
Guidelines For The Customization of UBL v1.0
Schemas

Working Draft 1.0-beta3, 04/29/04

Document identifier:

wd-cmsc-cmguidelines-1.0-beta3

Editor:

Eduardo Gutentag, Sun Microsystems, Inc. <eduardo.gutentag@sun.com>

Authors:

Matthew Gertner <matthew@acepoint.cz>
Eduardo Gutentag, Sun Microsystems, Inc. <eduardo.gutentag@sun.com>
Arofan Gregory, Aeon LLC <agregory@aeon-llc.com>

Contributors:

Eve Maler, Sun Microsystems, Inc.
Dan Vindt, Accord
Bill Burcham, Sterling Commerce

Abstract:

This document presents guidelines for a compatible customization of UBL schemas, and how to proceed
when that is impossible.

Status:

This is a draft document and is likely to change on a regular basis.

If you are on the <ubl@lists.oasis-open.org> list for committee members, send comments
there. If you are not on that list, subscribe to the <ubl-comment@lists.oasis-open.org> list
and send comments there. To subscribe, send an email message to <ubl-comment-
request@lists.oasis-open.org> with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights
section of the UBL TC web page (http://www.oasis-open.org/committees/ubl/).

Copyright © 2003, 2004 OASIS Open, Inc. All Rights Reserved.

1

2

3

4

5

6

7

8

9

10
11
12

13

14
15
16

17

18
19

20

21

22
23
24
25

26
27
28

29

30

Table of Contents

1. Introduction
1.1. Goals of this document
1.2. Limitations of this document

2. Background
2.1. The UBL Schema
2.2. Customization of UBL Schemas
2.3. Customization of customization

3. Compatible UBL Customization
3.1. Use of XSD Derivation
3.2. Some observations on extensions and restrictions
3.3. Documenting the Customization
3.4. Use of namespaces

4. Non-Compatible UBL Customization
4.1. Use of Ur-Types
4.2. Building New Types Using Core Components

5. Customization of Codelists
6. Use of the UBL Type Library in Customization

6.1. The Structure of the UBL Type Library
6.2. Importing UBL Schema Modules
6.3. Selecting Modules to Import
6.4. Creating New Document Types with the UBL Type Library

7. Future Directions

Appendixes

A. Notices
B. Intellectual Property Rights
References

1. Introduction

Note

It is highly recommended that readers of the current document first consult the CCTS paper
[Reference] before proceeding, in order to understand some of the thinking behind the concepts
expressed below.

With the release of version 1.0-beta of the UBL library it is expected that subsequent changes to it will be few
and far between; it contains important document types informed by the broad experience of members of the
UBL Technical Committee, which includes both business and XML experts.

However, one of the most important lesson learned from previous standards is that no business library is
sufficient for all purposes. Requirements differ significantly amongst companies, industries, countries, etc., and
a customization mechanism is therefore needed in many cases before the document types can be used in real-
world applications. A primary motivation for moving from the relatively inflexible EDI formats to a more
robust XML approach is the existence of formal mechanisms for performing this customization while retaining
maximum interoperability and validation.

It is an UBL expectation that:

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

55
56
57

58

59

60

61
62
63

64
65
66

67
68
69
70
71
72

73

1. Customization will indeed happen,

2. It will be done by national and industry groups and smaller user communities,

3. These changes will be driven by real world needs, and

4. These needs will be expressed as context drivers.

EDI dealt with the customization issue through a subsetting mechanism that took took a standard (the
UN/EDIFACT standard, the AINSI X12 standard, etc.) [References] and subsetted it through industry
Implementation Guides (IG), which were then subsetted into trading partners IGs, which were then subsetted
into departamental IGs. UBL proposes dealing with this through schema derivation.

Thus UBL starts as generic as possible, with a set of schemas that supply all that's likely to be needed in the
80/20 or core case, which is UBL's primary target. Then it allows both subsetting and extension according to
the needs of the user communities, industries, nations, etc., according to what is permitted in the derivation
mechanism it has chosen, namely W3C XML Schema.

Figure 1.

