
[image: image1.png]

Universal Business Language (UBL)
Code List Rules

Working Draft 05, 9 June 2003

Document identifier:

wd-ublndrsc-codelist-05

Location:

http://www.oasis-open.org/committees/ubl/ndrsc/archive/
Editor:

G. Ken Holman

Tim McGrath

Lisa Seaburg, Aeon LLC <lseaburg@aeon-llc.com>

Contributor:

Eve Maler, Sun Microsystems <eve.maler@sun.com>

Fabrice Desré, France Telecom <fabrice.desre@francetelecom.com>

Gunther Stuhec, SAP <gunther.stuhec@sap.com>

Farrukh Najmi <farrukh.najmi@sun.com>

Arofan Gregory <agregory@aeon-llc.com>

Paul Spencer <paul.spencer@boynings.co.uk>

Anthony Coates <abcoates@londonmarketsystems.com>

Abstract:

This specification provides rules for developing and using reusable code lists. This specification was originally developed for the UBL Library and derivations thereof, but it may also be used by other XML vocabularies as a mechanism for sharing code lists in W3C XML Schema form.

Status:

This is a draft document. It may change at any time.
This document was developed by the OASIS UBL Naming and Design Rules subcommittee [NDRSC]. Your comments are invited. Members of this subcommittee should send comments on this specification to the ubl-ndrsc@lists.oasis-open.org list. Others should subscribe to and send comments to the ubl-comment@lists.oasis-open.org list. To subscribe, send an email message to ubl-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-open.org/committees/security/).

Change History

	Revision
	Editor
	Description

	03
	Lisa Seaburg
	Cut and pasted in CCT type Code.type from Gunthers document.

	04
	Lisa Seaburg
	Worked through sections with Eve, rewrote.

Worked through comments within document, leave in the NDR specific comments for discussion with the group.

	05
	Lisa Seaburg
	Added ebXML RR section from Farrukh Najmi, as appendix.

Need to add redefinition, changing documentation around enumeration.

	05-20030702
	Lisa Seaburg
	Replaced Code.type text with new text from version 11 of Gunthers paper.

Build samples for the FPSC to work with in the 0p80 release.

Table of Contents

41
Introduction

41.1
Scope and Audience

41.2
Terminology and Notation

52
Rules for Defining and Using Code Lists

52.1
Overview

62.2
XML Representations for ebXML-Based Codes

62.2.1
Representation

62.2.2
Definition

62.2.3
Use

82.2.4
Notes

82.2.5
Structure

92.2.6
Details and Value Ranges

92.2.7
Rules

92.2.8
Facets

92.2.9
Examples

102.2.10
XML Schema

112.3
Template and Rules for Code List Modules

132.4
Associating UBL Elements with Code List Types

142.5
Deriving New Code Lists from Old Ones

142.5.1
Unioning code lists

152.5.2
Restricting code lists

163
Conformance to UBL Code Lists

174
Rationale for the Selection of the Code List Mechanism (Non-Normative)

174.1
Requirements for a Schema Solution for Code Lists

184.2
Contenders

184.2.1
Enumerated List Method

204.2.2
QName in Content Method

214.2.3
Instance Extension Method

234.2.4
Single Type Method

254.2.5
Multiple UBL Types Method

274.2.6
Multiple Namespaced Types Method

294.3
Analysis and Recommendation

315
References

32Appendix A. - ebXML Registry ClassificationScheme

325.1
Abstract

325.2
What is ebXML Registry ClassificationScheme

325.3
Using ebRIM ClassificationScheme To Represent UBL Code Lists

335.4
Mapping Between UBL Code Lists and ebRIM ClassificationScheme

345.5
References

35Appendix B. Notices

1 Introduction

This specification was developed by the OASIS UBL Naming and Design Rules subcommittee [NDRSC] to provide rules for developing and using reusable code lists in W3C XML Schema [XSD] form. It is organized as follows:

· Section 2 provides rules on how to define and use reusable code list schema modules.

