- OW ® N o u H

- - = -
o b w N

N—_-a2 A aaa
O OVWoo~NO®

21
22

OASIS
Position Paper: Global versus Local

Proposal 01, 10 February 2003

Document identifier:
draft-stuhec-globVloc-01.doc

Location:

Author:
Gunther Stuhec <gunther.stuhec@sap.com>

Abstract:
This position paper outlines the use and definition of facets within the UBL library content.
Status:

This is V01 of the identifier position paper intended for consideration by the OASIS UBL
Naming and Design Rules subcommittee and other interested parties.

If you are on the ubl-ndrsc@lists.oasis-open.org list for subcommittee members, send
comments there. If you are not on that list, subscribe to the ubl-comment@lists.oasis-
open.org list and send comments there. To subscribe, send an email message to ubl-
comment-request@lists.oasis-open.org with the word "subscribe" as the body of the
message.

Copyright © 2002 The Organization for the Advancement of Structured Information Standards
[OASIS]

mailto:gunther.stuhec@sap.com
mailto:ubl-ndrsc@lists.oasis-open.org
mailto:ubl-comment@lists.oasis-open.org
mailto:ubl-comment@lists.oasis-open.org
mailto:ubl-comment-request@lists.oasis-open.org
mailto:ubl-comment-request@lists.oasis-open.org

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table of Contents

1] (g o (U1 o o EO PRSI 4
2 REAI EXAMPIES ...ttt et e e et e e e e n e e e e bt e e e e nbe e eneeas 4
21 Inconsistencies Of tag-NamMES...........cooiiiiiiiiii e 4
200 PrOBIEM ... e 4
2.1.2 Solution by using global declared elements ... 6
2.1.3 Solution by using local defined elementscccocveiiiiiiiii i 7

2.2 Same sub-element in two or more aggregates with different characteristics 8
221 PrOBIBM ... e 8
2.2.2 Solution by using global declared elementscccoeeeiiiiiiiiiiiec e 9
2.2.3 Solution by using local defined elementscceeeviveeiiiiiiiiiiee e 11

2.3 SyNchronization Of TYPESccoi i 13
2.3.1 PrODBIEM .. 13
2.3.2 Solution by using global declared elements ..., 13
2.3.3 Solution by using local defined elements ... 15

24 Reusability in Interfaces and Implementationsccccce i 17
240 PIrODBIEM ... e 17
2.4.2 Solution by using global declared elementscccccoeviiiiiiiiiiiei e 17
2.4.3 Solution by using local defined elementscccoocviiiiiiiiie i, 19

3 T L= o] 1P 21
3.1 Reusability of Structures and EIEmMents ..o 21
3.2 Programming and INtEIfaCeSoouiiiiiiiciieieee e 21

4 RECOMMEAALION ...t e e as 28
Appendix A. BiblIOGraphy ... e 29
APPENAIX B INOLES ... et e e e e e e e nb e e e e e e e nneas 30

63

64

65
66

1 Introduction

At October 16, 2002 the UBL NDRSC made the decision that they’re using global declared
elements instead of local defined elements in our UBL schemas.

Since | have a reasonable perl-script for generating xml-schema output from the different kinds of
excel spreadsheets, I'm testing the different possibilities for the representation of xml-schemas.

Therefore, for me it was very easily possbile to see the advantages and disadvantages of the
declaration of global elements or local elements which are based on complex types. Additionally |
can see this behaviour by using implementations (SAP or XML native databases) or by
developing of interfaces by using diverse computer languages or scripts (JAVA, XSLT etc.).

By this level of knowledge, | have seen that the using of global declared elements do have some
disadvantages, which might be k.o. criterias. The main problem of that is the global definition of
tag names. This problem involves negatively the design time, the developing of highly reusable
interfaces and/or implementations and the processing during the run time.

| would like to show these problems in the further chapters in much more detail.

2 Real Examples

2.1 Inconsistencies of tag-names

2.1.1 Problem

We can see some inconsistencies of tag-names in the global element called “BuyerParty”.

67
68

70
71

72

BuyerParty

@

L- 4 BuyerContact

The parent element has the tag name “BuyerParty”. Then, we have the child elements ID,
AccountCode, PartyName, Address, PartyTaxScheme and BuyerContact. Why do we have
sometime the object class term in the tag names and sometimes not? If we look into the

spreadsheet, than we see that all child elements have the same object class term.

BIE Dictionary Entry Object Class Object Property Property Representation
Name Qualifier Class Qualifier Term Term

Buyer_ Party. Details Buyer Party Details Details
Buyer_ Party. Buyer Party Identification Identifier
Identification

Buyer_ Party. Account Buyer Party AccountID Code

ID. Code

Buyer_ Party. Party Buyer Party Party Name Party Name
Name

Buyer_Party. Address Buyer Party Address Address

73

74
75
76
77

78

79
80
81

82

83

84
85
86
87
88

Buyer_Party. Party Tax Buyer Party Party Tax Party Tax

Scheme Scheme Scheme
Buyer_ Party. Buyer Buyer Party Buyer Contact Contact
Contact

For an automatic generating system of schemas, it will be very hard to find out, which child-
elements must has be a object class qualifier and which of the child-elements not. There does not
existing any rule, which is defining the difference between the tag names with object class terms
and without object class terms.

2.1.2 Solution by using global declared elements

For an automatic generating system will be easier, if exists some common rules. That means, if
we’re using global declared elements, must the object class term existing in the tag-names of all
child elements, too.

For example:

BuyerParty

The disadvantage of that rule is, that we will get always long tag-names with redundancies. That
means that the object class term always existing in the parent element and in all child elements,
too. We're generating to much and unnecessary information. In particular, if we’re generating the
tag names with some very long object class term, like “TransportHandlingUnit” or
“TransportEquipmentMeasurement”.