These customizations are based on the eight context drivers identified by ebXML (see below). Any given
schema component always occupies a location in this eight-space, even if not a single one has been identified
(that is, if a given context driver has not been narrowed, it means that it is true for all its possible contextual
values). For instance, UBL has an Address type that may have to be modified if the Geopolitical region in
which it will be used is Thailand. But as long as this narrowing down of the Geopolitical context has not been
done, the Address type applies to all possible values of if, thus occupying the "any" position in this particular
axis of the eight-space.

In order for interoperability and validation to be achieved, care must be taken to adhere to strict guidelines when
customizing UBL schemas. Although the UBL TC intends to produce a customization mechanism that can be
applied as an automatic process in the future, this phase (known as Phase II, and predicted in the UBL TC's
charter) has not been reached. Instead, Phase I, the current phase, offers the guidelines included in this
document.

In what follows in this document, "Customization" always means "context motivated customization", or
"contextualization".

74

75

76

77

78
79
80
81

82
83
84
85

86

87
88
89
90
91
92
93

94
95
96
97
98

99
100

1.1. Goals of this document

This document aims to describe the procedure for customizing UBL schemas, with three distinct goals.

1. The first goal is to ensure that UBL users can extend UBL schemas in a manner that:
 allows for their particular needs,

 can be exchanged with trading partners whose requirements for data content are different but related,
and

 is UBL compatible.

2. The second goal is to provide some canonical escape mechanisms for those whose needs extend beyond what
the compatibility guidelines can offer. Although the product of these escape mechanisms cannot claim UBL
compatibility, at least it can offer a clear description of its relashionship to UBL, a claim that cannot be made
by other ad hoc methods.

3. The third goal is to gather use case data for the future UBL context extension methodology, the automatic
mechanism for creating customized UBL schemas, scheduled for Phase II. To achieve this goal users are
strongly encouraged to provide feedback.

The current version of this document provides general guidelines for the customization of UBL schemas. As
implementation feedback is received and use cases become clearer, future versions of this document will
include more specific customization guidance.

1.2. Limitations of this document

This document does not provide detailed instructions on how to customize schemas.

This document does not provide instructions on how to customize schemas for specific industries.

2. Background

The major output of the UBL TC is encapsulated in a series of UBL Schemas [Reference]. It is assumed that in
many cases users will need to customize these schemas for their own use. In accordance with ebXML
[Reference to CCTS] the UBL TC expects this customization to be carried out only in response to contextual
needs (see [xxx]) and by the application of any one of the eight identified context drivers and their possible
values.

It must be noted that the UBL schemas themselves are the result of a theoretical customization:

Behind every UBL Schema, a hypothetical schema exists in which all elements are optional and all types are
abstract. This is what we call the "Ur-schema". As mandated in the XSD specification, abstract types cannot be
used as written; they can only be used as a starting point for deriving new, concrete types. Ur-types are
modelled as abstract types since they are designed for derivation. Whether the UBL TC actually produces and
publishes a copy of these Ur-schemas is irrelevant, since it is possible for any one to reconstruct
deterministically the appropriate Ur-schema from any of the schemas produced by the UBL TC.

2.1. The UBL Schema

The first set of derivations from the abstract Ur-types is the UBL Schema Library itself, which is assumed to be
usable in 80% of business cases. These derivations contain additional restrictions to reduce ambiguity and
provide a minimum set of requirements to enable interoperable trading of data by the application of one context,

101

102

103
104

105
106

107

108
109
110
111

112
113
114

115
116
117

118

119

120

121

122
123
124
125
126

127

128
129
130
131
132
133

134

135
136
137

Business Process. The UBL schema may then be used by specific industry organizations to create their own
customized schemas. When the UBL Schema is used, conformance with UBL may be claimed. When a Schema
that has been customized through the UBL sanctioned derivation processs is used, conformance with UBL may
also be claimed.

2.2. Customization of UBL Schemas

It is assumed that in many cases specific businesses will use customized UBL schemas. These customized
schemas contain derivations of the UBL types, created through additional restrictions and/or extensions to fit
more precisely the requirements of a given class of UBL users. The customized UBL Schemas may then be
used by specific organizations within an industry to create their own customized schemas.