· Section 3 provides non-normative recommendation to use ebXML Registry ClassificationScheme XML Schema as a schema for representing UBL Code lists.

· Section 4 is non-normative. It provides the analysis that led to the recommendation of the XSD datatype mechanism for creating reusable code lists.

· Section 5 is the recommendations for code producers and the compliance rules.

1.1 Scope and Audience

The rules in this specification are designed to encourage the creation and maintenance of code list modules by their proper owners as much as possible. It was originally developed for the UBL Library and derivations thereof, but it is largely not specific to UBL needs; it may also be used with other XML vocabularies as a mechanism for sharing code lists in XSD form. If enough code-list-maintaining agencies adhere to these rules, we anticipate that a more open marketplace in XML-encoded code lists will emerge for all XML vocabularies.

This specification assumes that the reader is familiar with the UBL Library and with the ebXML Core Components concepts and ISO 11179 concepts that underlie it.

1.2 Terminology and Notation

The text in this specification is normative for UBL Library use unless otherwise indicated. The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this specification are to be interpreted as described in [RFC2119].

Terms defined in the text are in bold. Refer to the UBL Naming and Design Rules [NDR] for additional definitions of terms.

Core Component names from ebXML are in italic.

Example code listings appear like this.

Note: Non-normative notes and explanations appear like this.

Conventional XML namespace prefixes are used throughout this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

The prefix xs: stands for the W3C XML Schema namespace [XSD].

The prefix xhtml: stands for the XHTML namespace.

The prefix iso3166: stands for a namespace assigned by a fictitious code list module for the ISO 3166-1 country code list.

2 Rules for Defining and Using Code Lists

This section provides rules for developing and using reusable code lists in XSD form. These rules were developed for the UBL Library and derivations thereof, but they may also be used by other code-list-maintaining agencies as guidelines for any XML vocabulary wishing to share code lists. See section 4.0 Conformance.

Note: The OASIS UBL Naming and Design Rules subcommittee is willing to help any organization that wishes to apply these rules but does not have the requisite XSD expertise.

2.1 Overview

This section introduces important terminology and concepts.

UBL uses codes in two ways:

· As first-order business information entities (BIEs) in their own right. For example, one property of an address might be a code indicating the country. This information appears in an element, according to the Naming and Design Rules specification [NDR].

<Country>UK</Country>

· As second-order information that qualifies some other BIE. For example, any information of the Amount core component type must have a supplementary component (metadata) indicating the currency code. This information appears in an attribute.

<Currency code=”EUR”>2456,000</Country>

The inner code element is dedicated to holding codes only from a single list. For example, the CountryCode element below is designed to hold codes only from the ISO 3166-1 list of two-letter country codes; here it happens to contain the code for Belgium. The inner code element is wrapped in an outer code element, in this case a CountryIdentificationCode element representing a BIE for the country portion of an address.

<Address>

 ...

 <!-- outer code element -->

 <CountryIdentificationCode>

 <!-- inner code element -->

 <CountryCode>BE</CountryCode>

 </CountryIdentificationCode>

</Address>

The inner element is associated with two XSD datatypes that uniquely define the ISO 3166-1 code list in a way that allows for efficient reuse:

· A simple type (code content type) represents the string of characters
supplying the code inside the element’s start- and end-tags. It provides constraints that ensure, to one degree or another, that the code supplied is a legitimate member of the list.

· A complex type (code list type) represents the code list as a whole. It provides attributes that hold metadata about the code list.

The code content type is connected to the code type using the XSD “simple content” mechanism, which allows the element to have both string content and attributes:

<xs:simpleType name=”ISO3166CountryCodeContentType” >

…

</xs:simpleType>

<xs:complexType name=”ISO3166CountryCodeType”>

 ...

 <xs:simpleContent>

 <xs:extension base="ISO3166CountryCodeContentType">

 <xs:attribute name="...">

 ...

 </xs:attribute>

 ...

 </xs:simpleContent>

</xs:complexType>

These two types must be defined in an XSD schema module dedicated to this purpose (a code list module) and must have documentation embedded in them that identifies their adherence to the rules in this specification. The code list module must have a proper target namespace for reference by XML vocabularies that wish to use it.

