all changes to a code list are version changes. Some changes may be local changes to a distributed code list. For example, the ISO 3-letter currency code list contains 'GBP' for British Pounds. However, prices on the London Stock Exchange are normally quoted in pence, not pounds. This has led to the practice of adding an extra code to the standard ISO list (e.g. 'GBp', 'GBX') in order support pence as well as pounds. This kind of customisation is far from uncommon, and the utility of any code list model is greatly reduced if it does not cater for local modifications of code lists. In terms of the tabular model of code lists used in section 4.3, the following are typical local customisations:

· Add or remove a row (the set of values associated with a conceptual code);

· Add or remove a column (a type of value associated with each conceptual code);

· Add or remove a key. Adding a key involves specifying the column(s) to be used for the key;

· Add one or more rows from a set of code lists together. This implies that the columns are the same, or that null values will be used as required;

· Add one or more columns from a set of code lists together. This implies that there is at least one key in common in each row, and that there are no keys with conflicting values;

· Remove rows for which a key value matches the key value in another code list (this can be used to delete a particular pre-defined subset of the codes);

· Modify a cell value (one of the values associated with a code). Note that this may impact whether the affected column can be used as a key or not;

· Create a derived column whose values are generated from the values in other columns.

In addition to being able to make local customisations, there should be a way for users to understand easily how their local code list was derived from one or more other code lists. This means that the code list model needs to be able to model the ways that code lists are modified, and not just provide a model for code lists that are self-contained and independent of other code lists.

There are a couple of other potential requirements that are important, but aren't addressed in the model presented here. One is the ability to trace how a code list has changed over time, and how it will change in the future, so that you can determine the content of the code list at any point in time, past or future. A good reference for this topic is Martin Fowler's Patterns for things that change with time.

The other requirement is to allow for code lists that cannot be enumerated. This can be because the list is too large or quickly changing to be enumerated feasibly in a static document, or it can be because the code list is proprietary and its users are not licensed to see the entire entire contents of the code list. What is required for this situation is a protocol (e.g. a Web service or API) that allows a set of codes to be checked against the code list, with the result containing a yes/no indication for each checked code. Again, this is not a requirement that is yet addressed in the model presented here.

4.6 Some History

The initial impetus for looking at how to represent code lists came from two financial XML specifications, FpML (Financial Products Markup Language) and MDDL (Market Data Definition Language). FpML defined the approach of keeping enumerations out of the core Schema by using schemes. The idea is that the code list from which an element value is taken is indicated via a scheme attribute containing a URI which represents the scheme (code list), in the same way that URIs are used to represent XML namespaces. This was done so that a new version of FpML did not have to be released just because an enumeration had changed (e.g. a currency or country code). Also, it made it straightforward for groups of users to use alternate code lists as appropriate.

<Currency

 scheme="http://www.fpml.org/ext/iso4217-2001-08-15"

>USD</Currency>

One thing that FpML never formally defined was what happens if you dereference a scheme URI (i.e. type it into a Web browser). They have only defined a draft XML format for the contents of a scheme.

MDDL copied the FpML scheme approach. Like FpML, it does not have a formally defined scheme format, and has a (different) draft XML format for schemes. So, a key aim of this generic code list model is to produce a format that can be shared by FpML and MDDL, or can be used as a common base format from which they can both generate whatever XML scheme format they may ultimately decide to use. A sample FpML scheme is shown in the appendix “Sample FpML scheme” on page 62, while a sample MDDL scheme is shown in the appendix “Sample MDDL scheme” on page 64.

Note that no XML schema language currently supports the notion of schemes in this sense, so applications have to implement their own validation of codes against schemes at present.

Around the same time, UBL (Univeral Business Language) was working on its own approach to code lists, so it was decided to try and unify all of these efforts, and reduce the duplication. UBL uses a more formal approach to code lists, in line with the CCTS (Core Components Technical Specification) methodology from the ebXML (Electronic Business using eXtensible Markup Language) framework.

UBL code lists also have metadata describing the code list as a whole: what it is, who publishes it, etc. So the code list model needs to support metadata describing the code list, as well as to provide a table of values for the codes themselves. A sample W3C XML Schema for a UBL code list is shown in the appendix “Sample UBL code list Schema” on page 67.

4.7 The Model in Detail

What follows is a model for code lists (“genericode”) which covers many (though not yet all) of the requirements that have been outlined. From the model comes an XML format for code lists. The intention of this format is that it can be used to encode and transmit code lists. It could be used as a run-time format from which codes are looked up directly, but it is probably more likely to be used as a source from which various run-time representations of code lists can be produced, such as XML schemata, relational database schemata, and programming language enumerations.

This document's approach to producing physical artifacts like XML schemata is to produce a logical (non-XML) model of my solution first, and then create the schema(s) based on the model. For the modelling, UML (Unified Modelling Language,) provides a convenient graphical notation for data-oriented modelling. The model here is intended to cover most of the code list requirements outlined in sections 3 and 4.5. However, it does not cover temporal variations, nor does it cover non-enumerable code lists. It also doesn't provide a simple way to change an individual cell in a tabular code list, as it is better to change a whole row of column of a code list in one operation so that there is a more obvious context to the change. It also doesn't provide support for columns that are derived from other columns in some automated fashion.

Broadly speaking, the model is divided into 4 sections:

1. column sets (columns and keys);

2. simple code lists;

3. derived code lists;

4. sets of code lists.

The code list model is implemented here as a W3C XML Schema (WXS). The Schema can be used to encode either a column set (with ColumnSet as the root element) or a simple or derived code list (with CodeList as the root element), or a set of code lists (with CodeListSet as the root element). The full Schema is shown in the appendix “Code list and column set WXS Schema” on page 71.

4.7.1 Column sets

A column set of a set of columns and keys for a code list table.

Figure 1. Column set model

Each column set must have a unique ID. A column set can define any number of columns. It can also reference any number of columns from other column sets. A column set can also define any number of keys. Each key is defined by one or more of the columns in the column set (either defined or imported). Keys are used to uniquely identify the rows (conceptual codes) of code lists. Columns and keys are uniquely named within the column set that defines them.

The matching WXS representation of a column set definition is:

Figure 2. Column set WXS model — Identification detail

This figure is in TurboXML™ notation. A column set definition contains optional user annotation information (Annotation), and then identification and location information (Identification). A column set has a short name and any number of long names. It is uniquely identified by a canonical URI. Particular versions of the column set are uniquely identified by a canonical version URI. Location URIs can also be provided to suggest URLs from which an XML column set instance may be retrieved (at the discretion of an application).

Figure 3. Column set WXS model — Column detail

A column definition (Column) contains an ID for the column and its use (required or optional). It also contains a short name (token) for the column, and any number of long names. The datatype information for the column is contained in its Data element.

Figure 4. Column set WXS model — Data detail

The Data structure is based on the data element in RELAX NG. The datatype is specified as a Type from a DatatypeLibrary. If the datatype library is not specified, it is inherited from the DatatypeLibrary attribute of the enclosing column set definition. It otherwise defaults to the WXS datatype library.

If the data is XML, and not a simple data type, the DataTypeLibrary should be set to the namespace URI for the XML (content without an explicit namespace is discouraged), and the Type should be set to the top-level global element name for the XML data.

Data definitions can contain Parameter elements which define facets that refine the datatype. When using the WXS datatype library, these are just the usual WXS datatype facets.

Figure 5. Column set WXS model — ColumnRef detail

If a column is defined in an external column set or code list document, it can be referred to using a ColumnRef. The column reference must have an ID just as a column definition would, but it also has an ExternalRef which contains the column's ID in the external document. The external column set or code list is identified by a CanonicalVersionUri and/or by any LocationUri information that is provided.

Figure 6. Column set WXS model — Key detail

A key definition (Key) contains an ID for the key. It also contains a short name (token) for the key, and any number of long names. The columns which together form the key are referenced using one or more ColumnRef elements. The Ref attribute of each contains the ID of either a Column or ColumnRef in the column set. Only required (not optional) columns may be used within a key, but this rule is not able to be enforced using the WXS Schema alone.

Figure 7. Column set WXS model — KeyRef detail

If a key is defined in an external column set or code list document, it can be referred to using a KeyRef. The key reference must have an ID, and also has an ExternalRef which contains the key's ID in the external document. The external column set or code list is identified by a CanonicalVersionUri and/or by any LocationUri information that is provided.

4.7.2 Code lists

With the column set model established, we can move to the rest of the code list model. A code list can define its own column set. It can also import columns and keys from any number of external column sets. In the simplest case, what a code list provides is a set of rows, where each row defines a conceptual code in the code list. This is a Simple CodeList. However, what is commonly required is to create a new code list based on the content of one or more existing code lists. What this model of code lists provides, beyond the simple tabular model of a code list, is support for modelling a Derived CodeList, where the steps in the derivation are modelled so that they can be audited and repeated.

Figure 8. Code list model

First we will look at the Simple CodeList model, and then at the Derived CodeList model.

4.7.2.1 Simple code lists

A Simple CodeList is modelled as follows:

Figure 9. Simple code list model

A Simple CodeList contains zero or more rows (it is necessary to support empty code lists to allow for code lists that are empty now, but will be populated in future versions). Each Row defines a conceptual code in the code list.

A Row contains one or more values, one for each column in the code list. At least one value is required, because a code list has to have at least one key, and each key requires at least one column. So a code list must have at least one column, and a Row must have at least one Value. This is an indirect constraint on the number of colums in a code list which may not be immediately obvious from the UML model.

Each Value is associated with a single column of the code list. For each Key in the code list, the values associated with the columns for that key must form a unique set, i.e. no two rows are allowed to have the same set of values for the same key columns. Note that this uniqueness requirement cannot be enforced using (only) the WXS Schema for the code list model, which follows:

Figure 10. Simple code list WXS model

Many of these elements have appeared already in Section , “Column sets”, so the explanations will not be repeated here. A code list can either define its own ColumnSet, or refer to an externally defined column set using ColumnSetRef.

Figure 11. Simple code list WXS model — ColumnSetRef detail

A ColumnSetRef contains the canonical version URI which uniquely identifies the referenced column set or code list. It can also contain suggested URLs from which to retrieve the column set or code list.