89 2.1.3 Solution by using local defined elements

90 We're using the local definition of tag names, instead. Because there is a possibility, that all child
91 elements based on some specific types, but the tag names of these child elements can be
92 shortened by truncation of the object class term. For example:

BuyerPartyType =]

-+ TaxScheme

——J: BuyerContact
93 esssssscccccccccccccccccccccccce]
94 The equivalent xml schema is:
95
96 <xsd:complexType name="BuyerPartyType" id="UBL0O00089">
97 <xsd:sequence>
98 <xsd:element name="ID" type="cct:IdentifierType" id="UBL000090"/>
99 <xsd:element name="AccountCode" type="cct:CodeType" id="UBLO00091"
100 minOccurs="0"/>
101 <xsd:element name="Name" type="PartyNameType" id="UBL000092"
102 minOccurs="0"
103 maxOccurs="unbounded" />
104 <xsd:element name="Address" type="AddressType" id="UBL0O00093"
105 minOccurs="0"
106 maxOccurs="unbounded" />
107 <xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL000094"
108 minOccurs="0"
109 maxOccurs="unbounded" />
110 <xsd:element name="BuyerContact" type="BuyerContactType" id="UBL0O00095"
111 minOccurs="0"/>
112 </xsd:sequence>
113 </xsd:complexType>
114

115 The advantage is, the child elements can be based always on different types but the tag names
116 itself will be always the same. The tag names can be truncated automatically by one very easy
117 rule:

118
119

120
121

122
123
124
125
126
127
128

129

130
131

132

133
134

135

136
137

138

If the child element representing the same object class, then the object class term must not be
shown in the tag element.

This is redundancy free and the complete dictionary entry name can be completed by using for
example an XPath navigation path:

/BuyerParty/ID =» Buyer Party. Identification. Identifier
/BuyerParty/Name = Buyer Party. Name. Details

/BuyerParty/TaxScheme =» Buyer Party. Tax_ Scheme. Details

2.2 Same sub-element in two or more aggregates with different
characteristics

2.2.1 Problem

We can have two aggregates, for example BuyerParty and SellerParty and both have some same
child elements, like ID or PartyName.

BuyerParty:
lfcﬁ;n?nyﬁp? ******************** j‘
I - I \
| | cat:PartyameType —l ‘
| EHH = {rame b
|) — e 1
BuyerParty | ‘
| \
| \
| \
: iwerCaniact }
SellerParty:

139

140
141
142

143

144

145

146
147

SellerParty

But what happens, if we would like to have some specific characteristics for ID or PartyName
within the Aggregation “BuyerParty”? For example, the PartyName should have a child-element,
like AdditionalName and the ID should be restricted in the maximum length.

Like:

Tcat:BuyerPanyType 1

‘ cat:PartyNameType

CHame |

BuyerParty Additionaldame |

2.2.2 Solution by using global declared elements

If we're doing the suggested expansion by using the same global declared element, than we
would like to see the same expansion in SellerParty, too:

148

149
150

151

152

153
154

155
156
157

158
159
160

161
162

SellerParty

*-4, OrderContact

To avoid this problem, we have to declare some further global elements. But how we will define
the tag names itself?

Should the tag names of BuyerParty added by the object class terms and object qualifer? Like:

 BuyerPartyll \
length="10"

BuyerParty

Why should we do that? And why should SellerParty using the shorter tag names? How can we
define a rule for that?

| guess, it is very hard to define a rule for this kind of extension, which says, which kind of child
elements should have shorter tag names and which kind of tag names should have longer tag
names. We would like to run into many conflicts by this.

If we'’re using the global declared elements, it is useful, that all tag names are fully qualifed by
always the complete dictionary entry name. This is only the one possibility to avoid the conflicts,
as described above in an automatic way.

By this way, we will get very long tag-names, like:

10

163
164
165
166
167
168
169
170
171

172
173

174
175
176

177
178

179
180

181

182
183
184
185
186
187

188

189

BuyersCatalogueltemIdentificationItemMeasurement (35 Bytes)
SellersHandlingUnitDespatchLineDespatchedQuantity (49 Bytes)
ManufacturersHandlingUnitDespatchLineOrderLineID (48 Bytes)

ManufacturersTransportEquipmentRefrigerationStatusIndicator (59
Bytes)

But we’ve to think about it:

¢ Many of the applications (databases, interfaces, erp-systems, user-interfaces) can not handle
directly with tag names, which are longer as 30 bytes. A mapping (additional processing step)
into shorter tag names is necessary.

¢ Many business documents in the real life have over 10.000 positions. Long tag names would
decrease the speed of using, processing and transferring, tremendously.

e Very long tag names usually are not human readable any more. A mapping into much more
understandable tag names is necessary.

2.2.3 Solution by using local defined elements

All local defined child elements can have tag names, which always based on the dictionary entry
name and shortened by the same truncation rules. Each child element can be base on different
types. These types can be the common CCTs or the common CCs. If this type The specific
characteristics like AdditionalName or length="10" can be defined in this specific types. The types
itself can be distinguished by fully qualified names, which can be the same as the dictionary entry
name of each BIE.

Example:

length="10"

BuyerPartyType [-]

11

190

191 The xml schema for this type is:

192 <xsd:complexType name="BuyerPartyType" id="UBL000089">

193 <xsd:sequence>

194 <xsd:element name="ID" type="cct:IdentifierType" 1id="UBL000090">
195 <xsd:annotation>

196 <xsd:documentation>length="10"</xsd:documentation>

197 </xsd:annotation>

198 </xsd:element>

199 <xsd:element name="AccountCode" type="cct:CodeType" id="UBLO00091"
200 minOccurs="0"/>

201 <xsd:element name="Name" type="PartyNameType" 1id="UBL000092"
202 minOccurs="0"

203 maxOccurs="unbounded" />

204 <xsd:element name="Address" type="AddressType" id="UBL000093"
205 minOccurs="0"

206 maxOccurs="unbounded" />

207 <xsd:element name="TaxScheme" type="TaxSchemeType" id="UBL0O00094"
208 minOccurs="0"

209 maxOccurs="unbounded" />

210 <xsd:element name="BuyerContact" type="BuyerContactType"

211 id="UBL000095" minOccurs="0"/>

212 </xsd:sequence>

213 </xsd:complexType>

214 <xsd:complexType name="BuyerPartyID">

215 <xsd:simpleContent>

216 <xsd:restriction base="cct:IdentifierType">
217 <xsd:length value="10"/>

218 </xsd:restriction>

219 </xsd:simpleContent>

220 </xsd:complexType>

221 <xsd:complexType name="BuyerPartyNameType" id="UBLO00397">
222 <xsd:sequence>

223 <xsd:element ref="Name" id="UBL000398"/>

224 <xsd:element name="AdditionalName"/>

225 </xsd:sequence>

226 </xsd:complexType>

227

228 By this solution can be all element tag names in the shortest possible way. All elements can be
229 based on different types. Therefore, the tag names do always have a common understanding and
230 no confusion. All tag names might be short enough for further using in interfaces, databases, user
231 interfaces etc. without mapping into shorter names.

