
 1

2

3

4

5

6

7

8
9

10

11

12

13

14
15

16
17
18
19
20

21
22

Position Paper: Global versus Local

Proposal 01, 10 February 2003

Document identifier:

draft-stuhec-globVloc-01.doc

Location:

Author:
Gunther Stuhec <gunther.stuhec@sap.com>

Abstract:

This position paper outlines the use and definition of facets within the UBL library content.

Status:

This is V01 of the identifier position paper intended for consideration by the OASIS UBL
Naming and Design Rules subcommittee and other interested parties.

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send
comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-
open.org list and send comments there. To subscribe, send an email message to ubl-
comment-request@lists.oasis-open.org with the word "subscribe" as the body of the
message.

Copyright © 2002 The Organization for the Advancement of Structured Information Standards
[OASIS]

mailto:gunther.stuhec@sap.com
mailto:ubl-ndrsc@lists.oasis-open.org
mailto:ubl-comment@lists.oasis-open.org
mailto:ubl-comment@lists.oasis-open.org
mailto:ubl-comment-request@lists.oasis-open.org
mailto:ubl-comment-request@lists.oasis-open.org

2

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Table of Contents

1 Introduction ... 4
2 Real Examples.. 4

2.1 Inconsistencies of tag-names... 4
2.1.1 Problem.. 4
2.1.2 Solution by using global declared elements .. 6
2.1.3 Solution by using local defined elements .. 7

2.2 Same sub-element in two or more aggregates with different characteristics 8
2.2.1 Problem.. 8
2.2.2 Solution by using global declared elements .. 9
2.2.3 Solution by using local defined elements .. 11

2.3 Synchronization of Types... 13
2.3.1 Problem.. 13
2.3.2 Solution by using global declared elements .. 13
2.3.3 Solution by using local defined elements .. 15

2.4 Reusability in Interfaces and Implementations .. 17
2.4.1 Problem.. 17
2.4.2 Solution by using global declared elements .. 17
2.4.3 Solution by using local defined elements .. 19

3 Reusability .. 21
3.1 Reusability of Structures and Elements ... 21
3.2 Programming and Interfaces.. 21

4 Recommedation.. 28
Appendix A. Bibliography .. 29
Appendix B. Notes... 30

3

4

1 Introduction 49

50
51

52
53

54
55
56
57

58
59
60
61

62

At October 16, 2002 the UBL NDRSC made the decision that they’re using global declared
elements instead of local defined elements in our UBL schemas.

Since I have a reasonable perl-script for generating xml-schema output from the different kinds of
excel spreadsheets, I'm testing the different possibilities for the representation of xml-schemas.

Therefore, for me it was very easily possbile to see the advantages and disadvantages of the
declaration of global elements or local elements which are based on complex types. Additionally I
can see this behaviour by using implementations (SAP or XML native databases) or by
developing of interfaces by using diverse computer languages or scripts (JAVA, XSLT etc.).

By this level of knowledge, I have seen that the using of global declared elements do have some
disadvantages, which might be k.o. criterias. The main problem of that is the global definition of
tag names. This problem involves negatively the design time, the developing of highly reusable
interfaces and/or implementations and the processing during the run time.

I would like to show these problems in the further chapters in much more detail.

2 Real Examples 63

64

65

66

2.1 Inconsistencies of tag-names

2.1.1 Problem
We can see some inconsistencies of tag-names in the global element called “BuyerParty”.

 67

68 The parent element has the tag name “BuyerParty”. Then, we have the child elements ID,
AccountCode, PartyName, Address, PartyTaxScheme and BuyerContact. Why do we have
sometime the object class term in the tag names and sometimes not? If we look into the
spreadsheet, than we see that all child elements have the same object class term.

69
70
71

72

BIE Dictionary Entry
Name

Object Class
Qualifier

Object
Class

Property
Qualifier

Property
Term

Representation
Term

Buyer_ Party. Details Buyer Party Details Details

Buyer_ Party.
Identification

Buyer Party Identification Identifier

Buyer_ Party. Account
ID. Code

Buyer Party Account ID Code

Buyer_ Party. Party
Name

Buyer Party Party Name Party Name

Buyer_ Party. Address Buyer Party Address Address

5

6

Buyer_ Party. Party Tax
Scheme

Buyer Party Party Tax
Scheme

Party Tax
Scheme

Buyer_ Party. Buyer_
Contact

Buyer Party Buyer Contact Contact

73

74
75
76
77

78

79
80
81

82

For an automatic generating system of schemas, it will be very hard to find out, which child-
elements must has be a object class qualifier and which of the child-elements not. There does not
existing any rule, which is defining the difference between the tag names with object class terms
and without object class terms.

2.1.2 Solution by using global declared elements
For an automatic generating system will be easier, if exists some common rules. That means, if
we’re using global declared elements, must the object class term existing in the tag-names of all
child elements, too.

For example:

 83

84
85
86
87
88

The disadvantage of that rule is, that we will get always long tag-names with redundancies. That
means that the object class term always existing in the parent element and in all child elements,
too. We’re generating to much and unnecessary information. In particular, if we’re generating the
tag names with some very long object class term, like “TransportHandlingUnit” or
“TransportEquipmentMeasurement”.

7

89

90
91
92

2.1.3 Solution by using local defined elements
We’re using the local definition of tag names, instead. Because there is a possibility, that all child
elements based on some specific types, but the tag names of these child elements can be
shortened by truncation of the object class term. For example:

 93

94

95

The equivalent xml schema is:

<xsd:complexType name="BuyerPartyType" id="UBL000089"> 96

<xsd:sequence> 97
 <xsd:element name="ID" type="cct:IdentifierType" id="UBL000090"/> 98
 <xsd:element name="AccountCode" type="cct:CodeType" id="UBL000091" 99
minOccurs="0"/> 100
 <xsd:element name="Name" type="PartyNameType" id="UBL000092" 101
minOccurs="0" 102
 maxOccurs="unbounded"/> 103
 <xsd:element name="Address" type="AddressType" id="UBL000093" 104
minOccurs="0" 105
 maxOccurs="unbounded"/> 106
 <xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL000094" 107
minOccurs="0" 108
 maxOccurs="unbounded"/> 109
 <xsd:element name="BuyerContact" type="BuyerContactType" id="UBL000095" 110
minOccurs="0"/> 111
 </xsd:sequence> 112

113
114

115
116
117

</xsd:complexType>

The advantage is, the child elements can be based always on different types but the tag names
itself will be always the same. The tag names can be truncated automatically by one very easy
rule:

8

118
119

120
121

If the child element representing the same object class, then the object class term must not be
shown in the tag element.