Some simple code lists are used to hold the results of deriving a code list. When this is the case, a DerivedCodeListRef is used to indicate the related derived code list.

The WXS model of a SimpleCodeList is

Figure 12. Simple code list WXS model — SimpleCodeList detail

A SimpleCodeList contains zero or more Row elements. Each Row contains one or more Value elements. The Value container element is needed to allow optional user annotations of individual values in the code list. It has a ColumnRef attribute which contains the unique document ID of the associated column. It then contains either a SimpleValue containing a textual value, or a ComplexValue containing a balanced XML fragment.

Note that the ColumnRef attribute of a Value is optional. If it is not provided, it is assumed that the column is the one which follows the column associated with the previous value in the row. If the first Value in a Row does not have a ColumnRef, it is assumed to be associated with the first column in the column set. It is an error if a row contains more than one value for the same column, or if it does not contain a value for a required column.

4.7.2.2 Derived code lists

Derived code lists are actually descriptions of the steps involved in deriving a code list from one or more source code lists and column sets. They allow the derivation of one code list from one or more others to be understood, audited, and accurately repeated.

Each step in the derivation of a code list yields an intermediate derived code list, which is then an input to the following derivation step. This means that each step in a code list derivation can be modelled using a subclass of Derived CodeList.

The first group of these are the row filters. These remove rows from the source code list.

Figure 13. Derived code list model — row filters

A Row Filter CodeList is a CodeList containing a subset of the rows in the source code list, based on comparison with the control code list. The columns and keys of the derived code list are the same as in the source code list. The control code list must contain a (non-empty) subset of the keys in the source code list, and must contain only those columns required for the keys in the control code list.

A Row Inclusion CodeList contains those rows from the source code list which have all of the same key values as a row in the control code list, for those keys in the control code list.

A Row Match CodeList is a Row Inclusion CodeList for which it is an error if any of the rows in the control code list does not have the same key values as one of the rows in the source code list. This is used to guarantee that particular rows exist in the source code list.

A Row Exclusion CodeList contains those rows from the source code list which do not have any of the same key values as any of the rows in the control code list.

Figure 14. Derived code list model — row unions

It is necessary to be able to add rows as well as remove them. A Row Union CodeList contains the union of the rows from all of the source code lists. Each of the source code lists must have the same keys and columns. It is an error if any two rows have all the same key values, but different values in any of the columns.

Figure 15. Derived code list model — column set filters

Just as rows can be filtered, so can columns and keys. A Column Filter CodeList is a CodeList containing a subset of the columns/keys in the source code list, based on comparison with the control column set. The rows of the derived code list are the same as in the source code list. The control column set must contain a (non-empty) subset of the columns and keys in the source code list. The control column set must contain all columns required for the keys in the control column set.

A Column Inclusion CodeList contains those columns and keys from the source code list which appear in the control column set.

A Column Match CodeList is a Column Inclusion CodeList for which it is an error if any of the columns or keys in the control column set is not part of the source code list. This is used to guarantee that particular columns/keys exist in the source code list.

A Column Exclusion CodeList contains those columns/keys from the source code list which do not appear in the control column set. However, columns in the control column set are not excluded if they are required for keys which are not in the control column set. It is an error if all keys in the source code list are excluded.

Figure 16. Derived code list model — column set unions

A Column Union CodeList contains the union of the columns and keys from all of the source code lists. Each pair of source code lists must have at least one key in common. Rows from each source code list are merged with any rows from the other source code lists with which they share one or more keys. It is not necessary for all code lists to have the same number of rows. However, it is an error if the union leads to an undefined value in any required column of a row, or if the union leads to two or more different values for the same column in a row.

These different kinds of code list derivation can be applied in an appropriate sequence to create the desired derived code list. The WXS Schema representation is as follows:

Figure 17. Derived code list WXS model

The DerivedCodeList element contains (after an optional Annotation) a single element which defines the kind of derivation. Column filter elements (ColumnSetExclusion, ColumnSetInclusion, ColumnSetMatch) each contain a Source element (of type InputCodeList) and a Control element (of type InputColumnSet). Row filter elements (RowExclusion, RowInclusion, RowMatch) each contain a Source element (of type InputCodeList) and a Control element (of type InputCodeList). Union elements (ColumnSetUnion, RowUnion) each contain one or more Source elements (of type InputCodeList).

Figure 18. Derived code list WXS model — InputCodeList & InputColumnSet

An element of type InputCodeList can contain a simple code list definition, a derived code list definition, or a reference to an external code list (either simple or derived). An element of type InputColumnSet can contain either a column set definition or a reference to an external column set or code list.

This recursive structure allows a single derived code list document to contain an arbitrarily complex set of derivation steps, with source/control inputs either defined explicitly or referenced from external documents.

4.7.3 Sets of code lists

Any version of a standard, or any version of an application, will typically be associated with particular versions of a number of code lists. In order to be able represent such a configuration versions, a CodeListSet element can be used as the root element to identify a related set of code list versions.

Figure 19. Code list set WXS model

Note that a code list set does not contain definitions of code lists, it only refers to the code list versions which are a part of (that version of) the code list set. It should also be noted that a code list set may contain a reference to a code list version without specifying a location for a definition of that code version. This is allowable where (a) the code list definition is known to the users, and no location needs to be published, or (b) the code list is sufficiently well-known (e.g. ISO 3-letter country codes), so that users simply need to have it uniquely identified, and do not need to have it enumerated for them.

4.8 Example code list document

Here is the example UBL code list from the appendix “Sample UBL code list Schema” on page 67, expressed using the code list WXS Schema defined in this paper (see the appendix “Code list and column set WXS Schema” on page 71).

Please be aware that this sample has been wrapped to fit with a 75 character width limit, and will not be valid without slight reformatting.

<?xml version = "1.0" encoding = "UTF-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:ccts=

 "urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0">

 <Identification>

 <ShortName>CountryIdentificationCode</ShortName>

 <Version>1.0</Version>

 <CanonicalUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode

 </CanonicalUri>

 <CanonicalVersionUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </CanonicalVersionUri>

 </Identification>

 <ColumnSet>

 <Column Id="CountryIdentificationCodeContent" Use="required">

 <ShortName>CountryIdentificationCodeContent</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="CodeName" Use="required">

 <ShortName>CodeName</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="CountryIdentificationCodeContentKey">

 <ShortName>CountryIdentificationCodeContentKey</ShortName>

 <ColumnRef Ref="CountryIdentificationCodeContent"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>AD</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ANDORRA</SimpleValue>

 </Value>

 </Row>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>ZW</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ZIMBABWE</SimpleValue>

 </Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

Now a second version which includes the application information (metadata) that UBL assigns to code lists (prefixed with ccts). Some of this code list information may be integrated into a future version of the code list Schema's Identification element.

<?xml version = "1.0" encoding = "UTF-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:ccts=

 "urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0">

 <Annotation>

 <AppInfo>

 <ccts:Component>

 <ccts:ComponentType>DT</ccts:ComponentType>

 <ccts:DictionaryEntryName>

Country Identification_ Code. Type

 </ccts:DictionaryEntryName>

 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

 <ccts:DataTypeQualifier>

Country Identification

 </ccts:DataTypeQualifier>

 <ccts:DataType>Code. Type</ccts:DataType>

 </ccts:Component>

 <ccts:Instance>

 <ccts:CodeListID>ISO3166-1</ccts:CodeListID>

 <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

 <ccts:CodeListAgencyName>

United Nations Economic Commission for Europe

 </ccts:CodeListAgencyName>

 <ccts:CodeListName>Country</ccts:CodeListName>

 <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

 <ccts:CodeListURI>

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/li

st-en1-semic.txt

 </ccts:CodeListURI>

 <ccts:CodeListSchemeURI>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </ccts:CodeListSchemeURI>

 <ccts:LanguageID>en</ccts:LanguageID>

 </ccts:Instance>

 </AppInfo>

 </Annotation>

 <Identification>

 <ShortName>CountryIdentificationCode</ShortName>

 <Version>1.0</Version>

 <CanonicalUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode

 </CanonicalUri>

 <CanonicalVersionUri>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </CanonicalVersionUri>

 </Identification>

 <ColumnSet>

 <Column Id="CountryIdentificationCodeContent" Use="required">

 <ShortName>CountryIdentificationCodeContent</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="CodeName" Use="required">

 <ShortName>CodeName</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="CountryIdentificationCodeContentKey">

 <ShortName>CountryIdentificationCodeContentKey</ShortName>

 <ColumnRef Ref="CountryIdentificationCodeContent"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>AD</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ANDORRA</SimpleValue>

 </Value>

 </Row>

 <Row>

 <Value ColumnRef="CountryIdentificationCodeContent">

 <SimpleValue>ZW</SimpleValue>

 </Value>

 <Value ColumnRef="CodeName">

 <SimpleValue>ZIMBABWE</SimpleValue>

 </Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

5 Requirements for UBL Code Lists

“There can be no solution without a requirement!”

This section summarizes UBL's specific requirements for code lists. As in section 3, requirements are identified in the heading for each one as: [Rn], where ‘n’ is the requirement number. This draft contains requirements that have been accumulated for code lists in general. In order to allow for the interim publishing of this specification, several of the requirements have been labeled as future requirements: [Rn (Future)]

 [3/9/04 MJB] The requirements in this section need to be associated ultimately with the design in sections 3 and 4. This will be done by listing requirements addressed in each subsection below the subsection title line.

5.1 Use and management of Code Lists

This section describes requirements for the use and management of code lists.

5.1.1 [R25] First-order business information entities

Code list values may appear as first-order business information entities (BIEs). For example, one property of an address might be a code indicating the country. This information appears in an element, according to the Naming and Design Rules specification [NDR]. For example, in XML a country code might appear as:

<Country>UK</Country>

5.1.2 [R26] Second-order business information entities

Code list values may appear as second-order information that qualifies another BIE. For example, any information of the Amount core component type must have a supplementary component (metadata) indicating the currency code. For example, in XML a currency code might appear as an attribute – the value of element Currency is 2456000; the code EUR describes that these are in Euros:

<Currency code=”EUR”>2456000</Currency>

5.1.3 [R27] XML and XML Schema representation

The principal anticipated use of the code list model will be in XML applications – XML for usage, and XML Schema for validation of instance documents. This paper should realize a proper XML / XML Schema representation for the code list model.