2.3. Customization of customization

Due to the extensiblilty of W3C Schema, this process can be applied over and over to refine a set of schemas
more and more precisely, depending on the needs of specific data flows.

In other words, there is no theoretical limit to how many times a Schema can be derived, leading to the possible
equivalent of infinite recursion. In order to avoid this, the Rule of Once-per-Context has been developed, as
presented later, in "Context Chains "

3. Compatible UBL Customization

Central to the customization approach used by UBL is the notion of schema derivation. This is based on object-
oriented principles, the most important of which are inheritance and polymorphism. The meaning of the latter
can be gleaned from its linguistic origin: poly, meaning "many", and morph, meaning "shape". By adhering to
these principles, document instances with different "shapes" (that is, that conform to different but related
schemas,) can be used interchangeably.

The UBL Naming and Design Rules Subcommittee (NDRSC) has decided to use XSD, the standard XML
schema language produced by the World Wide Web Consortium (W3C), to model document formats. One of
the most significant advances of XSD over previous XML document description languages, such as DTDs, is
that it has built-in mechanisms for handling inheritance and polymorphism, which we will refer to as "XSD
derivation". It therefore fits well with the real-world requirements for business data interchange and our goal of
interoperability and validation.

There are two important types of modification that XSD derivation does not allow. The first can be summarized
as the deletion of required components (that is, the reduction of a component's cardinality from x..y to 0..y). The
second is the ad hoc location of an addition to the content model through extension. There may be some cases
where the user needs a different location for the addition, but XSD extension only allows addition at the end of
a sequence.

Thus, there are three different scenarios covering the derivation of new types from existing ones:

 Compatible UBL Customization

 An existing UBL type can be modified to fit the requirements of the customization through XSD
derivation. These modifications can include extension (adding new information to an existing
type), and/or refinement (restricting the set of information allowed to a subset of what is
permitted by the existing type).

 Non-compatible UBL Customization

138
139
140
141

142

143
144
145
146

147

148
149

150
151
152

153

154
155
156
157
158

159
160
161
162
163
164

165
166
167
168
169

170

171

172
173
174
175

176

 An existing UBL type could be modified to fit the requirements of the customization, but the
changes needed go beyond those allowed by XSD derivation.

 No existing UBL type is found that can be used as the basis for the new type. Nevertheless, the
base library of core components that underlies UBL can be used to build up the new type so as to
ensure that interoperability is at least possible at the core component level.

These Guidelines will deal with each of the above scenarios, but we will first and foremost concentrate on the
first, as it is the only one that can produce UBL-compatible schemas.

3.1. Use of XSD Derivation

XSD derivation allows for type extension and restriction. These are the only means by which one can customize
UBL schemas and claim UBL compatibility. Any other possible means, even if allowed by XSD itself, is not
allowed by UBL. For instance, although XSD does permit the redefinition of a type to be something other than
what it originally is, UBL has decided to reject this approach, because by default <xsd:redefine> does not
leave any traces of having been used (such as a new namespace, for instance) and because of the danger of
circular redefinitions.

The examples in the following sections will be based on the following complex type (and note that in all cases
the <xsd:annotation> elements have been removed in order to achieve maximum legibility):

<xsd:complexType name="PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

3.1.1. Extensions

XSD extension is used when additional information must be added to an existing UBL type. For example, a
company might use a special identification code in relation to certain parties. This code should be included in
addition to the standard information used in a Party description (PartyName, Address, etc.) This can be achieved
by creating a new type that references the existing type and adds the new information:

 <xsd:complexType name="MyPartyType">
 <xsd:extension base="cat:PartyType">
 <xsd:element ref="MyPartyID" minOccurs="1" maxOccurs="1"/>
 </xsd:element>
 </xsd:extension>
 </xsd:complexType>

177
178

179
180
181

182
183

184

185
186
187
188
189
190

191
192

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215

216
217
218
219

220
221
222
223
224
225

Some observations:

 Notice that derivation can be applied only to types and not to elements that use those types. This is not a
problem: UBL uses explicit type definitions for all elements, in fact disallowing XSD use of anonymous
types that define a content model directly inside an element declaration.