12

232

233

234
235
236
237

238

239

240
241
242
243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259

261

262

263
264
265
266
267

2.3 Synchronization of Types

2.3.1 Problem

All global declared elements of aggregates based currently on a type with the same name. For
two or more different same aggregates with distinguished names exist two ore more equivalent
types. Like “BuyerContact” and “ShippingContact”, both aggregates based on the specific types
“BuyerContactType” and “ShippingContactType”. But both types have exactly the same structure.

| BuyerContact+—[BuyerContactType]

| ShippingContact+—[ShippingContactType]

Schema of BuyerContact and BuyerContactType:

<xsd:element name="BuyerContact" type="BuyerContactType"/>
<xsd:complexType name="BuyerContactType" id="UBL000078">
<xsd:sequence>
<xsd:element ref="ID"/>
<xsd:element ref="Name" minOccurs="0"/>
<xsd:element ref="Phone" minOccurs="0"/>
<xsd:element ref="Fax" minOccurs="0"/>
<xsd:element ref="E-Mail" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

Schema of ShippingContact and ShippingContactType:
<xsd:element name="ShippingContact" type="ShippingContactType"/>
<xsd:complexType name="ShippingContactType" id="UBL000595">
<xsd:sequence>
<xsd:element ref="ID"/>
<xsd:element ref="Name" minOccurs="0"/>
<xsd:element ref="Phone" minOccurs="0"/>
<xsd:element ref="Fax" minOccurs="0"/>
<xsd:element ref="E-Mail" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

2.3.2 Solution by using global declared elements

If we would like to make all elements unique in an automatic manner (see chapter 2.1 and 2.2),
all global declared elements must be based on specific types. But all child elements within these
types must have the object class term in the element tag name. There is no other possibility to
differentiate each child element which has some specific characteristics (facets of leaf-elements
or substructure of aggregates) in a unique and automatic way.

13

268
269
270
271
272
273
274

275

276
277

You will see this in the following example. Some characteristics of the same BBIEs within the two
aggregates “BuyerContact” and “SellerContact” are different. Therefore it is necessary to declare
a global element for every BBIE (BuyerContactID, BuyerContactName, ShippingContactID and
ShippingContactName) which have some different characteristics. And why should we do that for
BBIEs with different characteristics and not for the BBIEs which have the same characteristics?
This would become some inconsistencies and would be not handable by parsers for defining

interfaces very efficiently.

Example:

Schema of BuyerContact and BuyerContactType:

<xsd:element name="BuyerContact" type="BuyerContactType"/>

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequence>

name="BuyerContactType" id="UBL000078">

ref="BuyerContactID"/>
ref="BuyerContactName" minOccurs="0"/>
ref="BuyerContactPhone" minOccurs="0"/>
ref="BuyerContactFax" minOccurs="0"/>
ref="BuyerContactE-Mail" minOccurs="0"/>

</xsd:complexType>

Schema of ShippingContact and ShippingContactType:
<xsd:element name="ShippingContact" type="ShippingContactType"/>

<xsd:complexType
<xsd:sequence>
<xsd:element
<xsd:element
<xsd:element
<xsd:element
<xsd:element

</xsd:sequence>

name="ShippingContactType" id="UBLO00595">

ref="ShippingContactID"/>
ref="ShippingContactIName" minOccurs="0"/>
ref="ShippingContactIPhone" minOccurs="0"/>
ref="ShippingContactIFax" minOccurs="0"/>
ref="ShippingContactIE-Mail" minOccurs="0"/>

</xsd:complexType>

Schema of globale declared elements and the belonged types:

<xsd:element name="TimezoneOffsetMeasure" type="cct:TextType"/>
<xsd:element name="ShippingContactID"/>

<xsd:complexType

name="ShippingContactIDType">

<xsd:simpleContent>
<xsd:restriction base="cct:IdentifierType">
<xsd:length value="13"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="BuyerContactID"/>

<xsd:complexType

14

name="BuyerContactIDType">

<xsd:simpleContent>
<xsd:restriction base="cct:IdentifierType">
<xsd:length value="30"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="ShippingContactName"/>
<xsd:complexType name="ShippingContactNameType">
<xsd:simpleContent>
<xsd:restriction base="cct:NameType">
<xsd:maxLength value="40"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:element name="BuyerContactName"/>
<xsd:complexType name="BuyerContactNameType">
<xsd:simpleContent>
<xsd:restriction base="cct:NameType">
<xsd:maxLength value="50"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

2.3.3 Solution by using local defined elements

Better is this, if we solve this problem by using local defined elements. Because all element
names ar readable enough, short as possible and truncated automatically by some fixed rules.
The most important thing is that all elements within the aggregation with the same object class
term do have the same tag names. This helps for a common understanding and makes the
implementation and parsing of aggregates more automatizeable. All elements refer to the specific
types. The types can either be a very generic CC/CCT or can be a BIE with some specific
(restricted) characteristics.

Example, the declaration of BuyerContactType and SellerContactType:

<xsd:complexType name="BuyerContactType" 1d="UBL0O00078">
<xsd:sequence>
<xsd:element name="ID" type="cat:BuyerContactIDType" id="UBL000079"/>
<xsd:element name="Name" type="cat:BuyerContactNameType"
1id="UBL000080" minOccurs="0"/>
<xsd:element name="Phone" type="cct:TextType" 1d="UBL000081"
minOccurs="0"/>
<xsd:element name="Fax" type="cct:TextType" id="UBL000082"
minOccurs="0"/>
<xsd:element name="E-Mail" type="cct:TextType" id="UBL000083"
minOccurs="0"/>
</xsd:sequence>

15

403
404

</xsd:complexType>

<xsd:complexType name="ShippingContactType" id="UBL000595">
<xsd:sequence>
<xsd:element name="ID" type="cat:ShippingContactIDType"
id="UBL000596" />
<xsd:element name="Name" type="cat:ShippingContactNameType"
1d="UBL000597" minOccurs="0"/>
<xsd:element name="Phone" type="cct:TextType" id="UBL000598"
minOccurs="0"/>
<xsd:element name="Fax" type="cct:TextType" 1id="UBL000599"
minOccurs="0"/>
<xsd:element name="E-Mail" type="cct:TextType" id="UBL000600"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

The BBIEs (ID and Name) based on the types which have some restricted characteristics:

<xsd:complexType name="BuyerContactIDType">
<xsd:simpleContent>
<xsd:restriction base="cct:IdentifierType">
<xsd:length value="30"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="BuyerContactNameType" id="UBL000397">
<xsd:simpleContent>
<xsd:restriction base="cct:NameType">
<xsd:length value="13"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="ShippingContactIDType">
<xsd:simpleContent>
<xsd:restriction base="cct:IdentifierType">
<xsd:length value="13"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="ShippingContactNameType">
<xsd:simpleContent>
<xsd:restriction base="cct:NameType">
<xsd:maxLength value="40"/>
</xsd:restriction>
</xsd:simpleContent>
</xsd:complexType>

16

405
406

407

408

409
410
411

412
413
414
415
416
417

418
419

420

421
422
423
424

425

426
427
428

430
431
432
433
434
435
436
437
438

440

All another BBIEs (child elements) based on the standard CCT, because for these BBIEs is no
restriction necessary.