5.1.4 [R28 (Future)] Conformance test for code lists

An abstract model for code lists requires a method to ensure conformance and consistency of the rendering of instance Schemas based on the model. There shall be a definition of this conformance to qualify the results of the usage of this specification.

5.1.5 [R6a] Supplementary components or metadata available in instance documents

Instance documents often have fiduciary requirements. This requirement is independent of the need to be able to validate contents according to a referenced schema. This requires that some meta-information be explicitly contained in the instance document, irrespective of its availability in a referenced document. Therefore:

The supplementary components of the code lists of code list values utilized in a UBL instance shall optionally be available in the XML instance proper without any processing from any external source including any schema expression.

The supplementary components shall be optionally available for all code-list-value information items even when two or more such information items are found in the set of data and attribute information items for any given element.

5.2 Types of code lists

5.2.1 [R29] UBL maintained Code List

UBL will make use of code lists that describe information content specific to UBL. Such code lists are intended to become part of the UBL Library of schemas.

In some cases the UBL Library may have to be extended to meet specific business requirements. In other cases where a suitable code list does not exist in the public domain, that code list and all its values may have to be added to the UBL Library where it will be maintained. Both of these types of code lists would be considered UBL-internal code lists.

5.2.2 [R30] Identify and use external standardized code lists

Because the majority of code lists are expected to be owned and maintained by external agencies, UBL shall make maximum use of such external code lists where they exist. The UBL Library SHOULD identify and use external standardized code lists rather than develop its own UBL-native code lists.

5.3 Technical requirements of Code Lists

Following are technical quality requirements for code lists.

5.3.1 [R31] Semantic clarity

The ability to “de-reference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

[1/1/05 MJB] Still need to elaborate this requirement.

5.3.2 [R32] External maintenance

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already doing this, although we recognize that others may never choose to create such modules.

5.3.3 [R33] Context rules friendliness

The code list mechanism shall use expected normal mechanisms of the UBL Naming and Design Rules (NDR) without unnecessarily adding custom features just for code lists.

[1/3/05 MJB] Note: If any extension is necessary or agreed upon, changes in the NDR shall be required to evidence it.

5.3.4 [R34] Upgradability / Extensibility without modifying underlying references

The code list mechanism shall support the ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the source schema modules (or other original referenced material).

It is therefore necessary to establish a mechanism by which a given code or code list can be extended for use without having to alter the underlying source material. When such a extension is made, it is also necessary to be able to determine unambiguously the nature and source of the modification so that its use can be validated.

5.3.5 [R35 (Future)] Ability to prevent extension or modification

Certain code lists should not be extensible. For example, the traditional English list of colors in a rainbow, RED ORANGE YELLOW GREEN BLUE INDIGO VIOLET. It should be possible to indicate that such a code list is not extensible so the users can be assured of this constancy in its usage. [ABC] I think this only applies to XML Schema, not to the generic XML model, for reasons we can discuss as required.

5.4 Design Requirements of Code List Data Model

What follows is a list of some of the features that a code list data model must and/or should provide.

5.4.1 [R36] Names for a code list

Each code list must have a unique name. The same, as much as possible, should convey the content of the list.

5.4.2 [R37] Documentation for a code list

Each code list must contain documentation that describes, in detail, the business usage for that code list.

5.4.3 [R38] Documentation for individual entries on a code list

Each code entry on a code list shall support valid values, optional index values, and an optional long description to convey, in detail, the business meaning (as presented from the context of the code list author) and usage for this code value.

5.4.4 [R39] Identifier for UN/CEFACT DE 3055.

Many code lists have been defined by UN/CEFACT. The code list model requires a representation of an identifier for this standard UNTDED 3055 [UNTDED 3055]. This identifier uniquely identifies UN/EDIFACT standard code lists.

6 Data and Metadata Model for Code Lists

This section provides rules for developing and using reusable code lists. These rules were developed for the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining agencies as guidelines for any vocabulary wishing to share code lists. See section 5.0 Conformance.

Since the UBL Library is based on the ebXML Core Components Version1.9, 11 December 2002; see [CCTS1.9]), the supplementary components identified for the Code. Type core component type are used to identify a code as being from a particular list.

Note that the model in this section is presented in two parts:

A data model for the codes themselves, and,

A metadata model for “supplementary components” that describe the entire list

6.1 Data Model Definition

The data model of codes in a code list is presented below.

CCT
UBL Name
Object Class
Property Term
Represen-tation Term
Primitive Type
Card.
Remarks

Code. Content
Content
Code
Content
Text
String
1..1
Required

Code. Name. Text
CodeName
Code
Name
Text
String
0..n
Optional

N/A
CodeDescription
Code Description
Description
Text
String
0..n
Optional

N/A
CodeIndex (Future)
Code Index
Index
Numeric
Number
0..1
Optional

6.2 Supplementary Components (Metadata) Model Definition

The following model contains the supplementary components description of a code list.

CCT
UBL Name
Object Class
Property Term
Represen-tation Term
Primitive Type
Card.
Remarks

N/A
name
Code
Name
Text
String
0..1
Optional

Code List. Identifier
CodeListID
Code List
Identification
Identifier
String
0..1
Optional

Code List. Agency. Identifier
CodeListAgencyID
Code List
Agency
Identifier
String
0..1
Optional

Code List. Agency Name. Text
CodeListAgencyName
Code List
Agency Name
Text
String
0..1
Optional

Code List. Name. Text
CodeListName
Code List
Name
Text
String
0..1
Optional

Code List. Version. Identifier
CodeListVersionID

Code List
Version
Identifier
String
0..1
Optional

Code List. Uniform Resource. Identifier
CodeListURI
Code List
Uniform Resource
Identifier
String
0..1
Optional

Code List Scheme. Uniform Resource. Identifier
CodeListSchemeURI
Code List Scheme
Uniform Resource
Identifier
String
0..1
Optional

Language. Identifier
LanguageID
Language
Identifier
Identifier
String
0..1
Optional

Code List . Namespace . Prefix. Identifier
CodeListNamespacePrefixID
Code List
Namespace Prefix
Identifier
String
0..1
Optional

N/A
CodeListDescription
Code List
Description
Text
String
0..1
Optional

N/A
CodeListCredits
Code List
Credits
Text
String
0..1
Optional

6.3 Examples of Use

The data type “Code“ is used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, etc.). Code lists must have versions.

If the agency that manages the code list is not explicitly named and is specified using a role, then this takes place in an element type’s name.

The following types of code can be represented:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

Code
Standard

CodeListID
Code list for standard code

CodeListVersionID
Code list version

CodeListAgencyID
Agency from DE 3055 (excluding roles)

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

Code
Proprietary

CodeListID
Code list for the propriety code

CodeListVersionID
Version of the code list

CodeListAgencyID
Standardized ID for the agency (normally the company that manages the code list)

CodeListSchemeURI
ID schema for the schemeAgencyId

CodeListURI
Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

Code
Proprietary

CodeListID
Code list for the proprietary code

CodeListVersionID
Code list version

CodeListAgencyID
Standardized ID for the agency (normally the company that manages the code list)

CodeListSchemeURI
ID schema for the schemeAgencyId

CodeListURI
‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

Code
Proprietary

CodeListID
ID schema for the proprietary identifier

CodeListVersionID
ID schema version

7 XML Schema representation of Code Lists

[3/9/04 MJB] This section still needs correction to match the needs of the library content subcommittee when they settle on the specific set of supplementary components necessary when a code list is used as an element or as an attribute.

This section describes how the data model is mapped to XML schema [XSD]. The code list mechanism described in this paper assumes that it will be used in the UBL context according to the following graphic that describes the type derivation hierarchy for code list and related schemas [UBL1-SD]:

[image: image2.jpg]<simport=> <dimpots> <Simport>> SSmPOT® cimyorts>
Comimon|Schema Modules
S <imprt>> <<ithport>>
| v

e }7 Code List Specialised Datatypes (CL)

<<import>> |

Core Componert Parameters

Figure 1 UML Diagram of UBL Schemas type hierarchy

As shown in the figure, an abstract model of “any” UBL code list appears in a code list specific namespace.

Note that an instance of a code list is derived in several pieces – a simpleType that contains the actual content of the code list, and, a complexType with simple content that attaches the optional supplementary components to the enumeration. The following procedure describes the construction of a code list schema:

· Define an abstract element for inclusion in extensible schemas (future)

· Define a simpleType to hold the enumerated values

· Define a complexType to add the supplementary components

· Define a global attribute to contain the enumerated values as an attribute and for supplementary components as needed. (future)

· Define an element that substitutes for the abstract type to enable usage in unextended schemas (future)

· Define a comprehensive URN to hold supplementary components that can qualify uniqueness of usage (future)

7.1 Data Model Mapping

The following table summarizes the component mapping of the data model. Items in braces, “{}” are references to the data model components. For example:

{code.name} represents the contents of the name of the code list, i.e. CountryCode;

“{code.name} Type” represents the contents of the name of the code list, i.e. “CountryCodeType”;

· UBL Name
· XMLSchema Mapping

· Code.Content
· 1. Abstract element (Future)

 <xs:element name="{code.name}A" type="xs:token" abstract="true"/>

· 2. Simple type to hold code list values and optional annotations

 <xs:simpleType name="{code.name}Type">

 <xs:restriction base="xs:token">

 <xs:enumeration value="{code.content}"

 <xs:annotation>

 <xs:documentation>

 {code.description}

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 <xs:enumeration value="{code.content}"/>

 <xs:enumeration value="{code.content}"/>

 . . .

 </xs:restriction>

 </xs:simpleType>

· 3. Complex type to associate supplementary values with code list values that substitutes for the abstract type.