This is redundancy free and the complete dictionary entry name can be completed by using for
example an XPath navigation path:

 122
/BuyerParty/ID Buyer_ Party. Identification. Identifier 123
 124
/BuyerParty/Name Buyer_ Party. Name. Details 125
 126
/BuyerParty/TaxScheme Buyer_ Party. Tax_ Scheme. Details 127

128
129

130
131

132

133
134

135

2.2 Same sub-element in two or more aggregates with different
characteristics

2.2.1 Problem
We can have two aggregates, for example BuyerParty and SellerParty and both have some same
child elements, like ID or PartyName.

BuyerParty:

 136

137

138

SellerParty:

 139

140
141
142

143

But what happens, if we would like to have some specific characteristics for ID or PartyName
within the Aggregation “BuyerParty”? For example, the PartyName should have a child-element,
like AdditionalName and the ID should be restricted in the maximum length.

Like:

 144

145

146
147

2.2.2 Solution by using global declared elements
If we’re doing the suggested expansion by using the same global declared element, than we
would like to see the same expansion in SellerParty, too:

9

 148

149
150

151

To avoid this problem, we have to declare some further global elements. But how we will define
the tag names itself?

Should the tag names of BuyerParty added by the object class terms and object qualifer? Like:

 152

153
154

155
156
157

158
159
160

161

Why should we do that? And why should SellerParty using the shorter tag names? How can we
define a rule for that?

I guess, it is very hard to define a rule for this kind of extension, which says, which kind of child
elements should have shorter tag names and which kind of tag names should have longer tag
names. We would like to run into many conflicts by this.

If we’re using the global declared elements, it is useful, that all tag names are fully qualifed by
always the complete dictionary entry name. This is only the one possibility to avoid the conflicts,
as described above in an automatic way.

By this way, we will get very long tag-names, like:
 162

10

11

BuyersCatalogueItemIdentificationItemMeasurement (35 Bytes) 163
 164
SellersHandlingUnitDespatchLineDespatchedQuantity (49 Bytes) 165
 166
ManufacturersHandlingUnitDespatchLineOrderLineID (48 Bytes) 167
 168
ManufacturersTransportEquipmentRefrigerationStatusIndicator (59 169
Bytes) 170

171
172

173

174
175
176

177
178

179
180

181

182
183
184
185
186
187

188

But we’ve to think about it:

• Many of the applications (databases, interfaces, erp-systems, user-interfaces) can not handle
directly with tag names, which are longer as 30 bytes. A mapping (additional processing step)
into shorter tag names is necessary.

• Many business documents in the real life have over 10.000 positions. Long tag names would
decrease the speed of using, processing and transferring, tremendously.

• Very long tag names usually are not human readable any more. A mapping into much more
understandable tag names is necessary.

2.2.3 Solution by using local defined elements
All local defined child elements can have tag names, which always based on the dictionary entry
name and shortened by the same truncation rules. Each child element can be base on different
types. These types can be the common CCTs or the common CCs. If this type The specific
characteristics like AdditionalName or length=”10” can be defined in this specific types. The types
itself can be distinguished by fully qualified names, which can be the same as the dictionary entry
name of each BIE.

Example:

 189

12

190

191

The xml schema for this type is:
 <xsd:complexType name="BuyerPartyType" id="UBL000089"> 192
 <xsd:sequence> 193
 <xsd:element name="ID" type="cct:IdentifierType" id="UBL000090"> 194
 <xsd:annotation> 195
 <xsd:documentation>length="10"</xsd:documentation> 196
 </xsd:annotation> 197
 </xsd:element> 198
 <xsd:element name="AccountCode" type="cct:CodeType" id="UBL000091" 199
minOccurs="0"/> 200
 <xsd:element name="Name" type="PartyNameType" id="UBL000092" 201
minOccurs="0" 202
 maxOccurs="unbounded"/> 203
 <xsd:element name="Address" type="AddressType" id="UBL000093" 204
minOccurs="0" 205
 maxOccurs="unbounded"/> 206
 <xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL000094" 207
minOccurs="0" 208
 maxOccurs="unbounded"/> 209
 <xsd:element name="BuyerContact" type="BuyerContactType" 210
id="UBL000095" minOccurs="0"/> 211
 </xsd:sequence> 212
 </xsd:complexType> 213
 <xsd:complexType name="BuyerPartyID"> 214
 <xsd:simpleContent> 215
 <xsd:restriction base="cct:IdentifierType"> 216
 <xsd:length value="10"/> 217
 </xsd:restriction> 218
 </xsd:simpleContent> 219
 </xsd:complexType> 220
 <xsd:complexType name="BuyerPartyNameType" id="UBL000397"> 221
 <xsd:sequence> 222
 <xsd:element ref="Name" id="UBL000398"/> 223
 <xsd:element name="AdditionalName"/> 224
 </xsd:sequence> 225
 </xsd:complexType> 226

227

228
229
230
231

By this solution can be all element tag names in the shortest possible way. All elements can be
based on different types. Therefore, the tag names do always have a common understanding and
no confusion. All tag names might be short enough for further using in interfaces, databases, user
interfaces etc. without mapping into shorter names.

13

232

233

234
235
236
237

2.3 Synchronization of Types

2.3.1 Problem
All global declared elements of aggregates based currently on a type with the same name. For
two or more different same aggregates with distinguished names exist two ore more equivalent
types. Like “BuyerContact” and “ShippingContact”, both aggregates based on the specific types
“BuyerContactType” and “ShippingContactType”. But both types have exactly the same structure.