2.4 Reusability in Interfaces and Implementations

2.4.1 Problem

One of the biggest benefits of XML is the development of very efficient interfaces and applications
with a high reusability. But this must be based on very efficient XML schemas as well as XML
instances. Otherwise, you will have the same effort as without XML.

The most of interfaces (for databases, userinterfaces, to applications etc.) using the tag names of
XML structures for defining variables or database tables, normally. It should be the possibility that
we can reuse all BIEs and CCs for the different development requirements, too. And this will be
possible, if we have always a common understanding or processing of all BIEs without any
additional mappings or control procedures. This helps us, to develop applications in a very fast
and cheap way.

If exists inconsistencies in tag names especially, you will loose these advantages in developing,
rapidedly.

2.4.2 Solution by using global declared elements

Global delared elements do have always inconsistencies in tag names. Because all tag names
itself must be unique and if you have the same BIE with two different characteristics, you have to
define two different elements with different tag names. By this, you must query in the program
every tag name itself and this makes the programming very inefficient.

For example, you have the following instance with global declared elements:

< BusinessDocument>
< BuyerContact>
< BuyerContactID>000000000000000000000000120321</cat:BuyerContactID>
< BuyerContactName>Hugo Herbert</cat:BuyerContactName>
< BuyerContactPhone>+49 54639 4334</cat:BuyerContactPhone>
< BuyerContactFax>+49 33853 3843</cat:BuyerContactFax>
< BuyerContactE-Mail>hugo.herbert@ubl.org</cat:BuyerContactE-Mail>
</BuyerContact>
<ShippingContact>
<ShippingContactID>0000000134543</cat:ShippingContactID>
<ShippingContactName>Berta Bertram</cat:ShippingContactName>
<ShippingContactPhone>+1 43543 43453</cat:ShippingContactPhone>
<ShippingContactFax>+1 35433 4343</cat:ShippingContactFax>
<ShippingContactE-Mail>bert.bertram@ccts.org</cat:ShippingContactE-Mail>
</ShippingContact>

17

441 </BusinessDocument>

442 And you would like to express the information in the following format:

443 Buyer:

444 ID: 000000000000000000000000120321
445 Name: Hugo Herbert

446 Phone: +49 54639 4334

447 Fax: +49 33853 3843

448 E-Mail: hugo.herbert@ubl.org
449

450 Shipper:

451 ID: 0000000134543

452 Name: Berta Bertram

453 Phone: +1 43543 43453

454 Fax: +1 35433 4343

455 E-Mail: bert.bertram@ccts.org
456

457

458 There is a very inefficient procedure necessary, because you have to parse every tag name
459 separately and you have to generate another output tag information, because the global declared
460 elements are too long and not understandable in a common way.

461 The following perl script shows the problematic in more detail:

462 use XML::SimpleObject;

463

464 my S$parser = new XML::Parser (ErrorContext => 2, Style => "Tree");
465 my $xmlobj = new XML::SimpleObject ($parser->parse ($XML)) ;

466

467 print "Buyer: \n";

468 process buyer contact ($xmlobj->child("BusinessDocument") -

469 >children ("BuyerContact™))

470 print "Shipper: \n";

471 process_shipping contact ($xmlobj->child("BusinessDocument") -
472 >children ("ShippingContact"))

473

474 process buyer contact {

475 my Scontact;

476 printf("ID: $s\n", S$Selement->child("BuyerContactID")-
477 >value) ;

478 printf("Name: $s\n", S$element->child ("BuyerContactName") -
479 >value) ;

480 printf ("Phone: $s\n", S$Selement-

481 >child ("BuyerContactPhone")->value) ;

482 printf("Fax: $s\n", S$element->child("BuyerContactFax")-
483 >value) ;

18

mailto:hugo.herbert@ubl.org
mailto:bert.bertram@ccts.org

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500

501

502
503
504

505
506
507

508

510
511
512
513
514
515

517
518
519
520
521
522
523

524

525
526

printf("E-Mail: $s\n", S$element->child("BuyerContactE-
Mail")->value);

}

process_shipping contact ({

my S$contact;

printf("ID: $s\n", S$element->child("ShippingContactID") -
>value);

printf ("Name: $s\n", Selement-
>child ("ShippingContactName")->value);

printf ("Phone: $s\n", S$element-
>child ("ShippingContactPhone")->value);

printf ("Fax: $s\n", S$element->child("ShippingContactFax")-
>value);

printf("E-Mail: $s\n", Selement->child("ShippingContactE-
Mail")->value);

}

2.4.3 Solution by using local defined elements

If the tags of child elements within same aggregates (based on same ACCs) have always the
same names, it will be much easier and efficient to develop interfaces for processing the
instances.

The following instance based on local defined elements. The aggregates BuyerContact and
SellerContact based on the ACC (ContactDetailsType). By this, all equivalent child elements have
the same tag names.

<BusinessDocument>
<BuyerContact>
<ID>000000000000000000000000120321</ID>
<Name>Hugo Herbert </Name>
<Phone>+49 54639 4334</Phone>
<Fax>+49 33853 3843</Fax>
<E-Mail>hugo.herbert@ubl.org</E-Mail>
</BuyerContact>
<ShippingContact>
<ID>0000000134543</ID>
<Name>Berta Bertram</Name>
<Phone>+1 43543 43453</Phone>
<Fax>+1 35433 4343</Fax>
<E-Mail>bert.bertram@ccts.org</E-Mail>
</ShippingContact>
</BusinessDocument>

Therefore, you can develop some reusable subroutines (function) for processing the structure for
the ACC “ContactDetails” and you can use this functions every time if you have to process some

19

527
528

529

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

549

550
551
552

553

554
555
556
557
558
559
560
561
562
563
564
565
566
567

568

ABIEs which are based on “ContactDetails”. Further, you have a higher reusability of the tag
names. You can use this tag names for the understandable representation, without any mapping.