<xs:complexType name="{code.name}">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space

 are meant for instance-processing

 purposes, and are non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>{code.name}

 </ccts:CodeListQualifier>

 <ccts:CodeListAgency>{Code.listAgencyID}

 </ccts:CodeListAgency>

 <ccts:CodeListVersion>{Code.listVersionID}

 </ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="{Code.name}Type">

 <xs:attribute name="CodeListID"

 type="xs:token" fixed="{CodeListID}"/>

 <xs:attribute name="CodeListAgencyID"

 type="xs:token" fixed="{CodeListAgencyID}"/>

 <xs:attribute name="CodeListVersionID"

 type="xs:string" fixed="{CodeListVersionID}"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

· 4. Attribute (Future)

 <xs:attribute name="{Code.name}"

 type="{Code.name}ContentType"/>

· 5. Element to substitute for abstract element in non-exended schemas (Future)

 <xs:element name="{Code.name}" type="{Code.name}Type"

 substitutionGroup="{Code.name}TypeA"/>

· Code.Description
Xs:annotation/ xs:documentation/

· Code.Value
Xs:annotation/ xs:documentation/

7.2 Supplementary Components Mapping

The following table shows all supplementary components of the code type. It also shows the current representation by using attributes and the recommended optional representation by using namespaces and annotations.

UBL Name
Optional XMLSchema Mapping
Optional

URN mapping
complex type attribute mapping

name
xs:annotation/
xs:documentation/
cc:codename
· This is the default name of the implemented element and attribute above.

CodeListID
namespace (URN)
1. position
Mandatory
<xs:attribute name="CodeListID" type="xs:normalizedString"/>

CodeListName
namespace (URN)
2. position
Optional
<xs:attribute name="CodeListName" type="xs:string"/>

CodeListVersionID
namespace (URN)
3. position
Mandatory
<xs:attribute name="CodeListVersionID" type="xs:normalizedString"/>

CodeListAgencyID
namespace (URN)
4. position
Optional
<xs:attribute name="CodeListAgencyID" type="xs:normalizedString"/>

 CodeListAgencyName
namespace (URN)
5. position
optional
<xs:attribute name="CodeListAgencyName" type="xs:string"/>

 CodeListURI
namespace (URN)
6. position
optional
<xs:attribute name="CodeListURI " type="xs:anyURI"/>

 CodeListSchemeURI
namespace (URN)
7. position
optional
<xs:attribute name=" CodeListSchemeURI " type="xs:normalizedString"/>

LanguageID

<xs:attribute name=”LanguageID” type=”xs:language”/>

CodeListNamespacePrefixID

<xs:attribute name=” CodeListNamespacePrefixID” type=”xs:normalizedString”/>

CodeListDescription

<xs:attribute name=” CodeListDescription” type=”xs:string”/>

CodeListCredits

<xs:attribute name=” CodeListCredits” type=”xs:string”/>

7.3 Namespace URN (Future)

The following construct represents the construct for the URN of a code list, according OASIS URN:

urn:oasis:tc:ubl:codeList:<CodeList.Identification.Identifier>:<CodeList.Name.Text>:<CodeList.Version.Identifier>:<CodeList.AgencyIdentifier>:<CodeList.AgencyName.Text>:<CodeList.AgencyScheme.Identifier>:<CodeList.AgencySchemeAgency.Identifier>

The first four parameters are fixed by Uniform Resource Name (URN) [see RFC 2141] and OASIS URN [see RFC 3121]:

· urn --> leading token of URNs

· oasis --> registered namespace ID “oasis”

· tc --> Technical Committee Work Products

· ubl --> From Technical Committee UBL (Universal Business Language)

· The parameter “codeList” identifies the schema type “code list”.

· The following parameters from <Code List. Identifier> to <Code List. Agency Scheme Agency. Identifier> represents the specific code list supplementary components of the CCT codeType.

· Example:

urn:oasis:tc:ubl:codeList:ISO639:Language%20Code:3:ISO:International%20Standardization%20Organization::

7.4 Namespace Prefix

REWORD THIS. Namespace prefix could be freely defined. However, it is helpful for better understanding, to identity the code lists by a convention of namespace prefixes.

The prefix provides the namespace prefix part of the qualified name of each code list. It is recommended that this prefix should contain the information of the supplementary component <Code List. Identification Identifier> and if it is necessary for separation, the information of the supplementary component <Code List. Version. Identifier> separated by a dash “-“. All letters should be lower case.

Example:

iso639

iso639-3 (with version)

7.5 Code List Schema Generation

This section describes how to generate complete code list schemas from the data model of section 4.

7.5.1 Data model and example values

The code list model and supplementary components are listed in the following table. The first column contains the UBL name and the second column contains an example of the value(s) for that name. It is assumed that the UBL name is the proposed name for the schema element/attribute/simpleType/complexType etc….

The expressions ValueOf(<UBL Name>), and, {UBL Name}refer to the contents for a specific code list. The latter representation is used so that a substitution can be shown within the schema fragments generated.

UBL Name
Description
Sample ValueOf(<UBL Name>)
≡
{UBL Name}

Content
A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an Attribute.
<enumerated values>

Name
<enumerated value definitions> (if Content=”USD” then Name = “US Dollars”)
The textual name of the code content.

CodeListID
The identification of a list of codes.
ISO4217 Alpha

CodeListAgencyID
An agency that maintains one or more code lists.
6

CodeListAgencyName
The name of the agency that maintains the code list.
United Nations Economic Commission for Europe

CodeListName
The name of a list of codes.
Currency

CodeListVersionID
The Version of the code list.
0.3

CodeListURI
The Uniform Resource Identifier that identifies where the code list is located.
http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc

CodeListSchemeURI
The Uniform Resource Identifier that identifies where the code list scheme is located.
urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-11

LanguageID
The identifier of the language used in the corresponding text string
En

CodeListNamespacePrefixID
The namespace prefix recommended for this code list. Should be based on the CodeListID.
 cur

CodeListDescription
Describes the set of codes
The set of world currencies

CodeListCredits
Acknowledges the source and ownership of codes
Derived from the ISO 4217 currency code list and used under the terms of the ISO policy stated at http://www.iso.org/iso/en/commcentre/pressreleases/2003/Ref871.html.

7.5.2 Schema to generate

This section describes the specific steps required to generate a schema from the above model. Each step shows two schema fragments – one that is a template for generating the schema, and, the second one that is an example schema generated. In the template sections, the places where values from the spreadsheet model are inserted are shown in braces, and are colored green –

e.g. “{CodeListAgencyID}” means substitute the value “6”.

7.5.3 Schema file name

The name of this schema file should be:

UBL-CodeList-{CodeListName}-{CodeListVersionID}.xsd

For example:

UBL-CodeList-CurrencyCode-1.0.xsd

7.5.3.1 Generate XML header

Template, Sample are the same:

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Universal Business Language (UBL) Schema 1.0-draft-10.1

 Copyright (C) OASIS Open (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to others, and

 derivative works that comment on or otherwise explain it or assist in its

 implementation may be prepared, copied, published and distributed, in whole or

 in part, without restriction of any kind, provided that the above copyright

 notice and this paragraph are included on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as by

 removing the copyright notice or references to OASIS, except as needed for the

 purpose of developing OASIS specifications, in which case the procedures for

 copyrights defined in the OASIS Intellectual Property Rights document must be

 followed, or as required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be revoked by

 OASIS or its successors or assigns.

 This document and the information contained herein is provided on an "AS IS"

 basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT

 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR

 A PARTICULAR PURPOSE.

 ===

 For our absent friend, Michael J. Adcock - il miglior fabbro

 ===

 Universal Business Language Specification

 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl)

 OASIS Open (http://www.oasis-open.org/)

 Schema generated by GEFEG EDIFIX v5.0-beta

 (http://www.gefeg.com/en/standard/xml/ubl.htm)

 Document Type: CurrencyCode

 Generated On: Fri Mar 26 14:30:20 2004

-->

7.5.3.2 Generate XML Schema header

Template:

<xs:schema

targetNamespace=”{CodeListSchemeURI}”

 xmlns=”{CodeListSchemeURI}”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

Sample:

<xs:schema

targetNamespace=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”

 xmlns=”urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-7.1”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

elementFormDefault=”qualified” attributeFormDefault=”unqualified” version=”1:0-draft-7.1”>

7.5.3.3 Generate abstract element (Future)

Template:

<xs:element name="{CodeListName}Abstract" type="xs:string" abstract="true"/> {i would prefer to make the meaning of this clear}

Sample:

<xs:element name="CurrencyCodeAbstract" type="xs:normalizedString" abstract="true"/>

7.5.3.4 Generate simple type to contain the enumerated values

Template:

<xs:simpleType name=”{CodeListName}ContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”{first Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{first Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

 …

<xs:enumeration value=”{last Content}”

 <xs:annotation>

 <xs:documentation>

 <CodeName>{last Name}”</CodeName>

 </xs:documentation>

 </xs:annotation>

 </xs:enumeration>

</xs:restriction>

</xs:simpleType>

Sample:

<xs:simpleType name=”CurrencyCodeContentType”>

<xs:restriction base=”xs:string”>

<xs:enumeration value=”AED”>

<xs:annotation>

<xs:documentation>

<CodeName>UAE Dirham</CodeName>

</xs:documentation>

</xs:annotation>

</ xs:enumeration>

<xs:enumeration value=”ALL”>

<xs:annotation>

<xs:documentation>

<CodeName>Albanian Lek</CodeName>

</xs:documentation>

</xs:annotation>

</xs:xs:enumeration>

<xs:enumeration value=”AMD”

<xs:annotation>

<xs:documentation>

<CodeName>Armenian Dram</CodeName>

</xs:documentation>

</xs:annotation>

</xs:enumeration>

<xs:enumeration value=”ANG”/>

<xs:enumeration value=”AOA”/>

<xs:enumeration value=”XDR”/>

 …

<xs:enumeration value=”ZAR”/>

<xs:enumeration value=”ZMK”/>

<xs:enumeration value=”ZWD”/>

</xs:restriction>

</xs:simpleType>

7.5.3.5 Generate complex type to hold enumerated values and supplemental components

Template:

<xs:complexType name="{CodeListName}Type">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>{CodeListID}</ccts:CodeListID>

<ccts:CodeListAgencyID>{CodeListAgencyID}</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>{CodeListAgencyName}</ccts:CodeListAgencyName>

<ccts:CodeListName>{CodeListName}</ccts:CodeListName>

<ccts:CodeListVersionID>{CodeListVersionID}</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>{CodeListURI}</ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>{CodeListSchemeURI}

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>{LanguageID}</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="{CodeListName}ContentType">

<xs:attribute name="name" type="xs:string" use="optional"/> ?????????