BuyerContact

ShippingContact

BuyerContactType

ShippingContactType

BuyerContact

ShippingContact

BuyerContactType

ShippingContactType 238

239 Schema of BuyerContact and BuyerContactType:
 <xsd:element name="BuyerContact" type="BuyerContactType"/> 240
 <xsd:complexType name="BuyerContactType" id="UBL000078"> 241
 <xsd:sequence> 242
 <xsd:element ref="ID"/> 243
 <xsd:element ref="Name" minOccurs="0"/> 244
 <xsd:element ref="Phone" minOccurs="0"/> 245
 <xsd:element ref="Fax" minOccurs="0"/> 246
 <xsd:element ref="E-Mail" minOccurs="0"/> 247
 </xsd:sequence> 248
 </xsd:complexType> 249
 250
Schema of ShippingContact and ShippingContactType: 251
 <xsd:element name="ShippingContact" type="ShippingContactType"/> 252
 <xsd:complexType name="ShippingContactType" id="UBL000595"> 253
 <xsd:sequence> 254
 <xsd:element ref="ID"/> 255
 <xsd:element ref="Name" minOccurs="0"/> 256
 <xsd:element ref="Phone" minOccurs="0"/> 257
 <xsd:element ref="Fax" minOccurs="0"/> 258
 <xsd:element ref="E-Mail" minOccurs="0"/> 259
 </xsd:sequence> 260

261

262

263
264
265
266
267

 </xsd:complexType>

2.3.2 Solution by using global declared elements
If we would like to make all elements unique in an automatic manner (see chapter 2.1 and 2.2),
all global declared elements must be based on specific types. But all child elements within these
types must have the object class term in the element tag name. There is no other possibility to
differentiate each child element which has some specific characteristics (facets of leaf-elements
or substructure of aggregates) in a unique and automatic way.

14

268
269
270
271
272
273
274

275

276

You will see this in the following example. Some characteristics of the same BBIEs within the two
aggregates “BuyerContact” and “SellerContact” are different. Therefore it is necessary to declare
a global element for every BBIE (BuyerContactID, BuyerContactName, ShippingContactID and
ShippingContactName) which have some different characteristics. And why should we do that for
BBIEs with different characteristics and not for the BBIEs which have the same characteristics?
This would become some inconsistencies and would be not handable by parsers for defining
interfaces very efficiently.

Example:

Schema of BuyerContact and BuyerContactType:
 <xsd:element name="BuyerContact" type="BuyerContactType"/> 277
 <xsd:complexType name="BuyerContactType" id="UBL000078"> 278
 <xsd:sequence> 279
 <xsd:element ref="BuyerContactID"/> 280
 <xsd:element ref="BuyerContactName" minOccurs="0"/> 281
 <xsd:element ref="BuyerContactPhone" minOccurs="0"/> 282
 <xsd:element ref="BuyerContactFax" minOccurs="0"/> 283
 <xsd:element ref="BuyerContactE-Mail" minOccurs="0"/> 284
 </xsd:sequence> 285
 </xsd:complexType> 286

287

288

Schema of ShippingContact and ShippingContactType:
 <xsd:element name="ShippingContact" type="ShippingContactType"/> 289
 <xsd:complexType name="ShippingContactType" id="UBL000595"> 290
 <xsd:sequence> 291
 <xsd:element ref="ShippingContactID"/> 292
 <xsd:element ref="ShippingContactIName" minOccurs="0"/> 293
 <xsd:element ref="ShippingContactIPhone" minOccurs="0"/> 294
 <xsd:element ref="ShippingContactIFax" minOccurs="0"/> 295
 <xsd:element ref="ShippingContactIE-Mail" minOccurs="0"/> 296
 </xsd:sequence> 297
 </xsd:complexType> 298

299

300

Schema of globale declared elements and the belonged types:
 <xsd:element name="TimezoneOffsetMeasure" type="cct:TextType"/> 301
 <xsd:element name="ShippingContactID"/> 302
 <xsd:complexType name="ShippingContactIDType"> 303
 <xsd:simpleContent> 304
 <xsd:restriction base="cct:IdentifierType"> 305
 <xsd:length value="13"/> 306
 </xsd:restriction> 307
 </xsd:simpleContent> 308
 </xsd:complexType> 309
 <xsd:element name="BuyerContactID"/> 310
 <xsd:complexType name="BuyerContactIDType"> 311

15

 <xsd:simpleContent> 312
 <xsd:restriction base="cct:IdentifierType"> 313
 <xsd:length value="30"/> 314
 </xsd:restriction> 315
 </xsd:simpleContent> 316
 </xsd:complexType> 317
 <xsd:element name="ShippingContactName"/> 318
 <xsd:complexType name="ShippingContactNameType"> 319
 <xsd:simpleContent> 320
 <xsd:restriction base="cct:NameType"> 321
 <xsd:maxLength value="40"/> 322
 </xsd:restriction> 323
 </xsd:simpleContent> 324
 </xsd:complexType> 325
 <xsd:element name="BuyerContactName"/> 326
 <xsd:complexType name="BuyerContactNameType"> 327
 <xsd:simpleContent> 328
 <xsd:restriction base="cct:NameType"> 329
 <xsd:maxLength value="50"/> 330
 </xsd:restriction> 331
 </xsd:simpleContent> 332
 </xsd:complexType> 333

334

335

336

337
338
339
340
341
342
343

344

2.3.3 Solution by using local defined elements
Better is this, if we solve this problem by using local defined elements. Because all element
names ar readable enough, short as possible and truncated automatically by some fixed rules.
The most important thing is that all elements within the aggregation with the same object class
term do have the same tag names. This helps for a common understanding and makes the
implementation and parsing of aggregates more automatizeable. All elements refer to the specific
types. The types can either be a very generic CC/CCT or can be a BIE with some specific
(restricted) characteristics.