The following perl script shows the reusability of same structures and common tag names:

use XML::SimpleObject;

my S$parser
my $xmlob7

= new XML::Parser (ErrorContext => 2, Style => "Tree");
= new XML::SimpleObject (Sparser->parse (S$SXML)) ;

print "Buyer: \n";

process_contact ($xmlobj->child("BusinessDocument")-

>children ("BuyerContact"))

print "Shipper: \n";

process_contact ($xmlobj->child("BusinessDocument")-

>children ("ShippingContact"))

process contact {
my S$contact;
foreach my $element ($contact->child) {
printf("%s: $s\n", Selement, S$element->value);

}

For processing “BuyerContact” and “ShippingContact” is only one function necessary. And you
can use tag names directly for showing in the output. Therefore, you will get the same output, but
much more efficiently.

20

Buyer:

ID: 000000000000000000000000120321
Name: Hugo Herbert

Phone: +49 54639 4334

Fax: +49 33853 3843

E-Mail: hugo.herbert@ubl.org

Shipper:

ID: 0000000134543

Name: Berta Bertram

Phone: +1 43543 43453

Fax: +1 35433 4343

E-Mail: bert.bertram@ccts.org

mailto:hugo.herbert@ubl.org
mailto:bert.bertram@ccts.org

569

570
571
572

573
574
575
576
577
578

579

580
581
582
583
584

585
586
587
588

589
590
591
592

593

594
595

596
597

3 Reusability

XML offers us the possibility to have a reusability in two different ways:
Structure and Elements
Programming and Interfaces

A business document language will be accepted worldwide, if we as developer of this language
recognize both ways of reusability. Therefore it is a must for UBL to consider both areas.
Otherwise, UBL will be ignored on the one hand side from the designers of business documents
and on the other hand side from the developers of interfaces and applications. And this can not
be happen for a standard, which will be the only one business language over the world at one
time.

3.1 Reusability of Structures and Elements

A structure and elements should be so often used as possible. Global declared element offers for
this reason some advantages more. All elements based on a fixed tag name and on a fixed
structure. Therefore, you can refer to these elements only. There is no wrong definition and no
wrong interpretation. But this will be only effective, if you would like to define business
documents.

The problem of global declared elements is that all elements are declared in the same hierarchy.
This leads to inconsistencies in defining of the tag names. Especially, if you have some child
elements which based on same BCCs or ACCs but it has different characteristics or sub-
structures. This inconsistencies influence the modeling and programming, seriously.

Therefore it will be better, if the name of same child-elements and in different aggregates always
the same. And this is only reachable by using local defined elements. The tag names of these
elements will be consistent, too, if the tag names always be based on the dictionary entry name
and if these names always be shortened in the same manner (UBL tag name truncation rule).

3.2 Programming and Interfaces

The definition of business documents will be mostly done by modeling-tools (like UML class
diagrams) in future. Because these modeling tools considers the following parts:

No knowledge in XML schema definition is necessary

Automatic generation of XML schemas

21

598

599
600
601
602
603

604
605

606
607

608
609

610
611

Automatic generation of different types of interfaces.

Especially the smallest companies do not have any knowledge about complex XML schemas.
Therefore a couple of software vendors developing on graphical modeling and business
document interaction tools, which give the small companies the great possibility to participate on
e-Collaboration. The users of business documents will be not confronted with XML itself, in future.
This will be the only one internal physical format.

Therefore, it will be very narrow interfaces between modeling, xml and developing of interfaces, in
future (see following picture).

Generation of class
diagrams

Automatic generation
of Intefaces

Modelling
Tool Generation of class
[diagrams

Generation of XML
Schemas

Interfaces for
Internal Processing
User Representation XML Schema
Data Bases

Mapping

Valid XML Instances
for parsing XML Instances for

(or generation of validation
interfaces)

This is only possible, if all names and structure will be always consistent and have always the
same meaning. This structures can be used in many times without any big effort.

For example:

22

Object Oriented Modelling by Class Diagrams

S

BuyerContact

«type»
ContactDetails

ShippingContact

-ID : BuyerContactldentifierType = length="30"
-Name : BuyerContactNameType = length="13"
-Phone : cct:PhoneType

-Fax : cct:TextType

-E-Mail : cct:TextType

-ID : cct:IdentifierType

-Phone : cct:TextType
-Fax : cct:TextType
-E-Mail : cct:TextType

-Name : cct:NameType

-ID : ShippingContactldentifierType = length="13"

-Name : ShippingContactNameType = maxLen="13"

-Phone : cct:PhoneType
-Fax : cct:TextType
-E-Mail : cct:TextType

Generating user interfaces

Buyer Contact

_[=]x]

1D | 000000000000000000000000120321

Name | Hugo Herbert

Phone | +49 54639 4334

Fax | +49 33853 3843

E-Mail |hugo.herbert@ubl.org

Shipping Contact

D | 0000000134543

Name | Berta Bertram

Phone | +143543 43453

Fax | +135433 4343

E-Mail |bert.bertram@ccts.org

Generating of database tables

Buyer Shipping
ID 000000000000000000000000120321 0000000134543
Name Hugo Herbert Berta Bertram
Phone +49 54639 4334 +1 43543 43453
Fax +49 33853 3843 +1 35433 4343
E-Mail hugo.herbert@ubl.org bert.bertram@ccts.org