<xs:attribute name="codeListID" type="xs:normalizedString" fixed="{CodeListID}"/>

<xs:attribute name="codeListAgencyID" type="xs:normalizedString"

fixed="{CodeListAgencyID}"/>

<xs:attribute name="codeListAgencyName" type="xs:normalizedString"

fixed="{CodeListAgencyName}"/>

<xs:attribute name="codeListName" type="xs:string" fixed="{CodeListName}">

<xs:attribute name="codeListVersionID" type="xs:string"

fixed="{CodeListVersionID}"/>

<xs:attribute name="codeListURI" type="xs:anyURI" fixed="{CodeListURI}">

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

fixed="{CodeListSchemeURI}">

<xs:attribute name="languageID" type="xs:language" fixed="{LanguageID}">

</xs:extension>

</xs:simpleContent>

</xs:complexType>

Sample:

<xs:complexType name="CurrencyCodeType">

<xs:annotation>

<xsd:documentation>

<ccts:Component>

<ccts:ComponentType>DT</ccts:ComponentType>

<ccts:DictionaryEntryName>Code. Type</ccts:DictionaryEntryName>

<ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

<ccts:DataTypeQualifier>Currency</ccts:DataTypeQualifier>

<ccts:DataType>Code. Type</ccts:DataType>

</ccts:Component>

<ccts:Instance>

<ccts:CodeListID>ISO 4217 Alpha</ccts:CodeListID>

<ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

<ccts:CodeListAgencyName>United Nations Economic Commission for Europe</ccts:CodeListAgencyName>

<ccts:CodeListName>Currency</ccts:CodeListName>

<ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

<ccts:CodeListUniformResourceID>

http://www.bsi-global.com/Technical%2BInformation
/Publications/_Publications/tig90x.doc </ccts:CodeListUniformResourceID>

<ccts:CodeListSchemeUniformResourceID>

urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1

</ccts:CodeListSchemeUniformResourceID>

<ccts:LanguageID>en</ccts:LanguageID>

</ccts:Instance>

</xsd:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="CurrencyCodeContentType">

<xsd:attribute name="name" type="xsd:string" use="optional"/>

<xsd:attribute name="codeListID" type="xsd:normalizedString" use="optional"

fixed="ISO 4217 Alpha"/>

<xsd:attribute name="codeListAgencyID" type="xsd:normalizedString" use="optional"

fixed="6"/>

<xsd:attribute name="codeListAgencyName" type="xsd:string" use="optional"

fixed="United Nations Economic Commission for Europe"/>

<xsd:attribute name="codeListName" type="xsd:string" use="optional"

fixed="Currency"/>

<xsd:attribute name="codeListVersionID" type="xsd:normalizedString" use="optional"

fixed="0.3"/>

<xsd:attribute name="codeListURI" type="xsd:anyURI" use="optional"

fixed="http://www.bsi-global.com/

Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xsd:attribute name="codeListSchemeURI" type="xsd:anyURI" use="optional"

fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-10.1"/>

<xsd:attribute name="languageID" type="xsd:language" use="optional" fixed="en"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

7.5.3.6 Generate global attributes to allow usage of code lists as an attribute (Future)

Template:

<xs:attribute name=”{CodeListName}” type=”{CodeListName}ContentType”/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”{CodeListID}”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”{CodeListAgencyID}”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string”

fixed=”{CodeListAgencyName}”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”{CodeListVersionID}”/>
<xs:attribute name=”codeListName” type=”xs:string ” fixed=”{CodeListName}”/>

<xs:attribute name=”name” type=”xs:normalizedString ” fixed=”{name}”/>

<xs:attribute name=”codeListURI” type=”xs:anyURI” fixed=”{CodeListURI}”/>

<xs:attribute name=”codeListSchemeURI” type=”xs:anyURI” fixed=”{CodeListSchemeURI}”/>

<xs:attribute name=”languageID” type=”xs:normalizedString ” fixed=”{LanguageID}”/>

Sample:

<xs:attribute name=”CurrencyCode” type=”CurrencyCodeContentType”/>

<xs:attribute name="name" type="xs:normalizedString" fixed="cur"/>

<xs:attribute name=”codeListID” type=”xs:normalizedString” fixed=”ISO 4217 Alpha”/>

<xs:attribute name=”codeListAgencyID” type=”xs:normalizedString ” fixed=”6”/>

<xs:attribute name=”codeListAgencyName” type=”xs:string ”

fixed=”United Nations Economic Commission for Europe”/>

<xs:attribute name=”codeListVersionID” type=”xs:normalizedString ” fixed=”0.3”/>

<xs:attribute name="codeListName" type="xs:string" fixed="CurrencyCode"/>

<xs:attribute name="codeListURI" type="xs:anyURI"

fixed="http://www.bsi-global.com/Technical%2BInformation/Publications/_Publications/tig90x.doc"/>

<xs:attribute name="codeListSchemeURI" type="xs:anyURI"

 fixed="urn:oasis:names:tc:ubl:codelist:CurrencyCode:1:0-draft-8-1"/>

<xs:attribute name="languageID" type="xs:language" fixed="en"/>

7.5.3.7 Generate global element to allow usage of code list as an element (Future)

Template:

<xs:element name=”{CodeListName}” type=”{CodeListName}Type” substitutionGroup=”{CodeListName}Abstract”/>

Sample:

<xs:element name=”CurrencyCode” type=”CurrencyCodeType”

substitutionGroup=”CurrencyCodeAbstract”/>

7.5.3.8 End of schema

Template:

</xs:schema>

Sample:

</xs:schema>

7.6 Code List Schema Usage

For every code list, there exists a specific code list schema. This code list schema must have a targetNamespace with the UBL specific code list namespace and have a prefix with the code list identifier itself.

The element in the code list schema can be used for the representation as a global declared element in the document schemas. The name of the element is the UBL tag name of the specific BIE for a code.

The simpleType represents the possible codes and the characteristics of the code content. The name of the simpleType must be always ended with “. Content”. Within the simpleType is a restriction of the XSD built-in data type “xs:token”. This restriction includes the specific facets “length”, “minLength”, “maxLength” and “pattern” for regular expressions to describe the specific characteristics of each code list.

Each code will be represented by the facet “enumeration” after the characteristics. The value of each enumeration represents the specific code value and the annotation includes the further definition of each code, like “Code. Name”, “Language. Identifier” and the description.

The schema definitions to support this might look as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

targetNamespace="urn:oasis:ubl:codeList:ISO3166:Locale%20Code:3:5:ISO::"
xmlns:iso3166="urn:oasis:ubl:codeList:ISO3166: Locale%20Code:3:5:ISO::"
xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:element name="LocaleCodeTypeA" type="xs:token"

 abstract="true">

 <xs:annotation>

 <xs:documentation>

An abstract place holder for a code list element

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:simpleType name="LocaleCodeContentType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="FR"/>

 <xs:enumeration value="US"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:complexType name="LocaleCodeType">

 <xs:annotation>

 <xs:documentation>

 <ccts:Instance>

 <!-- Data and values stored in this space

 are meant for instance-processing purposes, and are

 non-normative. -->

 <ccts:Prefix>loc</ccts:Prefix>

 <ccts:CodeListQualifier>LocaleCode</ccts:CodeListQualifier>

 <ccts:CodeListAgency>ISO3166</ccts:CodeListAgency>

 <ccts:CodeListVersion>0.3</ccts:CodeListVersion>

 </ccts:Instance>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base=" LocaleCodeType">

 <xs:attribute name="CodeListID" type="xs:token" fixed="ISO3166"/>

 <xs:attribute name="CodeListAgencyID" type="xs:token" fixed="6"/>

 <xs:attribute name="CodeListVersionID" type="xs:string" fixed="0.3"/>

 . . . additional optional attributes

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xs:element name="LocaleCode" type="LocaleCodeType"

substitutionGroup="LocaleCodeTypeA">

 <xs:annotation>

 <xs:documentation>

A substitution for the abstract element based

on aStdEnum

 </xs:documentation>

 </xs:annotation>

</xs:element>

<xs:attribute name="{Code.name}" type="{Code.name}ContentType">

 <xs:annotation>

 <xs:documentation>

A global attribute for use inside an element

 </xs:documentation>

 </xs:annotation>

< xs:attribute/>

</xs:schema>

7.7 Instance

The enumerated list method results in instance documents with the following structures.

<LocaleCode>US</LocaleCode>

<iso3166:LocaleCode>US</iso3166:LocaleCode>

<PostCode iso3166:LocaleCode="FQ">20878</PostCode>

7.8 Deriving New Code Lists from Old Ones (future)

In order to promote maximum reusability and ease code lists maintenance, code list designers are expected to build new code lists from existing lists. They could for example combine several code lists or restrict an existing code list.

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used.

7.8.1 Extending code lists

The base schema shown above could be extended to support new codes as follows:

<xs:schema targetNamespace="cust"

 xmlns:std="std"

 xmlns="cust"

 xmlns:cust="custom"

 xmlns:xs=http://www.w3.org/2001/XMLSchema
 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>A substitute for the abstract LocaleCodeA

 that extends the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:union memberTypes="std:aStdEnum">

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="IL"/>

 <xs:enumeration value="GR"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

</xs:element>

</xs:schema>

7.8.2 Restricting code lists

The base schema shown above could be restricted to support a subset of codes as follows:

<xs:import namespace="std"

 schemaLocation="D:_PROJECT\NIST\XMLSchema\test0513\std.xsd"/>

<xs:element name="LocaleCode" substitutionGroup="std:LocaleCodeA">

 <xs:annotation>

 <xs:documentation>

 A substitute for the abstract LocaleCodeA that restricts

 the enumeration

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="US"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

8 Conformance to UBL Code Lists (future)

This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of different types of organizations.

We probably need a Conformance section in this document so that code list producers (who, in general, won’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and recommendations (SHOULD/MAY) in this specification. This spec is not for the UBL TC, but for code list producers (which may occasionally include UBL itself).

9 References

[3166-XSD]
UN/ECE XSD code list module for ISO 3166-1,

[CCTS1.9]
UN/CEFACT Draft Core Components Specification, Part 1, 11 December, 2002, Version 1.9.