Note:
The XSD form prescribed by this specification is not intended to preclude additional definitions of the same code list in other forms, such as other schema languages or different XSD representations. The UBL Library requires an XSD form because the library is itself in XSD.

Code-list-maintaining agencies are encouraged to create their own code list modules; these modules are considered external as far as UBL is concerned.The UBL Library, where it has occasion to define its own code lists, must create its own native code list modules. In some cases, an external agency that owns a code list in which UBL has an interest might choose (for the moment or forever) not to create a code list module for it. In these cases, UBL must define a code list module on behalf of the agency. It is expected that these orphan code list modules will not have the same validating power, nor be maintained with as much alacrity, as other code list modules with proper owners.

You may use the generic CCT code list may be used to create these orphan lists, this is option 2.

To use a code list module, the UBL Library will associate the relevant type with a native element. For example:

<xs:element

 name=”ISO3166CountryCode”

 type=”ISO3166CountryCodeType
”>

 ...

</xs:element>

2.2 XML Representations for ebXML-Based Codes

Since the UBL Library is based on the ebXML Core Components Version1.9, 11 December 2002; see [CCTS1.9]), the supplementary components identified for the Code. Type core component type are used to identify a code as being from a particular list. According to the UBL Naming and Design Rules [NDR], the content component is represented as an XML element and the supplementary components are represented as XML attributes.

Following are the components associated with Code.Type and the required representation in the code list module and XML instance.

2.2.1 Representation

Dictionary Entry Name

Code. Type

XML Schema Name

CodeType

2.2.2 Definition

CodeType (Code): A character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute together with relevant supplementary information.

2.2.3 Use

The data type “Code“ is used for all elements that should enable coded value representation in the communication between partners or systems, in place of texts, methods, or characteristics. The list of codes should be relatively stable and should not be subject to frequent alterations (for example, CountryCode, LanguageCode, ...). Codelists must have versions.

If the agency that manages the code list is not explicitly named and is specified using a role, then this takes place in a tag name.

The following types of code can be represented:

a.) Standardized codes whose code lists are managed by an agency from the code list DE 3055.

	Code
	Standard

	listID
	Code list for standard code

	listVersionID
	Code list version

	listAgencyID
	Agency from DE 3055 (excluding roles)

	listAgencySchemeID
	-

	listAgencySchemeAgencyID
	-

b.) Proprietary codes whose code lists are managed by an agency that is identified by using a standard.

	Code
	Proprietary

	listID
	Code list for the propriety code

	listVer
	Version of the code list

	listAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	listAgencySchemeID
	ID schema for the schemeAgencyId

	listAgencySchemeAgencyID
	Agency DE 3055 that manages the standardized ID ‘listAgencyId’

c.) Proprietary codes whose code lists are managed by an agency that is identified without the use of a standard.

	Code
	Proprietary

	listID
	Code list for the proprietary code

	listVer
	Code list version

	listAgencyID
	Standardized ID for the agency (normally the company that manages the code list)

	listAgencySchemeID
	ID schema for the schemeAgencyId

	listAgencySchemeAgencyID
	‘ZZZ’ (mutually defined from DE 3055)

d.) Proprietary codes whose code lists are managed by an agency that is specified by using a role or that is not specified at all.

The role is specified as a prefix in the tag name. listID and listVersionID can optionally be used as attributes if there is more than one code list. If there is only one code list, no attributes are required.

	Code
	Proprietary

	listID
	ID schema for the proprietary identifier

	listVer
	ID schema version

	listAgencyID
	-

	listAgencySchemeID
	-

	ListAgencySchemeAgencyID
	-

2.2.4 Notes

So that values, methods and characteristic descriptions can be represented as code, the corresponding code list must be consistent and, unlike identifier lists, must not change as far as the contents is concerned.

As a rule, no logical or real objects can be identified uniquely with “Code“.