Generating ABAP-Objects for SAP development environment

23

Data Type BuyerContertDetails Inactive ShippingContentDetails Inactive
Properif | Generaion ~ Stuctre | Documentation | Wamings Properties | Generation ' Stucture | Documentation | Warnings |
Proxy Objects Type Proyy Objects Type
~ @8 Structure BUYER_CONTENT_DETAILS 7 m= Stucture SHIPPING_CONTENT_DETAILS
a D CHAR (30} B ID CHAR (13)
8 NAME CHAR (13) B NAME CHAR (40)
@ PHONE STRING 8 PHONE STRING
8 FAX STRING B FAx STRING
B STRING B EMAIL STRING
[
o) oo olnjmms— O/
Storing into a repository for providing and mapping to another
dialects
DataType View Tools Window %2) | [\E@l o | T view Tools Window %25 | [|ﬁ\ & H|
Display Data Type Displﬂyl'ﬁata Tyne
Mame BuyerGontentDetails Mamespace arpm Status Name ShippingContentDetails MNamespace xrpm Status
Description Description
Type Definifion | XSO Definition | Tyne Definffon | X80 Dafnitian |
R |eE 2% s BER |eE 2%
Structure |Calegum ‘Tvne Qrcurrence ‘Daa\\s Deseription Structure |Ca1eguvy Type Occurrence |Defails | Description
= Buyerc jils |Complex Type | | < ShippingContentDetails _|Camplex Type
D length="30" D Elermnent xsdioken |1 length=
Hame .1 length="13" Name xsd:sting (0.1 maxLe
Phone 1 Phone xsdistring (0.1
Fax 1 [Fax xsdistring [0.1 |
EMail 0.1 [EMail [Elernent xsdistring|0.1 |
- & BuyerContentDetails G BuysrContentDatails | @) ShippingContentDetails
e r =

Developing and/or generating interface applications

use XML::SimpleObject;

my S$parser = new XML::Parser (ErrorContext => 2, Style => "Tree");
my $xmlobj new XML::SimpleObject ($Sparser->parse ($XML)) ;

print "Buyer: \n";

process_contact ($xmlobj->child("BusinessDocument") -
>children ("BuyerContact"))

print "Shipper: \n";

24

process_contact ($xmlobj->child("BusinessDocument")-
>children ("ShippingContact"))

process contact {
my S$contact;
foreach my $element (S$contact->child) {
printf("%$s: $s\n", S$Selement, S$element->value

}

Developing and/or generating XSLT-Scripts

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE xsl:stylesheet [
<!ENTITY nbsp " ">
1>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns: fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:output method="html" indent="yes" encoding="UTF-8"/>
<xsl:template match="/">
<html>
<head>
<title>Contacts</title>
<link rel="stylesheet" type="text/css"
href="002006825000000584722001E.css"></1link>
</head>
<body>
<table>
<tr>
<xsl:for-each select="BusinessDocument">
<xsl:apply-templates select="./*"/>
</xsl:for-each>
</tr>
</table>
</body>
</html>
</xsl:template>
<xsl:template match="*">

<td>
<h2>
<xsl:value-of select="name ()"/>
</h2>
<table border="1" cellspacing="0" cellpadding="3">
<tr>
<th scope="col">Key</th>
<th scope="col">Value</th>
</tr>
<xsl:for-each select="./*">

<tr>
<xsl:attribute name="class">
<xsl:choose>

25

<xsl:when test="position() mod 2 = 0">
<xsl:value-of select="'darkrow'"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="'lightrow'"/>
</xsl:otherwise>
</xsl:choose>
</xsl:attribute>
<td>
<xsl:value-of select="name ()"/>
</td>
<td align="right">
<xsl:value-of select="."/>
</td>
</tr>
</xsl:for-each>
</table>
</td>
</xsl:template>
</xsl:stylesheet>

Generating HTML-Output

26

a Contacts - Microsoft Internet Explorer provided by SAP IT

_{ol x|
File Edit ‘“iew Favaorikes Toals Help i
Back ~ = - () tat | ‘Qisearch [ElFavorites Media 4 | B-SR- 7

Address @ i sers\My Docurnents|UBLY GlobalvrsLocall €S0 Cukpuk, Bk j oGo | Links ®
Google - j {58 web-suche G Site-Suche | FageFiank. =
=4
BuyerContact Shipping Contact
DUDDDDDDDDDDDDDDDDDDDDDD120321 DDDDDDDIS":S‘IS
Marme Hugo Herbert | | Mame Eetta Bertram
Phone +49 54539 4334 | | Phone +1 43543 43453
Fax +49 33855 35435 | |Fax +1 35433 45343
E-Mail hugo. herberti@ubl.org | |E-Mail |bert. bertrami@ccts. org

a

|@ Done I_ I_ I_ |@. My Cormpuker

Defining complex Types within XML Schemas

ShippingContactType [-]

BuyerContactType -]

612

613 All examples above base on the same schema structure of the ACC “ContactDetails”. It would be
614 always used for “BuyerContactDetails” and “ShippingContactDetails” without additional mappings.
615 Only some applications (ABAP-Objects and database tables) need the restrictions of the length of
616 the BIEs ID and name. Therefore it is necessary to define some additional complex types

617 “BuyerContactldentifierType”, “BuyerContactNameType”, “ShippingContactldentifierType” and

27

618
619
620

621

622
623
624
625
626
627
628

629
630

631
632
633
634

635

“ShippingContactNameType” with this restricitions. Because, this restrictions would be useful for
the validation of XML instances and it is necessary for the automatic generation of ABAP Objects
or database tables..

4 Recommedation

A consistency of tag names of the same or similar aggregations is necessary to enables a
reusability of BIEs in applications, programs and interfaces, too. The consistency is not
reachable, if we're using global declared elements and we would like to have very short tag
names itself. Many elements would get completely different tag names itself, although if they
would be the same BBIE or ASBIE of different ABIEs, which based on the same ACC, but in
different contexts. In particular is a consistency not reachable, if we have hunderts of elements in
one namespace and on the same hierarchy.

If the consistency and uniformity of tag names is not possible, the efficient reusability in
developing of programs/interfaces and automatic generating would be decreasing enormously.

Therefore, would | highly recommended that we're using local defined elements instead of global
declared elements. Because this elements can be truncated always in the same manner and you
have in all ABIEs which are based on one ACC the same short, human and technical readable
tag names.

28

636

Appendix A. Bibliography

29

637

638
639
640
641
642
643
644
645
646

647
648
649

650
651

652
653
654
655
656
657
658
659
660

661
662

663
664
665
666
667

668

Appendix B. Notes

OASIS takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available;
neither does it represent that it has made any effort to identify any such rights. Information on
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS
website. Copies of claims of rights made available for publication and any assurances of licenses
to be made available, or the result of an attempt made to obtain a general license or permission
for the use of such proprietary rights by implementers or users of this specification, can be
obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent
applications, or other proprietary rights which may cover technology that may be required to
implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS]
2001. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published and distributed, in whole or in part, without restriction of any kind, provided that the
above copyright notice and this paragraph are included on all such copies and derivative works.
However, this document itself does not be modified in any way, such as by removing the
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual
Property Rights document must be followed, or as required to translate it into languages other
than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its
SUCCESSOrs or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

30

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003

1of5

UBL-NDRSC MESSAGE

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] |
[Thread Index] | [Elist Home]

Subject: [ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003

e Ffrom: Lisa-Aeon <Iseaburg@aeon-llc.com>
e To: UBL-NDR <ubl-ndrsc@lists.oasis-open.org>
e Date: Wed, 05 Feb 2003 21:44:31 -0600

Here are the minutes from today's very lively discussion of Local vs. Global. Please read through and
be ready to start again tomorrow! Only kidding!