[CLSC]
OASIS UBL Code List Subcommittee. Portal: http://www.oasis-open.org/committees/sc_home.php?wg_abbrev=ubl-clsc . Email archive: http://lists.oasis-open.org/archives/ubl-clsc/.

[SPENCER]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/5195/Spencer-CodeList-PositionPaper1-0.pdf

[STUHEC]
<need reference>

[COATES]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4522/draft-coates-codeListDataModels-0p2.doc

[CLTemplate]
OASIS UBL Naming and Design Rules code list module template, http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

[eBSC]
“eBusiness Standards Convergence Forum”, http://www.nist.gov/ebsc.

[eBSCMemo]
M. Burns, S. Damodaran, F.Yang, “Draft Code List Implementation description”, http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4503/nistTOUbl20031119.zip

[NDR]
M. Cournane et al., Universal Business Language (UBL) Naming and Design Rules, OASIS, 2002, http://www.oasis-open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/.

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[CL5]
http://www.oasis-open.org/apps/org/workgroup/ubl-clsc/download.php/4502/wd-ublndrsc-codelist-05_las_20030702.doc

[ISO 11179]
<need reference>

[UBL1-SD]
http://ibiblio.org/bosak/ubl/UBL-1.0/art/UBL-1.0-SchemaDependency.jpg

[UNTDED 3055]
<need reference>

[XSD]
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001. http://www.unece.org/etrades/unedocs/repository/codelist.htm.

Appendix A. Revision History

Revision
Editor
Description

2004-01-13
Marty Burns
First complete version converted from NDR revision 05

2004-01-14
Marty Burns
Minor edit of chapter heading 3 & 4

2004-01-20
Marty Burns
Incorporated descriptions from AS and KH

2004-02-06
Marty Burns
Cleaned up requirements and other sections – removed some redundant content from merge of contributions. Explicitly identified Data Model and Metadata models separately from XML representations of the same.

2004-02-11
Marty Burns
Added comments from 2/11 conference call

2004-02-29
Marty Burns
Added resolutions from February Face to Face meeting

2004-03-03
Marty Burns
Incorporated Tim McGrath’s corrections of data model

2004-03-09
Marty Burns
Addressed Eve Maler’s comments
Addressed Tony Coates comments
Addressed 2004-03-03 telecon comments
Added some elaboration of the model usage in ubl

2004-03-15
Marty Burns
Added example mapping schema paper to section 4.6

2004-03-23
Marty Burns
Added data model for supplementary components,
Marked future features for UBL 1.1 as (future)
Added comment about UBL1.0 release vs. future.

2004-04-01
Marty Burns
Clean up for UBL version 1.0

2004-04-14
Marty Burns
Incorporated suggested edits from GKH

2005-01-02
Marty Burns
Incorporated elaborations of requirements for better clarity to kick off the UBL 1.1 revisions. Incorporated comments from Tony Coates.

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix C. Sample FpML scheme
The following is an abbreviated version of the FpML country code scheme. All but two of the country codes have been removed, for brevity. Note that the FpML format allows multiple schemes (code lists) to be defined in the one file.

<?xml version="1.0" encoding="utf-8"?>

<schemeDefinitions>

 <scheme name="countryScheme" uri="http://www.fpml.org/ext/iso3166">

 <schemeValue name="AD" schemeValueSource="ISO">

 <paragraph>Andorra, Principality of</paragraph>

 </schemeValue>

 <schemeValue name="ZW" schemeValueSource="ISO">

 <paragraph>Zimbabwe</paragraph>

 </schemeValue>

 </scheme>

</schemeDefinitions>

The simplest translation into genericode format, assuming a 2004 edition of the ISO 3166 country codes, is

<?xml version="1.0" encoding="utf-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xml.genericode.org/2004/ns/CodeList/0.2/

 CodeList.xsd">

 <Identification>

 <ShortName>countryScheme</ShortName>

 <LongName>ISO3166 2-letter country codes</LongName>

 <Version>2004</Version>

 <CanonicalUri>http://www.fpml.org/ext/iso3166</CanonicalUri>

 <CanonicalVersionUri>

 http://www.fpml.org/ext/iso3166/2004

 </CanonicalVersionUri>

 </Identification>

 <ColumnSet>

 <Column Id="CountryCode" Use="required">

 <ShortName>code</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="CountryName" Use="optional">

 <ShortName>name</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="PrimaryKey">

 <ShortName>key</ShortName>

 <ColumnRef Ref="CountryCode"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value><SimpleValue>AD</SimpleValue></Value>

 <Value><SimpleValue>Andorra, Principality of</SimpleValue></Value>

 </Row>

 <Row>

 <Value><SimpleValue>ZW</SimpleValue></Value>

 <Value><SimpleValue>Zimbabwe</SimpleValue></Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

Appendix D. Sample MDDL scheme
The following is an abbreviated version of the MDDL country code scheme. All but two of the country codes have been removed, for brevity. Also, please be aware that this example has been wrapped to fit with a 75 character width limit.

<?xml version="1.0" encoding="utf-8"?>

<mddlScheme>

 <head>

 <dateTime>2003-04-04T180000Z</dateTime>

 <title>ISO 3166 - Country Codes (2-char)</title>

 <element>code</element><parent wildcard="yes"/>

 <definition>ISO 3166 Country Code Identifiers - 2-character alphabetic

abbreviations</definition>

 <uri>http://www.mddl.org/ext/scheme/iso3166-alpha-2.xml</uri>

 <note>This file is provided as a convenience and may or may not contain

the current official codes.</note>

 </head>

 <value>

 <short>AF</short>

 <full>AFGHANISTAN</full>

 </value>

 <value>

 <short>ZM</short>

 <full>ZAMBIA</full>

 </value>

</mddlScheme>

The simplest translation into genericode format is

<?xml version="1.0" encoding="utf-8"?>

<gcl:CodeList xmlns:gcl="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 xmlns:doc="http://www.mddl.org/example/scheme/documentation"

 xmlns:info="http://www.mddl.org/example/scheme/information"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xml.genericode.org/2004/ns/CodeList/0.2/

 CodeList.xsd">

 <Annotation>

 <Description>

 <doc:definition>ISO 3166 Country Code Identifiers - 2-character

 alphabetic abbreviations</doc:definition>

 <doc:note>This file is provided as a convenience and may or may not

 contain the current official codes.</doc:note>

 </Description>

 <AppInfo>

 <info:dateTime>2003-04-04T180000Z</info:dateTime>

 <info:element>code</info:element>

 <info:parent wildcard="yes"/>

 </AppInfo>

 </Annotation>

 <Identification>

 <ShortName>iso3166-alpha-2</ShortName>

 <LongName>ISO 3166 - Country Codes (2-char)</LongName>

 <Version>2003-04-04T180000Z</Version>

 <CanonicalUri>

 http://www.mddl.org/ext/scheme/iso3166-alpha-2

 </CanonicalUri>

 <CanonicalVersionUri>

 http://www.mddl.org/ext/scheme/iso3166-alpha-2/2003-04-04T180000Z

 </CanonicalVersionUri>

 <LocationUri>

 http://www.mddl.org/ext/scheme/iso3166-alpha-2.xml

 </LocationUri>

 </Identification>

 <ColumnSet>

 <Column Id="ShortName" Use="required">

 <ShortName>code</ShortName>

 <Data Type="token"/>

 </Column>

 <Column Id="FullName" Use="optional">

 <ShortName>name</ShortName>

 <Data Type="string"/>

 </Column>

 <Key Id="PrimaryKey">

 <ShortName>key</ShortName>

 <ColumnRef Ref="ShortName"/>

 </Key>

 </ColumnSet>

 <SimpleCodeList>

 <Row>

 <Value><SimpleValue>AF</SimpleValue></Value>

 <Value><SimpleValue>AFGHANISTAN</SimpleValue></Value>

 </Row>

 <Row>

 <Value><SimpleValue>ZM</SimpleValue></Value>

 <Value><SimpleValue>ZAMBIA</SimpleValue></Value>

 </Row>

 </SimpleCodeList>

</gcl:CodeList>

Appendix E. Sample UBL code list Schema
The following is an abbreviated version of the UBL country code Schema. All but two of the country codes have been removed, for brevity. Also, please be aware that it has been wrapped to fit with a 75 character width limit, and will not be valid without slight reformatting.

<?xml version="1.0" encoding="UTF-8"?>

<!--

 Universal Business Language (UBL) Schema 1.0

 Copyright (C) OASIS Open (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it or

 assist in its implementation may be prepared, copied, published and

 distributed, in whole or in part, without restriction of any kind,

 provided that the above copyright notice and this paragraph are included

 on all such copies and derivative works.

 However, this document itself may not be modified in any way, such as by

 removing the copyright notice or references to OASIS, except as needed

 for the purpose of developing OASIS specifications, in which case the

 procedures for copyrights defined in the OASIS Intellectual Property

 Rights document must be followed, or as required to translate it into

 languages other than English.

 The limited permissions granted above are perpetual and will not be

 revoked by OASIS or its successors or assigns.