In some cases it may be that it is not possible to distinguish between “Identifier“ and “Code“ for coded values. This is particularly applicable if an object is identified uniquely using a coded value and this coded value also replaces a longer text. For example, this includes the coded values for “Country“, “Currency“, “Organization“, “Region“ and so on. If the list of coded values proves to be consistent, then the GDT? “Code“ can be used for the individual coded values.

Examples:

A passport number (PassportId) is clearly an “Identifier“ because it a.) identifies a (real) object (the actual person) and b.) enhances the list of passport numbers with the newly issued passport.

A country code (CountryCode or CountryId) can either be an “Identifier“ or a “Code“. The country code identifies a real object, namely the actual country uniquely. However, the country code itself is also a replacement for the respective (unique) country name. Therefore, it is also a “Code“. Since the code list proves to be consistent to a certain extent, the country name should be represented by “Code“. Changes only occur as the result of political events and they occur much less frequently compared to changes regarding humans.

A processing code (ProcessCode) is without doubt a “Code“ because it a.) describes a method type and not an object, and b.) the list of processing codes rarely changes.

2.2.5 Structure

	CCT
	Attribute
	Object Class
	Property Term
	Represen-tation Term
	Primitive Type
	Base Type
	Definition
	Restriction
	Card.
	Remarks

	CodeType
	
	
	
	Code
	
	
	
	
	
	

	
	
	Code
	Content
	
	String
	Xsd:token
	
	
	1..1
	Required

	
	name
	Code
	Name
	Text
	String
	xsd:token
	
	
	0..1
	Optional

	
	listID
	Code List
	Identification
	Identifier
	String
	xsd:token
	
	
	0..1
	Optional

	
	listName
	Code List
	Name
	Text
	String
	xsd:token
	
	
	0..1
	Optional

	
	listVersionID

	Code List
	Version
	Identifier
	String
	xsd:token
	
	
	0..1
	Optional

	
	listAgencyID
	Code List Agency
	Identification
	Identifier
	String
	xsd:token
	
	
	0..1
	Optional

	
	listAgencyName
	Code List Agency
	Name
	Text
	String
	xsd:token
	
	
	0..1
	Optional

	
	listAgencySchemeID
	Code List Agency
	Scheme
	Identifier
	String
	xsd:token
	
	
	0..1
	Optional,

	
	listAgencySchemeAgencyID
	Code List Agency
	SchemeAgency
	Identifier
	String
	xsd:token
	
	
	0..1
	Optional

	
	xml:lang
	Code
	Language
	Identifier
	String
	xsd:language
	
	
	0..1
	Internal xml:lang

	
	listURI
	Code List
	Uniform Resource Identifier
	Identifier
	String
	xsd:anyURI
	
	
	0..1
	Optional

	
	listSchemeURI
	Code List Scheme
	Uniform Resouce Identifier
	Identifier
	String
	xsd:anyURI
	
	
	0..1
	Optional

2.2.6 Details and Value Ranges

Content Component

The content of a CodeType represents a character string (letters, figures or symbols) that for brevity and/or language independence may be used to represent or replace a definitive value or text of an attribute.

Supplementary Components

The following attributes can be used:

· name – The textual equivalent of the code content. (If no code content exists, the code name can be used on its own.). Note: It might be not necessary to use name for the exchange of instances.

· listID – Identifies a list of the respective corresponding codes. listID is only unique within the agency that manages this code list.

· listVer – Identifies the version of a code list (Identifies the version of the UN/EDIFACT data element 3055 code list.).

· listAgencyID – Identifies the agency that manages a code list. The default agencies used are those from DE 3055 but roles defined in DE 3055 cannot be used.

· listAgencySchemeID – Identifies the ID schema that represents the context for identifying the agency. Note: This attribute is necessary, if the value in listAgencyID is not based on UN/CEFACT data element 3055.

· listAgencySchemeAgencyID – Identifies the agency that listAgencySchemeID manages. This attribute can only contain values from DE 3055 (excluding roles).
Note: This attribute is necessary, if the value in listAgencyID is not based on UN/CEFACT data element 3055.