1. Roll call ** didn't get roll call complete **

Bill Burcham - phone in
Mavis Cournane

Mark Crawford

Fabrice Desré

Arofan Gregory - phone in
Michael Grimley - phone in
Eduardo Gutentag

Lisa Seaburg

Gunther Stuhec

Paul Thorpe

Anne Hendry - phone in
Danny Vint (observer, ACCORD)
Dave Carlson (observer)

2. Current position summary

Mavis: issues discussion procedure:

- list issues

- speak by invitation
Fabrice summarizes the case so far. In Burlington we agreed on Global. The main reasons behind
Global was element reuse. Qualified elements were also easier to customize. The "Garden of Eden"”
define a CT and for each CT at least one global element and these global elements are then reused in
the BIE.

For each complex type at least one global element.

Mavis: In Op70 release what did they do?

Mixture - Gunther's algorithm is to first generate for each complex type an element and then wherever
complex type is used generate element whose name is derived from the property type name.

2/25/2003 11:39 AM

http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

2 of 5

Arofan: given that intent was reuse, maybe that's ok.

Bill: you can always make a new type

Eduardo: this is a tangent; should come back to global vs. local.

Mavis: Did we have to bodge our rules for Op70 to get something usable? Is there anything in Op70
that we might have to revisit this.

Gunther presents slides (this was sent to list). Over 1700 BIEs. Strongly derived from ebXML CCs.
Example of 2 diff BIEs expressing same ABIE. EG. global declared element'ID". But then might need
restrictions: "Dunns”, etc. So need to declare new global declared element. Then must change all
aggregate types which are using that global declared element. e.g.. buyer address and seller address
aggregate types; and manufacturer address and delivery address - also types. 4 BIEs, 4 separate
types. All reference element'ID' (ref="id").

manufacturer using a specific address (e.g.. Dunns), not this one. What happens then? Have to
change all these. Impacts implementation, schemas, any interfaces or applications that are based on
or using this aggregation. A better way?

Fragment processing is uncomplicated etc.

B: we are defining the global element as an outcome of where the CT is used in a content model, if
some of the ABIEs are never referenced we should never generate the element.

Bill: if | want to do a specialization of a ubl BIE type like id and define a new abie type that will use that
bie type id. How do | get a ubl document to carry that new type - can a local element that refs a
global element declaration carry a specialization of that global? [Ed note: see last few paras for Bill's
test of this - it does work, is possible]

A: for each instance of use where the name is new we generate a new element. In the Op70 release,
they did a mixture.

G: algorithm is to first generate for each CT an element and wherever the CT is used generate a
Global element whose name is derived from the property and we end up with spurious generated
global element.

G: we made the decision based on short examples and we did not use all the CCTS rules and
definitions. This works fine where you are defining a few elements only.

G: We (SAP) looked at the Boeing, EAN.UCC and we have over 1700 different unharmonized BIES
and to harmonize them makes it very difficult using Global elements

All BIES based on the CCTS and we need to look at how we can use it for our definitions of our
schemas. We have to use the DictionaryElementNames and how do we get short tag names.

One or more global elements are derived from an aggregate TYPE. A bunch of aggregate types have
some elements and these refer to global declared elements. the global element will be reusable in the
aggregate types. What happens if the same element expresses two different BIEs and they have two
different characteristics. For example ID, EANID or DUNSID and we have to define a new global
element with a specific name and then new complex types. This new global element will get a
completely new name and this new global element impacts some already defined aggregate types.
Because | need some restrictions for EANID | have a new ID tag and | have to change all aggregate
types which are using that global declared elements.

B: is your concern while CCTs might be derived from one another there is no way to do that with
elements.

G: Manufacturer and Seller use specific IDs like EANID of type EANID.type with new characteristics
and restrictions, you have to change all your refs into EANID. This impacts our interfaces and our
applications i.e. everything that uses those aggregations.

G: all tag names must be unique we have 1700 BIEs we need unique tagnames. The ebXML CCTS
dictionary entry names are unique and these are too long for our tag names.

2/25/2003 11:39 AM

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

3of5

A: It is not clear what a global element is it a BIE or a Core component.

G: Modifications of BIEs lead to change of type and tag names. Changing tag names requires
additional effort. Our defined truncation rules cannot be used for global element tag names. Truncated
tag names can have different semantic meanings.

B: any discussion predicated on global meaning we have to use long tag names is specious. Op70
has short tag names.

List of issues with Gunther's presentation

-What does it mean to "change" and the use of namespaces

-Impact on Instances with namespaces, long tag names and semantics

-Benefits of instance rules and impact on understanding and processing
-Complexity of schema, ebXML compliance, organization of namespaces in a library
-LCSC process, the need to always generate unique names

-Detailed exception handling

What does it mean to "change" and the use of namespaces

E: The departure point is the UBL library and schemas and those are changed by someone just by
adding types and elements at will, with no modification of metadata in the schema itself. It all
becomes just a modification of the original schema.

E: You can't just do that. For UBL compliance you have to add a new namespace in which you add a
Type and an element but it is in that namespace. It is irrelevant if this is local or global.

B: If | want to do a specialization of some UBL BBIE type like ID and | want to define a new ABIE .
How do | get UBL document to carry that new ABIE. If we took schema as it stands and try to do a
specialization. Gunther's presentation makes me think there is no way with Op70 to come in and do a
specialization and have it carried in a UBL doc.

A: Import an existing type and extend it with my restriction. Everything using it in the schema must be
declared in the new namespaces and be part of the extension. You have created a new doc type that
can be processed excluding that one modified bit.

E: If we had local elements, would that be as extensive a modification?

A: There is no diff. Once you change a type you have to change everything between it and the
doctype.

B: Under local element schema it is not necessary to do this much modification. You can specialize it
at the point of where the specialization wants to be used. You use xsi:type.