 This derived type, MyPartyType, can be used anywhere the original PartyType is allowed. The
instance document should use the xsi:type attribute to indicate that a derived type is being used. This
does not enforce the use of the new type inside a given element, however, so an Order instance could
still be created using the standard UBL PartyType. If the user wishes to require the use of the derived
type, blocking the possibility of using the original type in an instance, a new derived type must be
created from the Order type using refinement and specifying that the MyPartyType must used.

 UBL defines global elements for all types, and these elements, rather than the types themselves, are used
in aggregate element declarations. The same procedure can be used for derived types, so a global
MyParty element should be created based on the MyPartyType.

 All derived types should be created in a separate namespace (which might be tied to the user
organization) and reference the UBL namespaces as appropriate. [Appropriate reference to UBL's
namespace usage, and below]

3.1.2. Restrictions

XSD restriction is used when information in an existing UBL type must be constrained or taken away. For
instance, the UBL PartyType permits the inclusion of any number of Party identifiers or none. If a specific
organization wishes to allow exactly one identifier, this is achieved as follows (note that the annotation fields
are removed from the type definition to make the example more readable):

<xsd:complexType name="MyPartyType">
 <xsd:restriction base="cat:PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="1" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexType>

Note that the entire content model of the base type, with the appropriate changes, must be repeated when
performing restriction.

A very important characteristic of XSD restriction is that it can only work within the limits substitutability, that

226

227
228
229

230
231
232
233
234
235

236
237
238

239
240
241

242

243
244
245
246

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272

273

is, the resulting type must still be valid in terms of the original type; in other words, it must be a true subset of
the original such that a document that validates against the original can also validate against the changed one.
Thus:

 you can reduce the number of repetitions of an element (that is, change its cardinality from 1..100 to
1..50, for instance)

 you can eliminate an optional element (that is, change its cardinality from 0..3 to 0..0)

 you cannot eliminate a required element or make it optional (that is, change its cardinality from 1..3 to
0..3)

3.2. Some observations on extensions and restrictions

 Extensions and restrictions can be applied in any order to the same Type; it is recommended, though,
that they be applied close to each other to improve understanding of the resulting schema.

 Notice that derivation can be applied only to types and not to elements that use those types. This is not a
problem: UBL uses explicit type definitions for all elements, in fact disallowing XSD use of anonymous
types that define a content model directly inside an element declaration.

 This derived type, MyPartyType, can be used anywhere the original PartyType is allowed. The
instance document should use the xsi:type attribute to indicate that a derived type is being used. This
does not enforce the use of the new type inside a given element, however, so an Order instance could
still be created using the standard UBL PartyType. If the user wishes to require the use of the derived
type, blocking the possibility of using the original type in an instance, a new derived type must be
created from the Order type using refinement and specifying that the MyPartyType must used.

 UBL defines global elements for all types, and these elements, rather than the types themselves, are used
in aggregate element declarations. The same procedure can be used for derived types, so a global
MyParty element should be created based on the MyPartyType.

 All derived types should be created in a separate namespace (which might be tied to the user
organization) and reference the UBL namespaces as appropriate. [Appropriate reference to UBL's
namespace usage, and below]

3.3. Documenting the Customization

Every time a derivation is performed on a UBL- or UBL-derived-Schema, the context driver and the driver
value used must be documented. If this is not done, then by definition the derived Schema is not UBL-
compliant.

Context is expressed using a set of name/value pairs (context driver, driver value), where the names are one of a
limited set of context drivers established by the UBL TC on the basis of CCTS (Reference):

 Business process

 Official constraint

 Product classification

 Business process role

274
275
276

277
278

279

280
281

282

283
284

285
286
287

288
289
290
291
292
293

294
295
296

297
298
299

300

301
302
303

304
305

306

307

308

309

 Industry classification

 Supporting role

 Geopolitical

 System constraint

There is no pre-set list of values for each driver. Users are free at this point to use whatever codification they
choose, but they should be consistent; therefore while not obliged to do so, communities of users are strongly
encouraged to always use the same values for the same context (that is, those who use "U.S.A" to indicate a
country in the North American Continent, should not intermix it with "US" or "U.S." or "USA"). And if a
particular standardized codification is used, it should also be identified in the documentation. (Some standard
sets of values are provided in the CCTS specification.)