· xml:lang – The identifier of the language used in the corresponding text string. Note: The language should be based on the recommendation IETF RFC 1766 and/or IETF RFC 3066. Note: For parser processing reasons should be useful, to use the recommended attribute xml:lang for representing the supplementary component Language.

· listURI – The listURI defines the Uniform Resource Identifier that identifies where the code list is located.
listSchemeURI – The listSchemeURI defines the Scheme Uniform Resource Identifier that identifies where the code list scheme is located.

2.2.7 Rules

The following attributes are not necessary:

· listName – The name of a list of codes. Note: listName should be not used, because all code lists should be recognized in a standardized global environment.

· listAgencyName – The name of the agency that maintains the code list. Note: listAgencyName should be not used, because all code lists should be recognized in a standardized global environment.

2.2.8 Facets

The facets that apply to the content component of CodeType are:

· length – A fixed number of characters for the value in code content.

· minLength – A minimum number of length for the value in code content.

· maxLength – A maximum number of length for the value in code content.

· pattern – The indirect constraint of the code content by using a pattern, which will be based on regular expression.

· enumeration – A limited set of values, which will be allowed in code content.

2.2.9 Examples

Definition

	Object Class Qualifier
	Object Class
	Property Qualifier
	Property Term
	Representation Term
	Qualifier of Data Type
	Data Type
	UBL Definition

	Handling Unit
	Receipt Line
	Shortage
	Action
	Code
	Action
	Code. Type
	describes the action, by a code, that the buyer/recipient wishes the seller to take as a result of the supplied quantity being short.

	
	Hazardous Transit
	Transport Emergency
	Card
	Code
	Card
	Code. Type
	the identification of a transport emergency card, describing the emergency actions to be taken in the event of an emergency affecting the transportation of the hazardous item. Can be used for the identity number of a specific hazardous emergency response plan assigned by the appropriate responsible authority, either national or international.

	Payee
	Financial Account
	
	Currency
	Code
	Currency
	Code. Type
	identifies the currency in which the account is held, using a code. ISO 4217 3-character code is recommended.

Instances

a)
Standard Code/ Standard Agency:

<SecurityErrorCode listID =“DE 0571“ listAgencyID=”6”>4</SecurityErrorCode>
b)
Proprietary Code/ Standard Agency:

<SecurityErrorCode listID =“SEC“ listAgencyID=”065055766” listAgencySchemeID=”DUNS” listAgencySchemeAgencyID=”016”>ANS</SecurityErrorCode>
c)
Proprietary Code/ Proprietary Agency:

<SecurityErrorCode listID =“SEC“ listAgencyID=”4711” listAgencySchemeID=”PartyA” listAgencySchemeAgencyID=”ZZZ”>ER05</SecurityErrorCode>
2.2.10 XML Schema

<!-- ===== CCT: CodeType ===== -->

<xsd:complexType name="CodeType">

<xsd:annotation>

<xsd:documentation>A character string (letters, figures, or symbols)

that for brevity and/or languange independence may be used to

represent or replace a definitive value or text of an attribute

together with relevant supplementary information.

</xsd:documentation>

</xsd:annotation>

<xsd:simpleContent>

<xsd:extension base="xsd:token">

<xsd:attribute name="listID" type="xsd:token" use="optional"/>

<xsd:attribute name="listAgencyID" type="xsd:token" use="optional"/>

<xsd:attribute name="listAgencyName" type="xsd:token"

use="optional"/>

<xsd:attribute name="name" type="xsd:token" use="optional"/>

<xsd:attribute name="listName" type="xsd:token" use="optional"/>

<xsd:attribute name="listVersionID" type="xsd:token"

use="optional"/>

<xsd:attribute name="listURI" type="xsd:anyURI" use="optional"/>

<xsd:attribute name="listSchemeURI" type="xsd:anyURI"

use="optional"/>

<xsd:attribute ref="xml:lang" use="optional"/>

<xsd:attribute name="listAgencySchemeID" type="xsd:token"

use="optional"/>

<xsd:attribute name="listAgencySchemeAgencyID" type="xsd:token"

use="optional"/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

2.3 Template and Rules for Code List Modules

Following is a template to follow in creating a code list module. This hypothetical ISO 3166-1 code list for country codes is used merely as an example. A text version of this template is available [CLTemplate].