Example, the declaration of BuyerContactType and SellerContactType:
 <xsd:complexType name="BuyerContactType" id="UBL000078"> 345
 <xsd:sequence> 346
 <xsd:element name="ID" type="cat:BuyerContactIDType" id="UBL000079"/> 347
 <xsd:element name="Name" type="cat:BuyerContactNameType" 348
 id="UBL000080" minOccurs="0"/> 349
 <xsd:element name="Phone" type="cct:TextType" id="UBL000081" 350
 minOccurs="0"/> 351
 <xsd:element name="Fax" type="cct:TextType" id="UBL000082" 352
 minOccurs="0"/> 353
 <xsd:element name="E-Mail" type="cct:TextType" id="UBL000083" 354
 minOccurs="0"/> 355
 </xsd:sequence> 356

16

 </xsd:complexType> 357
 358
 <xsd:complexType name="ShippingContactType" id="UBL000595"> 359
 <xsd:sequence> 360
 <xsd:element name="ID" type="cat:ShippingContactIDType" 361
 id="UBL000596"/> 362
 <xsd:element name="Name" type="cat:ShippingContactNameType" 363
 id="UBL000597" minOccurs="0"/> 364
 <xsd:element name="Phone" type="cct:TextType" id="UBL000598" 365
 minOccurs="0"/> 366
 <xsd:element name="Fax" type="cct:TextType" id="UBL000599" 367
 minOccurs="0"/> 368
 <xsd:element name="E-Mail" type="cct:TextType" id="UBL000600" 369
 minOccurs="0"/> 370
 </xsd:sequence> 371
 </xsd:complexType> 372

373

374

The BBIEs (ID and Name) based on the types which have some restricted characteristics:
 <xsd:complexType name="BuyerContactIDType"> 375
 <xsd:simpleContent> 376
 <xsd:restriction base="cct:IdentifierType"> 377
 <xsd:length value="30"/> 378
 </xsd:restriction> 379
 </xsd:simpleContent> 380
 </xsd:complexType> 381
 <xsd:complexType name="BuyerContactNameType" id="UBL000397"> 382
 <xsd:simpleContent> 383
 <xsd:restriction base="cct:NameType"> 384
 <xsd:length value="13"/> 385
 </xsd:restriction> 386
 </xsd:simpleContent> 387
 </xsd:complexType> 388

389
 <xsd:complexType name="ShippingContactIDType"> 390
 <xsd:simpleContent> 391
 <xsd:restriction base="cct:IdentifierType"> 392
 <xsd:length value="13"/> 393
 </xsd:restriction> 394
 </xsd:simpleContent> 395
 </xsd:complexType> 396
 <xsd:complexType name="ShippingContactNameType"> 397
 <xsd:simpleContent> 398
 <xsd:restriction base="cct:NameType"> 399
 <xsd:maxLength value="40"/> 400
 </xsd:restriction> 401
 </xsd:simpleContent> 402
 </xsd:complexType> 403

404

17

405
406

407

408

409
410
411

412
413
414
415
416
417

418
419

420

421
422
423
424

425

All another BBIEs (child elements) based on the standard CCT, because for these BBIEs is no
restriction necessary.

2.4 Reusability in Interfaces and Implementations

2.4.1 Problem
One of the biggest benefits of XML is the development of very efficient interfaces and applications
with a high reusability. But this must be based on very efficient XML schemas as well as XML
instances. Otherwise, you will have the same effort as without XML.

The most of interfaces (for databases, userinterfaces, to applications etc.) using the tag names of
XML structures for defining variables or database tables, normally. It should be the possibility that
we can reuse all BIEs and CCs for the different development requirements, too. And this will be
possible, if we have always a common understanding or processing of all BIEs without any
additional mappings or control procedures. This helps us, to develop applications in a very fast
and cheap way.

If exists inconsistencies in tag names especially, you will loose these advantages in developing,
rapidedly.

2.4.2 Solution by using global declared elements
Global delared elements do have always inconsistencies in tag names. Because all tag names
itself must be unique and if you have the same BIE with two different characteristics, you have to
define two different elements with different tag names. By this, you must query in the program
every tag name itself and this makes the programming very inefficient.

For example, you have the following instance with global declared elements:
< BusinessDocument> 426
 < BuyerContact> 427
 < BuyerContactID>000000000000000000000000120321</cat:BuyerContactID> 428
 < BuyerContactName>Hugo Herbert</cat:BuyerContactName> 429
 < BuyerContactPhone>+49 54639 4334</cat:BuyerContactPhone> 430
 < BuyerContactFax>+49 33853 3843</cat:BuyerContactFax> 431
 < BuyerContactE-Mail>hugo.herbert@ubl.org</cat:BuyerContactE-Mail> 432
 </BuyerContact> 433
 <ShippingContact> 434
 <ShippingContactID>0000000134543</cat:ShippingContactID> 435
 <ShippingContactName>Berta Bertram</cat:ShippingContactName> 436
 <ShippingContactPhone>+1 43543 43453</cat:ShippingContactPhone> 437
 <ShippingContactFax>+1 35433 4343</cat:ShippingContactFax> 438
 <ShippingContactE-Mail>bert.bertram@ccts.org</cat:ShippingContactE-Mail> 439
 </ShippingContact> 440

18

</BusinessDocument> 441
442 And you would like to express the information in the following format:

Buyer: 443
ID: 000000000000000000000000120321 444
Name: Hugo Herbert 445
Phone: +49 54639 4334 446
Fax: +49 33853 3843 447
E-Mail: hugo.herbert@ubl.org 448
 449
Shipper: 450
ID: 0000000134543 451
Name: Berta Bertram 452
Phone: +1 43543 43453 453
Fax: +1 35433 4343 454
E-Mail: bert.bertram@ccts.org 455
 456

457

458
459
460

461

There is a very inefficient procedure necessary, because you have to parse every tag name
separately and you have to generate another output tag information, because the global declared
elements are too long and not understandable in a common way.