 This document and the information contained herein is provided on an

 "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 ===

 For our absent friend, Michael J. Adcock - il miglior fabbro

 ===

 Universal Business Language Specification

 (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl)

 OASIS Open (http://www.oasis-open.org/)

 Document Type: CountryIdentificationCode

 Generated On: Mon Aug 16 14:34:34 2004

-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0"

 xmlns:ccts="

urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0"

 targetNamespace="

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <xsd:import

 namespace="

urn:oasis:names:specification:ubl:schema:xsd:CoreComponentParameters-1.0"

 schemaLocation="../common/UBL-CoreComponentParameters-1.0.xsd"/>

 <xsd:simpleType name="CountryIdentificationCodeContentType">

 <xsd:restriction base="xsd:normalizedString">

 <xsd:enumeration value="AD">

 <xsd:annotation>

 <xsd:documentation>

 <CodeName>ANDORRA</CodeName>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 <xsd:enumeration value="ZW">

 <xsd:annotation>

 <xsd:documentation>

 <CodeName>ZIMBABWE</CodeName>

 </xsd:documentation>

 </xsd:annotation>

 </xsd:enumeration>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name="CountryIdentificationCodeType">

 <xsd:annotation>

 <xsd:documentation>

 <ccts:Component>

 <ccts:ComponentType>DT</ccts:ComponentType>

 <ccts:DictionaryEntryName>

Country Identification_ Code. Type

 </ccts:DictionaryEntryName>

 <ccts:RepresentationTerm>Code</ccts:RepresentationTerm>

 <ccts:DataTypeQualifier>

Country Identification

 </ccts:DataTypeQualifier>

 <ccts:DataType>Code. Type</ccts:DataType>

 </ccts:Component>

 <ccts:Instance>

 <ccts:CodeListID>ISO3166-1</ccts:CodeListID>

 <ccts:CodeListAgencyID>6</ccts:CodeListAgencyID>

 <ccts:CodeListAgencyName>

United Nations Economic Commission for Europe

 </ccts:CodeListAgencyName>

 <ccts:CodeListName>Country</ccts:CodeListName>

 <ccts:CodeListVersionID>0.3</ccts:CodeListVersionID>

 <ccts:CodeListURI>

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/li

st-en1-semic.txt

 </ccts:CodeListURI>

 <ccts:CodeListSchemeURI>

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

 </ccts:CodeListSchemeURI>

 <ccts:LanguageID>en</ccts:LanguageID>

 </ccts:Instance>

 </xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="CountryIdentificationCodeContentType">

 <xsd:attribute

 name="codeListID" type="xsd:normalizedString" fixed="ISO3166-1"

 use="optional"/>

 <xsd:attribute

 name="codeListAgencyID" type="xsd:normalizedString" fixed="6"

 use="optional"/>

 <xsd:attribute

 name="codeListAgencyName" type="xsd:string"

 fixed="United Nations Economic Commission for Europe"

 use="optional"/>

 <xsd:attribute

 name="codeListName" type="xsd:string" fixed="Country"

 use="optional"/>

 <xsd:attribute

 name="codeListVersionID" type="xsd:normalizedString" fixed="0.3"

 use="optional"/>

 <xsd:attribute name="name" type="xsd:string" use="optional"/>

 <xsd:attribute

 name="languageID" type="xsd:language" fixed="en" use="optional"/>

 <xsd:attribute

 name="codeListURI" type="xsd:anyURI"

 fixed="

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/li

st-en1-semic.txt

"

 use="optional"/>

 <xsd:attribute

 name="codeListSchemeURI" type="xsd:anyURI"

 fixed="

urn:oasis:names:specification:ubl:schema:xsd:CountryIdentificationCode-1.0

"

 use="optional"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

</xsd:schema>

Appendix F. Code list and column set WXS Schema
Please be aware that this WXS Schema has been wrapped to fit with a 75 character width limit, and will not be valid without slight reformatting.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://xml.genericode.org/2004/ns/CodeList/0.2/"

 targetNamespace="http://xml.genericode.org/2004/ns/CodeList/0.2/">

 <xsd:complexType name="AnyOtherContent">

 <xsd:annotation>

 <xsd:documentation>Container for any XML content which is in a

 different namespace to the Schema's target

 namespace.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:any namespace="##other" minOccurs="0"

 maxOccurs="unbounded" processContents="lax"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ColumnSetDocument">

 <xsd:annotation>

 <xsd:documentation>Document type for the definition of a column set,

 which is a set of code list columns and/or keys.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="DocumentHeader">

 <xsd:annotation>

 <xsd:documentation>General document information for the

 column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:group ref="ColumnSetContent">

 <xsd:annotation>

 <xsd:documentation>Details of the column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 <xsd:attributeGroup ref="DefaultDatatypeLibrary">

 <xsd:annotation>

 <xsd:documentation>Identification of the default datatype library

 for the column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:element name="ColumnSet" type="ColumnSetDocument">

 <xsd:annotation>

 <xsd:documentation>Top-level element for the definition of a

 column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:complexType name="CodeListDocument">

 <xsd:annotation>

 <xsd:documentation>Document type for the definition of a simple or

 derived code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="DocumentHeader">

 <xsd:annotation>

 <xsd:documentation>General document information for the

 code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:group ref="ColumnSetChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a column set definition and a

 column set reference.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:group ref="OuterCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple code list definition

 and a derived code list definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="CodeList" type="CodeListDocument">

 <xsd:annotation>

 <xsd:documentation>Top-level element for the definition of a

 code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:complexType name="CodeListSetDocument">

 <xsd:annotation>

 <xsd:documentation>Document type for the definition of a set of

 code lists.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="DocumentHeader">

 <xsd:annotation>

 <xsd:documentation>General document information for the

 code list set.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:element name="CodeListRef" minOccurs="0"

 maxOccurs="unbounded" type="CodeListRef"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="CodeListSet" type="CodeListSetDocument">

 <xsd:annotation>

 <xsd:documentation>Top-level element for the definition of a

 code list set</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:complexType name="Identification">

 <xsd:annotation>

 <xsd:documentation>Identification and location information for a

 resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="NameSet">

 <xsd:annotation>

 <xsd:documentation>Name(s) for the resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:element name="Version" type="xsd:token">

 <xsd:annotation>

 <xsd:documentation>Version of the resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="CanonicalUri" type="xsd:anyURI">

 <xsd:annotation>

 <xsd:documentation>Canonical URI which serves as a

 unique identifier for all versions of the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification and location URIs for the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation information for a

 resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Description" minOccurs="0" type="AnyOtherContent">

 <xsd:annotation>

 <xsd:documentation>Human-readable information about the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="AppInfo" minOccurs="0" type="AnyOtherContent">

 <xsd:annotation>

 <xsd:documentation>Machine-readable information about the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name="DocumentHeader">

 <xsd:annotation>

 <xsd:documentation>General document information.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation information for the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Identification" type="Identification">

 <xsd:annotation>

 <xsd:documentation>Identification and location information for the

 resource defined by the document.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:group name="ColumnSetContent">

 <xsd:annotation>

 <xsd:documentation>Specific details of a column set.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:group ref="ColumnChoice" minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>A choice between a column definition and a

 column reference.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:group ref="KeyChoice" minOccurs="0" maxOccurs="unbounded">

 <xsd:annotation>

 <xsd:documentation>A choice between a key definition and a

 key reference.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:group>

 <xsd:group name="ColumnChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a column definition and a

 column reference.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="Column" type="Column">

 <xsd:annotation>

 <xsd:documentation>Definition of a column.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ColumnRef" type="ColumnRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a column defined in an

 external column set or code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:group name="KeyChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a key definition and a

 key reference.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="Key" type="Key">

 <xsd:annotation>

 <xsd:documentation>Definition of a key.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="KeyRef" type="KeyRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a key defined in an

 external column set or code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:complexType name="Column">

 <xsd:annotation>

 <xsd:documentation>Definition of a column.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User information about the

 column.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="NameSet">

 <xsd:annotation>

 <xsd:documentation>Name(s) of the column.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:element name="Data" type="Data">

 <xsd:annotation>

 <xsd:documentation>Data type of the column.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attributeGroup ref="IdDefinition">

 <xsd:annotation>

 <xsd:documentation>ID which identifies the column within the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 <xsd:attributeGroup ref="UseDefinition">

 <xsd:annotation>

 <xsd:documentation>Whether the column is required or

 optional.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:complexType name="ColumnRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a column defined in an

 external column set or code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 referenced column.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification of the external column set or

 code list which contains the column definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 <xsd:attributeGroup ref="IdDefinition">

 <xsd:annotation>

 <xsd:documentation>ID which identifies the column within the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 <xsd:attributeGroup ref="ExternalReference">

 <xsd:annotation>

 <xsd:documentation>ID which identifies which identifies the

 column within the external column set or

 code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 <xsd:attributeGroup ref="UseDefinition">

 <xsd:annotation>

 <xsd:documentation>Whether the column is required or

 optional.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:complexType name="Key">

 <xsd:annotation>

 <xsd:documentation>Definition of a key.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the key.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="NameSet">

 <xsd:annotation>

 <xsd:documentation>Name(s) of the key.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:element name="ColumnRef" maxOccurs="unbounded" type="KeyColumnRef">

 <xsd:annotation>

 <xsd:documentation>References to the document IDs of the

 columns which make up the key. Only required columns can form

 part of a key.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attributeGroup ref="IdDefinition">

 <xsd:annotation>

 <xsd:documentation>ID which identifies the key within the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:complexType name="KeyRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a key defined in an

 external column set or code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 referenced key.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification of the external column set or

 code list which contains the key definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 <xsd:attributeGroup ref="IdDefinition">

 <xsd:annotation>

 <xsd:documentation>ID which identifies the key within the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 <xsd:attributeGroup ref="ExternalReference">

 <xsd:annotation>

 <xsd:documentation>ID which identifies which identifies the

 key within the external column set or code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:group name="ColumnSetChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a column set definition and a

 column set reference.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="ColumnSet" type="ColumnSet">

 <xsd:annotation>

 <xsd:documentation>Definition of a column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ColumnSetRef" type="ColumnSetRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a column set defined in an

 external column set or code list document.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:complexType name="ColumnSet">

 <xsd:annotation>

 <xsd:documentation>Definition of a column set.</xsd:documentation>

 </xsd:annotation>

 <xsd:group ref="ColumnSetContent">

 <xsd:annotation>

 <xsd:documentation>Details of the column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:attributeGroup ref="DefaultDatatypeLibrary">

 <xsd:annotation>

 <xsd:documentation>Identification of the default datatype library

 for the column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:complexType name="ColumnSetRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a column set defined in an

 external column set or code list document.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 referenced column set.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification of the external column set or

 code list document which contains the column set

 definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name="OuterCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple code list definition and a

 derived code list definition.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:group ref="SimpleCodeListSequence">

 <xsd:annotation>

 <xsd:documentation>Details of a simple code list

 definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 <xsd:element name="DerivedCodeList" type="DerivedCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 derived code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:complexType name="SimpleCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 simple code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation for the

 code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Row" minOccurs="0" maxOccurs="unbounded" type="Row">

 <xsd:annotation>

 <xsd:documentation>Row which represents one of the

 conceptual codes in the code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="DerivedCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 derived code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation for the

 code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="DerivedCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice of one of the different types of

 derived code list definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification and location URIs for a

 resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="CanonicalVersionUri" type="xsd:anyURI">