There is no predetermined order in which context drivers are applied.

More than one context driver might be applied to various types within the same set of schema extensions.
Therefore, documentation at the root level, although desirable, is not enough. Context should be included within
a <Context> child of the element <Contextualization> (in the UBL namespace) inside the
documentation for each customized type, with the name of the context driver expressed as in the list above, but
using the provided elements within that element. For example, if a type is to be used in the French apparel
industry (shoes), the Context documentation would appear as follows:

<xsd:annotation>
 <xsd:documentation>
 <ubl:Contextualization>
 <ubl:Context>
 <ubl:Geopolitical>France</ubl:Geopolitical>
 <ubl:IndustryClassification>Apparel</ubl:IndustryClassification>
 <ubl:ProductClassification>Shoes</ubl:ProductClassification>
 </Context>
 </ubl:Contextualization>
 </xsd:documentation>
<xsd:annotation>

The <Context> element can be repeated, once of each incremental change.

If a customization is made that does not fit into any of the existing context drivers, it should be described in
prose inside the <Context> element:

<xsd:annotation>
 <xsd:documentation>
 <ubl:Contextualization>
 <ubl:Context>Used for jobs performed on weekends to specify
 additional data required by the trade union</ubl:Context>
 </ubl:Contextualization>
 </xsd:documentation>
<xsd:annotation>

Note

Any issues with the set of context drivers currently defined or the taxonomies to be used for
specifying values should be communicated to the UBL Context Driver Subcommittee.

For each of the context drivers (Geopolitical, IndustryClassification, etc.) the following

310

311

312

313

314
315
316
317
318
319

320

321
322
323
324
325
326

327
328
329
330
331
332
333
334
335
336
337

338

339
340

341
342
343
344
345
346
347
348

349

350
351

352

characteristics should also be specified (a later version will provide the requisite attributes for doing so):

 listID (List Identifier) - string: The identification of a list of codes. Can be used to identify the URL of a
source that defines the set of currently approved permitted values.

 listAgencyID (List Agency Identifier) - string: An agency that maintains one or more code lists.
Defaults to the UN/EDIFACT data element 3055 code list.

 listAgencyName (List Agency Name) - string: The name of the agency that maintains the code list.

 listName (List Name) - string: The name of a list of codes.

 listVersionID (List Version Identifier) - string: The Version of the code list. Identifies the Version of the
UN/EDIFACT data element 3055 code list.

 languageID (Language Identifier) - string: The identifier of the language used in the corresponding text
string (ISO 639: 1998)

 listURI (List URI) - string: The Uniform Resource Identifier that identifies where the code list is
located.

 listSchemeURI (List Scheme URI) - string: The Uniform Resource Identifier that identifies where the
code list scheme is located.

 Coded Value: A value or set of values taken from the indicated code list or classification scheme.

 Text Value: A textual description of the set of values.

3.3.1. Context chains

As mentioned in "Customization of Customization", there is a risk that derivations may form extremely long
and unmanageable chains. In order to avoid this problem, the Rule of Once-per-Context was formulated: no
context can be applied, at a given hierarchical level of that context, more than once in a chain of derivations. Or,
in other words, any given context driver can be specialized, but not reset. Thus, if the Geopolitical context
driver with a value of "USA" has been applied to a type, it is possible to apply it again with a value that is a
subset, or that occupies a hierarchically lower level than that of the original value, like California or New York,
but it cannot be applied with a value equal or higher in the hierarchy, like Japan. In order to use that latter value,
one must go up the ladder of the customization chain and derive the type from the same location as that from
which the original was derived.

Figure 2.