The following perl script shows the problematic in more detail:
use XML::SimpleObject; 462
 463
my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree"); 464
my $xmlobj = new XML::SimpleObject ($parser->parse($XML)); 465
 466
print "Buyer: \n"; 467
process_buyer_contact ($xmlobj->child("BusinessDocument")-468
>children("BuyerContact")) 469
print "Shipper: \n"; 470
process_shipping_contact ($xmlobj->child("BusinessDocument")-471
>children("ShippingContact")) 472
 473
process_buyer_contact { 474
 my $contact; 475
 printf("ID: $s\n", $element->child("BuyerContactID")-476
>value); 477
 printf("Name: $s\n", $element->child("BuyerContactName")-478
>value); 479
 printf("Phone: $s\n", $element-480
>child("BuyerContactPhone")->value); 481
 printf("Fax: $s\n", $element->child("BuyerContactFax")-482
>value); 483

mailto:hugo.herbert@ubl.org
mailto:bert.bertram@ccts.org

19

 printf("E-Mail: $s\n", $element->child("BuyerContactE-484
Mail")->value); 485
} 486
 487
process_shipping_contact { 488
 my $contact; 489
 printf("ID: $s\n", $element->child("ShippingContactID")-490
>value); 491
 printf("Name: $s\n", $element-492
>child("ShippingContactName")->value); 493
 printf("Phone: $s\n", $element-494
>child("ShippingContactPhone")->value); 495
 printf("Fax: $s\n", $element->child("ShippingContactFax")-496
>value); 497
 printf("E-Mail: $s\n", $element->child("ShippingContactE-498
Mail")->value); 499
} 500

501

502
503
504

505
506
507

2.4.3 Solution by using local defined elements
If the tags of child elements within same aggregates (based on same ACCs) have always the
same names, it will be much easier and efficient to develop interfaces for processing the
instances.

The following instance based on local defined elements. The aggregates BuyerContact and
SellerContact based on the ACC (ContactDetailsType). By this, all equivalent child elements have
the same tag names.

<BusinessDocument> 508
 <BuyerContact> 509
 <ID>000000000000000000000000120321</ID> 510
 <Name>Hugo Herbert </Name> 511
 <Phone>+49 54639 4334</Phone> 512
 <Fax>+49 33853 3843</Fax> 513
 <E-Mail>hugo.herbert@ubl.org</E-Mail> 514
 </BuyerContact> 515
 <ShippingContact> 516
 <ID>0000000134543</ID> 517
 <Name>Berta Bertram</Name> 518
 <Phone>+1 43543 43453</Phone> 519
 <Fax>+1 35433 4343</Fax> 520
 <E-Mail>bert.bertram@ccts.org</E-Mail> 521
 </ShippingContact> 522
</BusinessDocument> 523

524

525
526

Therefore, you can develop some reusable subroutines (function) for processing the structure for
the ACC “ContactDetails” and you can use this functions every time if you have to process some

20

527
528

529

ABIEs which are based on “ContactDetails”. Further, you have a higher reusability of the tag
names. You can use this tag names for the understandable representation, without any mapping.

The following perl script shows the reusability of same structures and common tag names:
use XML::SimpleObject; 530
 531
my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree"); 532
my $xmlobj = new XML::SimpleObject ($parser->parse($XML)); 533
 534
print "Buyer: \n"; 535
process_contact ($xmlobj->child("BusinessDocument")-536
>children("BuyerContact")) 537
print "Shipper: \n"; 538
process_contact ($xmlobj->child("BusinessDocument")-539
>children("ShippingContact")) 540
 541
 542
process_contact { 543
 my $contact; 544
 foreach my $element ($contact->child) { 545
 printf("%s: $s\n", $element, $element->value); 546
 } 547
} 548

549

550
551
552

553

For processing “BuyerContact” and “ShippingContact” is only one function necessary. And you
can use tag names directly for showing in the output. Therefore, you will get the same output, but
much more efficiently.

Buyer: 554
ID: 000000000000000000000000120321 555
Name: Hugo Herbert 556
Phone: +49 54639 4334 557
Fax: +49 33853 3843 558
E-Mail: hugo.herbert@ubl.org 559
 560
Shipper: 561
ID: 0000000134543 562
Name: Berta Bertram 563
Phone: +1 43543 43453 564
Fax: +1 35433 4343 565
E-Mail: bert.bertram@ccts.org 566
 567

568

mailto:hugo.herbert@ubl.org
mailto:bert.bertram@ccts.org

21

3 Reusability 569

570

571

572

573
574
575
576
577
578

579

580
581
582
583
584

585
586
587
588

589
590
591
592

593

594
595

596

597

XML offers us the possibility to have a reusability in two different ways:

Structure and Elements

Programming and Interfaces

A business document language will be accepted worldwide, if we as developer of this language
recognize both ways of reusability. Therefore it is a must for UBL to consider both areas.
Otherwise, UBL will be ignored on the one hand side from the designers of business documents
and on the other hand side from the developers of interfaces and applications. And this can not
be happen for a standard, which will be the only one business language over the world at one
time.

3.1 Reusability of Structures and Elements
A structure and elements should be so often used as possible. Global declared element offers for
this reason some advantages more. All elements based on a fixed tag name and on a fixed
structure. Therefore, you can refer to these elements only. There is no wrong definition and no
wrong interpretation. But this will be only effective, if you would like to define business
documents.

The problem of global declared elements is that all elements are declared in the same hierarchy.
This leads to inconsistencies in defining of the tag names. Especially, if you have some child
elements which based on same BCCs or ACCs but it has different characteristics or sub-
structures. This inconsistencies influence the modeling and programming, seriously.

Therefore it will be better, if the name of same child-elements and in different aggregates always
the same. And this is only reachable by using local defined elements. The tag names of these
elements will be consistent, too, if the tag names always be based on the dictionary entry name
and if these names always be shortened in the same manner (UBL tag name truncation rule).

3.2 Programming and Interfaces
The definition of business documents will be mostly done by modeling-tools (like UML class
diagrams) in future. Because these modeling tools considers the following parts:

No knowledge in XML schema definition is necessary

Automatic generation of XML schemas

22

598

599
600
601
602
603

604
605

Automatic generation of different types of interfaces.

Especially the smallest companies do not have any knowledge about complex XML schemas.
Therefore a couple of software vendors developing on graphical modeling and business
document interaction tools, which give the small companies the great possibility to participate on
e-Collaboration. The users of business documents will be not confronted with XML itself, in future.
This will be the only one internal physical format.