A: This dynamic remains true regardless if you use local or global

B: With global elements you won't have the option to use XSl:type at the point of use.

A: XSl type is in the document

G: "change" at the design time of the library. How do you generate new tag names.

If we have 3 new global elements you have to put the object class on to the tag name itself the name
is very long.

E: Gunther was talking about design of libraries and not customization.

E: In customization you would use different namespaces.

Impact on namespaces:

A: It is said we have 1700 unique elements, but that is untrue, because they are under different
namespaces. You assume that if you have several IDs, they are part of the reusabletypes, their
specialization belongs to the new namespace of the document.

A: Example, product ID, restriction of the core ID, in that case disambiguating them with different
names, is not true. Don't buy that there are 1700 different elements.

G: The BIEs are collected from different organizations and can be in different namespaces. When we
harmonize those into one library what happens.

E: You have to change names. There is no way to avoid huge clashes and issues if you try to
harmonize

G: Enormous consequences, some names will be very long,others very short. Not very elegant.

B: Local names means you don't have 1700 things to resolve. You have to resolve the types and not

[P

2/25/2003 11:39 AM

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

M: Does not mean you don't have to resolve the BIEs.

G: How can we use the same types of aggregation in the same way. Long tag names not very helpful.
Interfaces are not readily shareable.

A: What is a type and a BIE. Is a BIE a semantic model to pin down one and only one definition.

M: CCTS calls for everyone of those to be a unique BIE and therefore unique complex type.

G: If you have a library with 1000 different BIES, then same number of complex types and global
elements. How do you handle those global tag names efficiently in many different interfaces. For each
dictionary entry name and defining the tag name.

A: Last release proved it was unnecessary to do that.

E: At some time using the local element method. Doubts were raised about it . We talked about global
and we weighted this. Very unscientific but Eduardo was very conservative. However, resistant to
going back to it. The main motive for global was the issue of reusability. At this point we can boil it
down to reusability. Gunther is objecting that it does not make reusability easier.

A: Understanding of large vocabulary, it is very easy if within each namespace each name means
one set of semantics and one structure. We should use slightly longer tagnames where there are
nuances of meaning.

G: We are defining alot of extra rules to handle this issue then.

A: CBL used one namespace and some fairly long tag names. You are trading difficulty in creating the
library against the difficulty of using it.

B: IF people agree local would be nice if all our tools understood types and we were all using Xpath
2.0, then a short cut would be to make it incumbent upon the local party to show why this does not
matter or demonstrate this can be handled with existing tools.

M: Mark does not agree. It violates a Universal Business Language in XML expressions.

B: what decision would we make if xpath and XSLT 2.0 were in place?

E: decisions shouldn't be based on technology that doesn't exist. but as soon as xpath 2 and XSLT 2
are ready they will explode in the market place. how painful will it be in 2 years to switch decision?

A: also other things like versioning which will benefit, like with CBL, people stuck with a thing that
worked best until they could switch - wasn't big deal.

G: Yes, would not be big deal.

G: The automatic generation of these global elements, the developer is not interested in the tag
names himself, he is interested in the dictionary entry name. The fixed rules to output these, are
more important.

A: | don't think having to fix clashes is as big a problem as the trade off of the locally defined names.
Example: When you have 4 things with different names but they are the same things. At that point |
should be able to go look at them in the schema and resolve the clashes then.

G: At that point you have to write a tool to go look at this a second time, | am saying the BIE's are
unique within the library locally, so | do not need any further tools to do any further work.

A: It doesn't complicate all things, it does not impact users at all. If we have to write more tools, | don't
think that is so bad.

E: Either way tools are not relevant., | want to go back to the issue of reusability. | also have an issue
with customization. about a half hour ago, | heard it said that local makes customization easier. If we
go local it impacts many more issues than just reusability.

B: We keep saying that a name is a sequence of names divided by slashes. the principle is tree
structuring our namespace. XPath makes each name globally unique. If we can agree that local has
alot of good attributes...

G: If you are using local defined elements you still have the unique names. Sometimes if you use
global defined elements, using XPaths, the dictionary entry names...

A: We said that each construct would be uniquely named.

M: | need to clarify something. There is no requirement to follow the tripartite naming. There is no
rule saying the name has to be tripartite in the CCTs.

G: ebXML CC in the future will be the standard. This is the preferred

E; Lets try to resolve this.

M: Do we need to discuss how to reverse the last decision made.

E: Those that are meeting today and this week, should come up with a proposal.

4 of 5 2/25/2003 11:39 AM

[ubl-ndrsc] MINUTES: Face to Face 5 Feb 2003 http://lists.oasis-open.org/archives/ubl-ndrsc/200302/msg00028.html

A: What is necessary to reverse the decision. Based on the criteria of usability and reusability. What
does it look like if you make these changes.

M: Until | see instances documents, | will remain in the other camp. | want to know what is wrong with
the current approach and | want to see the new proposed approach.

B: We need to keep processing logic as well (stylesheets) in this debate.

E: | want to see the issue of context modification included.
M: This needs to become a position paper.
A: This F2F should record the issues.

We have decided it is now time for the parties who would like to reverse the decision to concretely
demonstrate the problem encountered with concrete examples that would effect whatever we have at
this point.

Meeting adjourned: 18:35 GMT

Outgoing mail is certified Virus Free.
Checked by AVG anti-virus system (http://www.grisoft.com).
Version: 6.0.441 / Virus Database: 247 - Release Date: 1/9/2003

Attachment: visa Seaburg.vcf
Description: text/vcard

e Follow-Ups:

o Jubl-ndrsc] updates to modnamever

m Ffrom: Dave Carlson <dcarlson@ontogenics.com>

[Date Prev] | [Thread Prev] | [Thread Next] | [Date Next] -- [Date Index] |
[Thread Index] | [Elist Home]

Search: [thismonth _[Match: |all _| Sort by: |score |

Words: | Search | | Help

Powered by eList eXpress LLC

50f5 2/25/2003 11:39 AM

	Title Page
	Table of Contents
	Introduction
	Real Examples
	Inconsistencies of tag-names
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Same sub-element in two or more aggregates with different characteristics
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Synchronization of Types
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Reusability in Interfaces and Implementations
	Problem
	Solution by using global declared elements
	Solution by using local defined elements

	Reusability
	Reusability of Structures and Elements
	Programming and Interfaces

	Recommedation
	UBL-NDRSC 2003-02-05 Meeting Minutes