353

354
355

356
357

358

359

360
361

362
363

364
365

366
367

368

369

370

371
372
373
374
375
376
377
378
379

380

3.4. Use of namespaces

Every customized Schema or Schema module must have a namespace name different from the original UBL
one. This may end up having an upward-moving ripple effect (a schema that includes a schema module that
now has a different namespace name must change its own namespace name, for instance). However, it should
be noted that all that has to change is the local part of the namespace name, not the prefix, so that XPaths in
existing XSLT stylesheets, for instance, would not have to be changed except inasmuch as a particular element
or type has changed.

Although there is not constraint as to what namespace name should be used for extensions, or what method
should be used for constructing it, it is recommended that the method be, where appropriate, the same as the
method specified in [Reference to NDR document, section on namespace construction]

4. Non-Compatible UBL Customization

There are two important types of customization that XSD derivation does not allow. The first can be
summarized as the deletion of required components (that is, the reduction of a component's cardinality from x..y
to 0..y). The second is the ad hoc location of an addition to a content model. There may be some cases where
the user needs a different location for the addition than the one allowed by XSD extension, which is at the end
of a sequence.

381

382

383
384
385
386
387
388

389
390
391

392

393
394
395
396
397

Because XSD derivation does not allow these types of customization, any attempts at enabling them (which in
some cases simply mean rewriting the schema with the desired changes as a different schema in a different,
non-UBL namespace) must by necessity produce results that are not UBL compatible. However, in order to
allow users to customize their schemas in a UBL-friendly manner, the notion of an Ur-schema was invented: for
each UBL Schema, an theoretical Ur-schema exists in which all elements are optional and all types are abstract.
The use of abstract types is necessary because an Ur-type can never be used as is; a derived type must be
created, as per the definition of abstract types in the XSD specification.

4.1. Use of Ur-Types

XSD derivation is sufficient for most cases, but as mentioned above, in some instances it may be necessary to
perform changes to the UBL types that are not handled by standard mechanisms. In this case, the UBL Ur-types
should be used. Remember, an Ur-type exists for each UBL standard type and differs only in that all elements in
the content model are optional, including elements that are required in the standard type. By using the Ur-type,
the user can therefore make modifications, such as eliminating a required field, that would not be possible using
XSD derivation on the standard type.

For instance, suppose an organization would like to use the UBL PartyType, but does not want to use the
required ID element. In this case, normal XSD refinement is used, but on the Ur-type rather than the standard
type:

<xsd:complexType name="MyPartyType">
 <xsd:restriction base="ur:PartyType">
 <xsd:sequence>
 <xsd:element ref="PartyIdentification"
 minOccurs="0" maxOccurs="0">
 </xsd:element>
 <xsd:element ref="PartyName"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Address"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="PartyTaxScheme"
 minOccurs="0" maxOccurs="unbounded">
 </xsd:element>
 <xsd:element ref="Contact"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 <xsd:element ref="Language"
 minOccurs="0" maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:restriction>
 </xsd:complexType>

The new type is no longer compatible with the UBL PartyType, so standard processing engines that know
about XSD derivation will not recognize the type relationship. However, some level of interoperability is still
preserved, since both UBL PartyType and MyPartyType are derived from the PartyType Ur-type. If
this additional flexibility is required, a processor can be implemented to use the Ur-type rather than the UBL
type. It will then be able to process both the UBL type and the custom type, since they have a common ancestor
in the Ur-type (at the expense, of course, of an added level of complexity in the implementation of the
processor).

Figure 3.

398
399
400
401
402
403
404

405

406
407
408
409
410
411

412
413
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443
444
445

446

Once again: changes to the Ur-type do not enforce changes in the enclosing type, so the UBL OrderType has
to be changed as well if the user organization wants to ensure that only the new MyPartyType is used. In
fact, the new OrderType will not be compatible with the UBL OrderType, since MyPartyType is no
longer derived from UBL's PartyType. However, the new OrderType can be derived from the OrderType
Ur-type to achieve maximum interoperability.

It is possible that at some point one ends up with a schema that contains customizations that were made in a
compatible manner as well as customizations that were made in a non-compatible manner. If that is the case,
then the schema must be considered non-compatible.