Therefore, it will be very narrow interfaces between modeling, xml and developing of interfaces, in
future (see following picture).

Modelling
Tool

Interfaces for
Internal Processing

User Representation
Data Bases

Mapping

XML Schema

Generation of class
diagrams

Automatic generation
of Intefaces

Valid XML Instances
for parsing

(or generation of
interfaces)

XML Instances for
validation

Generation of XML
Schemas

Generation of class
diagrams

 606

607

608
609

610

611

This is only possible, if all names and structure will be always consistent and have always the
same meaning. This structures can be used in many times without any big effort.

For example:

Object Oriented Modelling by Class Diagrams

BuyerContact

-ID : BuyerContactIdentifierType = length="30"
-Name : BuyerContactNameType = length="13"
-Phone : cct:PhoneType
-Fax : cct:TextType
-E-Mail : cct:TextType

«type»
ContactDetails

-ID : cct:IdentifierType
-Name : cct:NameType
-Phone : cct:TextType
-Fax : cct:TextType
-E-Mail : cct:TextType

ShippingContact

-ID : ShippingContactIdentifierType = length="13"
-Name : ShippingContactNameType = maxLen="13"
-Phone : cct:PhoneType
-Fax : cct:TextType
-E-Mail : cct:TextType

Generating user interfaces

Buyer Contact

ID

Name

Phone

Fax

E-Mail

000000000000000000000000120321

Hugo Herbert

+49 54639 4334

+49 33853 3843

hugo.herbert@ubl.org

Shipping Contact

ID

Name

Phone

Fax

E-Mail

0000000134543

Berta Bertram

+1 43543 43453

+1 35433 4343

bert.bertram@ccts.org

Generating of database tables

000000000000000000000000120321 0000000134543

Hugo Herbert

+49 54639 4334

+49 33853 3843

hugo.herbert@ubl.org

+1 43543 43453

+1 35433 4343

bert.bertram@ccts.org

Shipping

E-Mail

Fax

Phone

Name

ID

Buyer

Berta Bertram

Generating ABAP-Objects for SAP development environment

23

Storing into a repository for providing and mapping to another
dialects

Developing and/or generating interface applications
use XML::SimpleObject;

my $parser = new XML::Parser (ErrorContext => 2, Style => "Tree");
my $xmlobj = new XML::SimpleObject ($parser->parse($XML));

print "Buyer: \n";
process_contact ($xmlobj->child("BusinessDocument")-
>children("BuyerContact"))
print "Shipper: \n";

24

25

process_contact ($xmlobj->child("BusinessDocument")-
>children("ShippingContact"))

process_contact {
 my $contact;
 foreach my $element ($contact->child) {
 printf("%s: $s\n", $element, $element->value);
 }
}

Developing and/or generating XSLT-Scripts
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE xsl:stylesheet [
 <!ENTITY nbsp " ">
]>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.org/1999/XSL/Format">
 <xsl:output method="html" indent="yes" encoding="UTF-8"/>
 <xsl:template match="/">
 <html>
 <head>
 <title>Contacts</title>
 <link rel="stylesheet" type="text/css"
href="002006825000000584722001E.css"></link>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="BusinessDocument">
 <xsl:apply-templates select="./*"/>
 </xsl:for-each>
 </tr>
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="*">
 <td>
 <h2>
 <xsl:value-of select="name()"/>
 </h2>
 <table border="1" cellspacing="0" cellpadding="3">
 <tr>
 <th scope="col">Key</th>
 <th scope="col">Value</th>
 </tr>
 <xsl:for-each select="./*">
 <tr>
 <xsl:attribute name="class">
 <xsl:choose>

26

 <xsl:when test="position() mod 2 = 0">
 <xsl:value-of select="'darkrow'"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="'lightrow'"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <td>
 <xsl:value-of select="name()"/>
 </td>
 <td align="right">
 <xsl:value-of select="."/>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </td>
 </xsl:template>
</xsl:stylesheet>

Generating HTML-Output

Defining complex Types within XML Schemas

612

613
614
615
616
617

All examples above base on the same schema structure of the ACC “ContactDetails”. It would be
always used for “BuyerContactDetails” and “ShippingContactDetails” without additional mappings.
Only some applications (ABAP-Objects and database tables) need the restrictions of the length of
the BIEs ID and name. Therefore it is necessary to define some additional complex types
“BuyerContactIdentifierType”, “BuyerContactNameType”, “ShippingContactIdentifierType” and

27

28

618
619
620

“ShippingContactNameType” with this restricitions. Because, this restrictions would be useful for
the validation of XML instances and it is necessary for the automatic generation of ABAP Objects
or database tables..

4 Recommedation 621

622
623
624
625
626
627
628

629
630

631
632
633
634

635

A consistency of tag names of the same or similar aggregations is necessary to enables a
reusability of BIEs in applications, programs and interfaces, too. The consistency is not
reachable, if we’re using global declared elements and we would like to have very short tag
names itself. Many elements would get completely different tag names itself, although if they
would be the same BBIE or ASBIE of different ABIEs, which based on the same ACC, but in
different contexts. In particular is a consistency not reachable, if we have hunderts of elements in
one namespace and on the same hierarchy.

If the consistency and uniformity of tag names is not possible, the efficient reusability in
developing of programs/interfaces and automatic generating would be decreasing enormously.

Therefore, would I highly recommended that we’re using local defined elements instead of global
declared elements. Because this elements can be truncated always in the same manner and you
have in all ABIEs which are based on one ACC the same short, human and technical readable
tag names.

29

Appendix A. Bibliography 636

30

Appendix B. Notes 637

638
639
640
641
642
643
644
645
646

647
648
649

650
651

652
653
654
655
656
657
658
659
660

661
662

663
664
665
666
667

668

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification, can be
obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS]
2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself does not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

1 of 5 2/25/2003 11:39 AM

UBL-NDRSC MESSAGE

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] |
[Thread Index] | [Elist Home]

Subject: [ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003

From: Lisa-Aeon <lseaburg@aeon-llc.com>

To: UBL-NDR <ubl-ndrsc@lists.oasis-open.org>

Date: Wed, 05 Feb 2003 21:44:31 -0600

Here are the minutes from today's very lively discussion of Local vs. Global. Please read through and
be ready to start again tomorrow! Only kidding!