 <xsd:annotation>

 <xsd:documentation>Canonical URI which serves as a unique identifier

 for this version of the resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="LocationUri" minOccurs="0"

 maxOccurs="unbounded" type="xsd:anyURI">

 <xsd:annotation>

 <xsd:documentation>Suggested retrieval location for this version

 of the resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:complexType name="CodeListRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a code list defined in an

 external document.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 referenced code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="IdentificationUriSet">

 <xsd:annotation>

 <xsd:documentation>Identification of the external document which

 contains the code list definition.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name="InnerCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple code list definition,

 a derived code list definition, or a reference to a code list

 defined in an external document.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="SimpleCodeList" type="SimpleCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 simple code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="DerivedCodeList" type="DerivedCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 derived code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="CodeListRef" type="CodeListRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a code list defined in an

 external document.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:attributeGroup name="IdDefinition">

 <xsd:annotation>

 <xsd:documentation>Attribute set used to identify a resource within

 the document.</xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="Id" type="xsd:ID" use="required">

 <xsd:annotation>

 <xsd:documentation>Unique ID within the document for the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:attributeGroup>

 <xsd:attributeGroup name="ExternalReference">

 <xsd:annotation>

 <xsd:documentation>Attribute set used to identify a resource within

 an external document.</xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="ExternalRef" type="xsd:token" use="required">

 <xsd:annotation>

 <xsd:documentation>Unique ID of the resource within the

 external document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:attributeGroup>

 <xsd:group name="NameSet">

 <xsd:annotation>

 <xsd:documentation>Name(s) for a resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="ShortName" type="xsd:token">

 <xsd:annotation>

 <xsd:documentation>Short name (token) for the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="LongName" minOccurs="0"

 maxOccurs="unbounded" type="xsd:normalizedString">

 <xsd:annotation>

 <xsd:documentation>Long name for the resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:complexType name="Data">

 <xsd:annotation>

 <xsd:documentation>Data type for a column.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation for the

 datatype.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Parameter" minOccurs="0"

 maxOccurs="unbounded" type="DatatypeFacet">

 <xsd:annotation>

 <xsd:documentation>Facet parameter which refines the

 datatype.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="Type" type="xsd:token" use="required">

 <xsd:annotation>

 <xsd:documentation>Unique ID for the datatype within its

 datatype library.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="DatatypeLibrary" type="xsd:anyURI">

 <xsd:annotation>

 <xsd:documentation>URI which uniquely identifies the datatype library.

 If not provided, the datatype library for the enclosing column set

 is used.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 <xsd:complexType name="KeyColumnRef">

 <xsd:annotation>

 <xsd:documentation>Reference to a column which forms part of a

 key.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" form="unqualified">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 column.</xsd:documentation>

 </xsd:annotation>

 <xsd:complexType>

 <xsd:annotation>

 <xsd:documentation>User annotation information for a

 resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Description" minOccurs="0" form="unqualified">

 <xsd:complexType>

 <xsd:annotation>

 <xsd:documentation>Human readable information about the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="AppInfo" minOccurs="0" form="unqualified">

 <xsd:complexType>

 <xsd:annotation>

 <xsd:documentation>Machine-readable information about the

 resource.</xsd:documentation>

 </xsd:annotation>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="Ref" type="xsd:IDREF" use="required">

 <xsd:annotation>

 <xsd:documentation>Reference to the ID of the column within the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:complexType>

 <xsd:group name="SimpleCodeListSequence">

 <xsd:annotation>

 <xsd:documentation>Details of a

 simple code list definition.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="DerivedCodeListRef" minOccurs="0" type="CodeListRef">

 <xsd:annotation>

 <xsd:documentation>Reference to the derived code list of which this

 simple code list is a realisation.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="SimpleCodeList" type="SimpleCodeList">

 <xsd:annotation>

 <xsd:documentation>Definition of the

 simple code list.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:attributeGroup name="UseDefinition">

 <xsd:annotation>

 <xsd:documentation>Attribute set which defines the usage of a

 resource.</xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="Use" type="UseType" use="required">

 <xsd:annotation>

 <xsd:documentation>Whether the resource is required or

 optional.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:attributeGroup>

 <xsd:complexType name="Row">

 <xsd:annotation>

 <xsd:documentation>Row which represents a conceptual code in a

 code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the row.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Value" maxOccurs="unbounded" type="Value">

 <xsd:annotation>

 <xsd:documentation>Column value for the row.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:group name="ValueChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple textual value and a

 complex (structured) XML value.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="SimpleValue" type="SimpleValue">

 <xsd:annotation>

 <xsd:documentation>Simple textual value.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ComplexValue" type="AnyOtherContent">

 <xsd:annotation>

 <xsd:documentation>Complex (structured) XML value.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:complexType name="SimpleValue">

 <xsd:annotation>

 <xsd:documentation>Simple textual value.</xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string"/>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:attributeGroup name="ColumnReference">

 <xsd:annotation>

 <xsd:documentation>Attribute set for referring to a

 column definition within the document.</xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="ColumnRef" type="xsd:IDREF">

 <xsd:annotation>

 <xsd:documentation>Reference to the ID of a column in the

 document.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:attributeGroup>

 <xsd:complexType name="Value">

 <xsd:annotation>

 <xsd:documentation>Individual value from a row which represents a

 conceptual value in a code list.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 value.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:group ref="ValueChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple textual value and a

 complex (structured) XML value.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:sequence>

 <xsd:attributeGroup ref="ColumnReference">

 <xsd:annotation>

 <xsd:documentation>Reference to the column with which this value is

 associated. If not provided, the column is assumed to be the

 column following the column of the

 preceding value.</xsd:documentation>

 </xsd:annotation>

 </xsd:attributeGroup>

 </xsd:complexType>

 <xsd:group name="DerivedCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice of one of the different types of

 derived code list definition.</xsd:documentation>

 </xsd:annotation>

 <xsd:choice>

 <xsd:element name="ColumnSetExclusion" type="ColumnSetFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 column set exclusion filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ColumnSetInclusion" type="ColumnSetFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 column set inclusion filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ColumnSetMatch" type="ColumnSetFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 column set match filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ColumnSetUnion" type="CodeListUnion">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 column set union filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="RowExclusion" type="RowFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 row exclusion filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="RowInclusion" type="RowFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 row inclusion filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="RowMatch" type="RowFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 row match filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="RowUnion" type="CodeListUnion">

 <xsd:annotation>

 <xsd:documentation>Definition of a

 row union filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:choice>

 </xsd:group>

 <xsd:complexType name="RowFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a row filter.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation for the

 row filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Source" type="InputCodeList">

 <xsd:annotation>

 <xsd:documentation>Source code list for the

 row filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Control" type="InputCodeList">

 <xsd:annotation>

 <xsd:documentation>Control code list for the

 row filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="InputCodeList">

 <xsd:annotation>

 <xsd:documentation>Input code list for a code list filter or

 union.</xsd:documentation>

 </xsd:annotation>

 <xsd:group ref="InnerCodeListChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a simple code list definition,

 a derived code list definition, or a reference to a code list

 defined in an external document.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:complexType>

 <xsd:complexType name="CodeListUnion">

 <xsd:annotation>

 <xsd:documentation>Union of one or more code lists.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the

 union.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Source" maxOccurs="unbounded" type="InputCodeList">

 <xsd:annotation>

 <xsd:documentation>Source code list for the union.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ColumnSetFilter">

 <xsd:annotation>

 <xsd:documentation>Definition of a column set

 filter.</xsd:documentation>

 </xsd:annotation>

 <xsd:sequence>

 <xsd:element name="Annotation" minOccurs="0" type="Annotation">

 <xsd:annotation>

 <xsd:documentation>User annotation about the column set

 filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Source" type="InputCodeList">

 <xsd:annotation>

 <xsd:documentation>Source code list for the column set

 filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="Control" type="InputColumnSet">

 <xsd:annotation>

 <xsd:documentation>Control column set for the column set

 filter.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="InputColumnSet">

 <xsd:annotation>

 <xsd:documentation>Input column set for a code list

 filter.</xsd:documentation>

 </xsd:annotation>

 <xsd:group ref="ColumnSetChoice">

 <xsd:annotation>

 <xsd:documentation>A choice between a column set definition and a

 column set reference.</xsd:documentation>

 </xsd:annotation>

 </xsd:group>

 </xsd:complexType>

 <xsd:complexType name="DatatypeFacet">

 <xsd:annotation>

 <xsd:documentation>Facet information for refining a

 datatype.</xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="ShortName" type="xsd:token" use="required">

 <xsd:annotation>

 <xsd:documentation>Short name (token) for the

 datatype facet.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute name="LongName" type="xsd:normalizedString">

 <xsd:annotation>

 <xsd:documentation>Long name for the

 datatype facet.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:attributeGroup name="DefaultDatatypeLibrary">

 <xsd:annotation>

 <xsd:documentation>Identification of the default datatype library

 for a column set.</xsd:documentation>

 </xsd:annotation>

 <xsd:attribute name="DatatypeLibrary" type="xsd:anyURI"

 default="http://www.w3.org/2001/XMLSchema-datatypes">

 <xsd:annotation>

 <xsd:documentation>URI which uniquely identifies the

 default datatype library for the column set. If not provided,

 defaults to the URI for W3C XML Schema datatypes.</xsd:documentation>

 </xsd:annotation>

 </xsd:attribute>

 </xsd:attributeGroup>

 <xsd:simpleType name="UseType">

 <xsd:annotation>

 <xsd:documentation>Indicates whether the usage of a resource is required

 or optional.</xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:enumeration value="optional"/>

 <xsd:enumeration value="required"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

�This section is a bit too abstract for my taste. It also discusses each requirement in formal, almost academic fashion but does not explicitly state what is required and how each such requirement can be met.

�We need to define what is meant by “associated values.”

�The phrase “ . . . able to support valid values . . .” really doesn’t belong in a subsection covering documentation.

�This section is a bit too abstract for my taste. It also discusses each requirement in formal, almost academic fashion but does not explicitly state what is required and how each such requirement can be met.