4.2. Building New Types Using Core Components

Sometimes no type can be found in the UBL library or Ur-type library that can be used as the basis for a new
type. In this case, maximum interoperability (though not compatibility) can be achieved by building up the new
type using types from the core component library that underlies UBL. (See below)

For example, suppose a user organization needs to include a specialized product description inside business
documents. This description includes a unique ID, a name and the storage capacity of the product expressed as
an amount. The type definition would then appear as follows:

<xsd:complexType name="ProductDescriptionType">
 <xsd:sequence>
 <xsd:element name="ID" type="cct:IdentifierType"/>
 <xsd:element name="Name" type="cct:NameType"/>
 <xsd:element name="Capacity" type="cct:AmountType"/>
 </xsd:sequence>
</xsd:complexType>

Note

The above example should belong to a clearly non-UBL namespace.

It goes without saying that all new names defined when creating custom types from scratch should also conform
to the UBL Naming and Design Rules [Reference].

447

448
449
450
451
452

453
454
455

456

457
458
459

460
461
462

463
464
465
466
467
468
469

470

471

472
473

5. Customization of Codelists

The guidelines presented in this document do not include the customization of Codelists. This topic is not
addressed here. It is expected that it will be addressed during the 1.1 timeframe.

6. Use of the UBL Type Library in Customization

UBL provides a large selection of types which can be extended and refined as described in the preceding
sections. However, the internal structure of the UBL type library needs to be understood and respected by those
doing customizations. UBL is based on the concept of compatible reuse where possible, and there are cases
where it would be possible to extend different types within the library to achieve the same end. This section
discusses the specifics of how namespaces should be imported into a customizer's namespace, and the
preference of types for specific extension or restriction. What follows applies equally to UBL-compatible and
UBL-non-compatible extensions.

6.1. The Structure of the UBL Type Library

The UBL type library is exhaustively modelled and documented as part of the standard; what is provided here is
a brief overview from the perspective of the customizer.

Within the UBL type library is an implicit hierarchy, structured according to the rules provided by the UBL
NDR. When customizing UBL document types, the top level of the hierarchy is represented by a specific
business document. The business document schema instances are found inside the control schema modules,
which consist of a global element declaration and a complex type declaraion (referenced by the global element
declaration) for the document type. Also within these control schema modules are imports of the other UBL
namespaces used (termed "external schema modules"), and possibly includes of schema instances specific to
that module (termed "internal schema modules"). The control schema modules import the Common Aggregate
Components (CAC) and Common Basic Components (CBC) namespaces, which include global element and
type declarations for all of the reusable constructs within UBL. These namespace packages in turn import the
Specialized Datatype and Unspecialized Datatype namespaces, which include declarations for the constructs
which describe the basic business uses for data-containing elements. These namespaces in turn import the CCT
namespace, which provides the primitives from which the UBL library is built.[Reference the picture in
NDR]

This hierarchy represents the model on which the UBL library is based, and provides a type-intensive
environment for the customizer. The basic structure is one of semantic qualification: as you move from the
modeling primitives (CCTs) and go up the hierarchy toward the business documents, the semantics at each level
become more and more completely qualified. This fact provides the fundamental guidance for using these types
in customizations, as discussed more fully below.

6.2. Importing UBL Schema Modules

UBL schema modules are included for use in a customization through the importing of their namespaces.
Before extending or refining a type, you must import the namespace in which that type is found directly into the
customizing namespace. While inclusion may be used to express internal packaging of multiple schema
instances within a customizer's namespace, the include mechanism should never be used to reference the UBL
type library.

The UBL NDR provides a mechanism whereby each schema module made up of more than a single schema
instance has a "control" schema instance, which performs all of the imports for that namespace. Customizers
should follow this same pattern, since their customizations may well be further customized along the lines
described above. In the same vein, when a UBL document type is imported, it should be the control schema
module for that document type which is imported, bringing in all of the doctype-specific constructs, whether in

474

475
476

477

478
479
480
481
482
483
484

485

486
487

488
489
490
491
492
493
494
495
496
497
498
499
500

501
502
503
504
505

506

507
508
509
510
511

512
513
514
515
516

the control schema instance for that namespace or one of the "internal" schema instances.