1. Roll call ** didn't get roll call complete **

 Bill Burcham - phone in
 Mavis Cournane
 Mark Crawford
 Fabrice Desré
 Arofan Gregory - phone in
 Michael Grimley - phone in
 Eduardo Gutentag
 Lisa Seaburg
 Gunther Stuhec
 Paul Thorpe
 Anne Hendry - phone in
 Danny Vint (observer, ACCORD)
 Dave Carlson (observer)

2. Current position summary

 Mavis: issues discussion procedure:
 - list issues
 - speak by invitation
Fabrice summarizes the case so far. In Burlington we agreed on Global. The main reasons behind
Global was element reuse. Qualified elements were also easier to customize. The "Garden of Eden"
define a CT and for each CT at least one global element and these global elements are then reused in
the BIE.

For each complex type at least one global element.
Mavis: In 0p70 release what did they do?
Mixture - Gunther's algorithm is to first generate for each complex type an element and then wherever
complex type is used generate element whose name is derived from the property type name.

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

2 of 5 2/25/2003 11:39 AM

Arofan: given that intent was reuse, maybe that's ok.
Bill: you can always make a new type
Eduardo: this is a tangent; should come back to global vs. local.
Mavis: Did we have to bodge our rules for 0p70 to get something usable? Is there anything in 0p70
that we might have to revisit this.

Gunther presents slides (this was sent to list). Over 1700 BIEs. Strongly derived from ebXML CCs.
Example of 2 diff BIEs expressing same ABIE. EG. global declared element 'ID'. But then might need
restrictions: "Dunns", etc. So need to declare new global declared element. Then must change all
aggregate types which are using that global declared element. e.g.. buyer address and seller address
aggregate types; and manufacturer address and delivery address - also types. 4 BIEs, 4 separate
types. All reference element 'ID' (ref='id').
 manufacturer using a specific address (e.g.. Dunns), not this one. What happens then? Have to
change all these. Impacts implementation, schemas, any interfaces or applications that are based on
or using this aggregation. A better way?

Fragment processing is uncomplicated etc.

B: we are defining the global element as an outcome of where the CT is used in a content model, if
some of the ABIEs are never referenced we should never generate the element.

Bill: if I want to do a specialization of a ubl BIE type like id and define a new abie type that will use that
bie type id. How do I get a ubl document to carry that new type - can a local element that refs a
global element declaration carry a specialization of that global? [Ed note: see last few paras for Bill's
test of this - it does work, is possible]
A: for each instance of use where the name is new we generate a new element. In the 0p70 release,
they did a mixture.
G: algorithm is to first generate for each CT an element and wherever the CT is used generate a
Global element whose name is derived from the property and we end up with spurious generated
global element.

G: we made the decision based on short examples and we did not use all the CCTS rules and
definitions. This works fine where you are defining a few elements only.
G: We (SAP) looked at the Boeing, EAN.UCC and we have over 1700 different unharmonized BIES
and to harmonize them makes it very difficult using Global elements

All BIES based on the CCTS and we need to look at how we can use it for our definitions of our
schemas. We have to use the DictionaryElementNames and how do we get short tag names.

One or more global elements are derived from an aggregate TYPE. A bunch of aggregate types have
some elements and these refer to global declared elements. the global element will be reusable in the
aggregate types. What happens if the same element expresses two different BIEs and they have two
different characteristics. For example ID, EANID or DUNSID and we have to define a new global
element with a specific name and then new complex types. This new global element will get a
completely new name and this new global element impacts some already defined aggregate types.
Because I need some restrictions for EANID I have a new ID tag and I have to change all aggregate
types which are using that global declared elements.

B: is your concern while CCTs might be derived from one another there is no way to do that with
elements.
G: Manufacturer and Seller use specific IDs like EANID of type EANID.type with new characteristics
and restrictions, you have to change all your refs into EANID. This impacts our interfaces and our
applications i.e. everything that uses those aggregations.

G: all tag names must be unique we have 1700 BIEs we need unique tagnames. The ebXML CCTS
dictionary entry names are unique and these are too long for our tag names.

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

3 of 5 2/25/2003 11:39 AM

A: It is not clear what a global element is it a BIE or a Core component.

G: Modifications of BIEs lead to change of type and tag names. Changing tag names requires
additional effort. Our defined truncation rules cannot be used for global element tag names. Truncated
tag names can have different semantic meanings.

B: any discussion predicated on global meaning we have to use long tag names is specious. Op70
has short tag names.

List of issues with Gunther's presentation
-What does it mean to "change" and the use of namespaces
-Impact on Instances with namespaces, long tag names and semantics
-Benefits of instance rules and impact on understanding and processing
-Complexity of schema, ebXML compliance, organization of namespaces in a library
-LCSC process, the need to always generate unique names
-Detailed exception handling

What does it mean to "change" and the use of namespaces
E: The departure point is the UBL library and schemas and those are changed by someone just by
adding types and elements at will, with no modification of metadata in the schema itself. It all
becomes just a modification of the original schema.
E: You can't just do that. For UBL compliance you have to add a new namespace in which you add a
Type and an element but it is in that namespace. It is irrelevant if this is local or global.
B: If I want to do a specialization of some UBL BBIE type like ID and I want to define a new ABIE .
How do I get UBL document to carry that new ABIE. If we took schema as it stands and try to do a
specialization. Gunther's presentation makes me think there is no way with 0p70 to come in and do a
specialization and have it carried in a UBL doc.
A: Import an existing type and extend it with my restriction. Everything using it in the schema must be
declared in the new namespaces and be part of the extension. You have created a new doc type that
can be processed excluding that one modified bit.
E: If we had local elements, would that be as extensive a modification?
A: There is no diff. Once you change a type you have to change everything between it and the
doctype.
B: Under local element schema it is not necessary to do this much modification. You can specialize it
at the point of where the specialization wants to be used. You use xsi:type.
A: This dynamic remains true regardless if you use local or global
B: With global elements you won't have the option to use XSI:type at the point of use.
A: XSI type is in the document
G: "change" at the design time of the library. How do you generate new tag names.
If we have 3 new global elements you have to put the object class on to the tag name itself the name
is very long.
E: Gunther was talking about design of libraries and not customization.
E: In customization you would use different namespaces.

Impact on namespaces:
A: It is said we have 1700 unique elements, but that is untrue, because they are under different
namespaces. You assume that if you have several IDs, they are part of the reusabletypes, their
specialization belongs to the new namespace of the document.
A: Example, product ID, restriction of the core ID, in that case disambiguating them with different
names, is not true. Don't buy that there are 1700 different elements.
G: The BIEs are collected from different organizations and can be in different namespaces. When we
harmonize those into one library what happens.
E: You have to change names. There is no way to avoid huge clashes and issues if you try to
harmonize
G: Enormous consequences, some names will be very long,others very short. Not very elegant.
B: Local names means you don't have 1700 things to resolve. You have to resolve the types and not
every element of every type

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

4 of 5 2/25/2003 11:39 AM

M: Does not mean you don't have to resolve the BIEs.
G: How can we use the same types of aggregation in the same way. Long tag names not very helpful.
Interfaces are not readily shareable.
A: What is a type and a BIE. Is a BIE a semantic model to pin down one and only one definition.
M: CCTS calls for everyone of those to be a unique BIE and therefore unique complex type.
G: If you have a library with 1000 different BIES, then same number of complex types and global
elements. How do you handle those global tag names efficiently in many different interfaces. For each
dictionary entry name and defining the tag name.
A: Last release proved it was unnecessary to do that.
E: At some time using the local element method. Doubts were raised about it . We talked about global
and we weighted this. Very unscientific but Eduardo was very conservative. However, resistant to
going back to it. The main motive for global was the issue of reusability. At this point we can boil it
down to reusability. Gunther is objecting that it does not make reusability easier.
A: Understanding of large vocabulary, it is very easy if within each namespace each name means
one set of semantics and one structure. We should use slightly longer tagnames where there are
nuances of meaning.
G: We are defining alot of extra rules to handle this issue then.
A: CBL used one namespace and some fairly long tag names. You are trading difficulty in creating the
library against the difficulty of using it.
B: IF people agree local would be nice if all our tools understood types and we were all using Xpath
2.0, then a short cut would be to make it incumbent upon the local party to show why this does not
matter or demonstrate this can be handled with existing tools.
M: Mark does not agree. It violates a Universal Business Language in XML expressions.

B: what decision would we make if xpath and XSLT 2.0 were in place?
E: decisions shouldn't be based on technology that doesn't exist. but as soon as xpath 2 and XSLT 2
are ready they will explode in the market place. how painful will it be in 2 years to switch decision?
A: also other things like versioning which will benefit, like with CBL, people stuck with a thing that
worked best until they could switch - wasn't big deal.
G: Yes, would not be big deal.
G: The automatic generation of these global elements, the developer is not interested in the tag
names himself, he is interested in the dictionary entry name. The fixed rules to output these, are
more important.
A: I don't think having to fix clashes is as big a problem as the trade off of the locally defined names.
Example: When you have 4 things with different names but they are the same things. At that point I
should be able to go look at them in the schema and resolve the clashes then.
G: At that point you have to write a tool to go look at this a second time, I am saying the BIE's are
unique within the library locally, so I do not need any further tools to do any further work.
A: It doesn't complicate all things, it does not impact users at all. If we have to write more tools, I don't
think that is so bad.
E: Either way tools are not relevant., I want to go back to the issue of reusability. I also have an issue
with customization. about a half hour ago, I heard it said that local makes customization easier. If we
go local it impacts many more issues than just reusability.

B: We keep saying that a name is a sequence of names divided by slashes. the principle is tree
structuring our namespace. XPath makes each name globally unique. If we can agree that local has
alot of good attributes...

G: If you are using local defined elements you still have the unique names. Sometimes if you use
global defined elements, using XPaths, the dictionary entry names...

A: We said that each construct would be uniquely named.
M: I need to clarify something. There is no requirement to follow the tripartite naming. There is no
rule saying the name has to be tripartite in the CCTs.
G: ebXML CC in the future will be the standard. This is the preferred
E; Lets try to resolve this.
M: Do we need to discuss how to reverse the last decision made.
E: Those that are meeting today and this week, should come up with a proposal.

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

5 of 5 2/25/2003 11:39 AM

A: What is necessary to reverse the decision. Based on the criteria of usability and reusability. What
does it look like if you make these changes.
M: Until I see instances documents, I will remain in the other camp. I want to know what is wrong with
the current approach and I want to see the new proposed approach.
B: We need to keep processing logic as well (stylesheets) in this debate.

E: I want to see the issue of context modification included.
M: This needs to become a position paper.
A: This F2F should record the issues.

We have decided it is now time for the parties who would like to reverse the decision to concretely
demonstrate the problem encountered with concrete examples that would effect whatever we have at
this point.

Meeting adjourned: 18:35 GMT

Outgoing mail is certified Virus Free.
Checked by AVG anti-virus system (http://www.grisoft.com).
Version: 6.0.441 / Virus Database: 247 - Release Date: 1/9/2003

Attachment: Lisa Seaburg.vcf
Description: text/vcard

Follow-Ups:

[ubl-ndrsc] updates to modnamever

From: Dave Carlson <dcarlson@ontogenics.com>

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] |
[Thread Index] | [Elist Home]

Search: this monththis month Match: allall Sort by: scorescore
Words: Search | Help

Powered by eList eXpress LLC

	Title Page
	Table of Contents
	Introduction
	Real Examples
	Inconsistencies of tag-names
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Same sub-element in two or more aggregates with different characteristics
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Synchronization of Types
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Reusability in Interfaces and Implementations
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Reusability
	Reusability of Structures and Elements
	Programming and Interfaces

	Recommedation
	UBL-NDRSC 2003-02-05 Meeting Minutes