6.3. Selecting Modules to Import

In many cases, the customizer will have no choice about importing or not importing a specific module: if the
customizer needs to extend the document-type-level complex type, there is only a single choice: the control
schema for the document type must be imported. Not all cases are so clear, however. When creating lower-level
elements, by extending the types found in the CAC and CBC namespaces (for example), it is possible to either
extend a provided type, or to build up a new one from the types available within the Specialized Datatypes and
Unspecialized Datatypes namespace packages.

UBL compatible customization always involves reuse at the highest possible level within the hierarchy
described here. Thus, it is always best to reuse an existing type from a higher-level construct than to build up a
new type from a lower-level one. Whenever faced with a choice about how to proceed with a customization,
you should always determine if there is a customizable type within the CAC or CBC before going to the
Datatype namespace packages. This rule further applies to the use of the datatype namespaces: never go directly
to the CCT namespace to create a type if something is available for extension or refinement within the datatype
namespaces. By the same token, it is always preferable to extend a complex datatype than to create something
with reference to an XSD primitive datatype, or a custom simple type.

It is important to bear in mind that the structure of the UBL library is based around the ideas of semantic
qualification and reuse. You should never introduce semantic redundancy into a customized document based on
UBL. You should always further qualify existing semantics if at all possible.

6.4. Creating New Document Types with the UBL Type Library

UBL provides many useful document types for customization, but for some business processes, the needed
document types will not be present. When creating a new document type, it is recommended that they be
structured as similarly as possible to existing documents, in accordance with the rules in the UBL NDR. The
basic structure can easily be seen in an examination of the existing document types. What is not so obvious is
the approach to the use of types. The design here is to primarily use the types provided in the CAC and CBC,
and only then going to the Datatypes namespace packages. This is the same approach described for modifying
UBL document types in the preceding section.

7. Future Directions

It is planned that in Phase II of the development of this Context Methodology, a context extension method will
be designed to enable automatic customization of UBL types based on context, as outlined in the charter of the
UBL TC. This methodology will work through a formal specification of the reasons for customizing the type,
i.e. the context driver and its value. By expressing the context formally and specifying rules for customizing
types based on this context, most of the changes that need to be made to UBL in order for it to fit in a given
usage environment can be generated by an engine rather than performed manually. In addition, significant new
flexibility may be gained, since rules from two complementary contexts could perhaps be applied
simultaneously, yielding types appropriate for, say, the automobile industry and the French geopolitical entity,
with the appropriate documentation and context chain produced at the same time.

UBL has not yet progressed to this stage of development. For now, one of the main goals of the UBL Context
Methodology Subcommittee is to gather as many use cases as possible to determined what types of
customizations are performed in the real world, and on what basis. Another important goal is to ensure that
types derived at this point from UBL's version 1 can be still used later on, intermixed with types derived
automatically in the future.

517

518

519
520
521
522
523
524

525
526
527
528
529
530
531
532

533
534
535

536

537
538
539
540
541
542
543

544

545
546
547
548
549
550
551
552
553

554
555
556
557
558

A. Notices

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2003, 2004.
All Rights Reserved.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be
claimed to pertain to the implementation or use of the technology described in this document or the extent to
which any license under such rights might or might not be available; neither does it represent that it has made
any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS
specifications can be found at the OASIS website. Copies of claims of rights made available for publication and
any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or
permission for the use of such proprietary rights by implementors or users of this specification, can be obtained
from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or
other proprietary rights which may cover technology that may be required to implement this specification.
Please address the information to the OASIS Executive Director.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this document itself may not be modified in any
way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of
developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or
assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS
ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS has been notified of intellectual property rights claimed in regard to some or all of the contents of this
specification. For more information consult the online list of claimed rights.

B. Intellectual Property Rights

For information on whether any patents have been disclosed that may be essential to implementing this
specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of
the UBL TC web page.

References

Normative

[RFC 2119] S. Bradner. RFC 2119: Key words for use in RFCs to Indicate Requirement Levels. IETF (Internet
Engineering Task Force). 1997.

559

560
561

562
563
564
565
566
567
568
569

570
571
572

573
574
575
576
577
578
579

580
581

582
583
584
585

586
587

588

589
590
591

592

593

594
595