Note: The UN/ECE organization has made available an XSD representation of the ISO 3166-1 code list [3166-XSD]. While that XSD representation serves a purpose that is somewhat different from that targeted in this specification, it is useful to use as a reference while studying this template.

[ISSUE: The theory is that the supplementary components describing the code list should be on the code content type, as well as the code type, so that the code content type can be safely used for second-order code attributes as well.
]
<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 xmlns=”http://www.w3.org/2001/XMLSchema”

 xmlns:xs=”http://www.w3.org/2001/XMLSchema”

 xmlns:xhtml=”...http://www.w3.org/1999/xhtml...”>

 targetNamespace="...namespace for ISO 3166 code list module..."

 xmlns:iso3166="...namespace for ISO 3166 code list module...">

 <xs:annotation>

 <xs:documentation>

This code list module template corresponds to draft 01 of the

OASIS UBL NDR code list rules document (wd-ublndrsc-codelist-01).

See that document for information on how to use this template:

http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

 </xs:documentation>

 </xs:annotation>

 <xs:simpleType name=”iso3166:CodeContentType”>

 <xs:annotation>

 <xs:documentation>

 <xhtml:div class=”Core_Component_Type”>

 <xhtml:p>Code. Type</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Identifier”>

 <xhtml:p>ISO 3166</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Agency._Identifier”>

 <xhtml:p>6</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Version._Identifier”>

 <xhtml:p>0.2</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 </xs:annotation>

 <xs:extension base=”xs:token”>

 <xs:enumeration value=”AF”/>

 <xs:enumeration value=”AL”/>

 <xs:enumeration value=”DZ”/>

 . . .

 </xs:extension>

 </xs:simpleType>

 <xs:complexType name=”iso3166:CodeType”>

 <xs:annotation>

 <xs:documentation>

 <xhtml:div class=”Core_Component_Type”>

 <xhtml:p>Code. Type</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Identifier”>

 <xhtml:p>ISO 3166</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Agency._Identifier”>

 <xhtml:p>6</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 <xs:documentation>

 <xhtml:div class=”Code_List._Version._Identifier”>

 <xhtml:p>0.2</xhtml:p>

 </xhtml:div>

 </xs:documentation>

 </xs:annotation>

 <xs:simpleContent>

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="ID"

 type="xs:token" fixed=”ISO 3166”/>

 <xs:attribute name="agencyID"

 type="xs:token" fixed=”6”/>

 <xs:attribute name="versionID"

 type="string" fixed=”0.2”/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/>

</xs:schema>

Following are the rules for defining a code list module:

All newly defined types must be named; they must not be anonymous.

Note: Only locally scoped code lists should use anonymous types, to prevent the types from being associated with multiple elements or with elements in other namespaces.

A properly named target namespace must be assigned to the code list schema module. It is recommended that the types be defined in their own dedicated schema module, so that the namespace unambiguously refers to a single code list.

In the code list type, attributes must be defined at least for the code list identification identifier (listID), code list agency identifier (listAgencyID), and code list version identifier (listVersionID). Defining attributes for the code name (name) and its language code (languageCode) is optional. The attributes may be associated with any appropriate simple types. The attribute values need not be fixed; a default could be provided, or the value could simply be required to appear in the instance.

The XSD definitions should be made as reasonably constraining as possible, defining value defaults or fixed values for supplementary components and circumscribing the valid values of the code content without compromising the maintainability goals of the agency. It might make sense not to use enumeration but rather to use pattern-matching regular expressions or to avoid strict code validation entirely.

Embedded documentation must be provided as shown in the template above in order to indicate the appropriate code list metadata
. If the code list module serves for multiple versions of the same code list, the documentation block for Code List. Version. Identifier is optional. See the Naming and Design Rules specification [NDR] for more information on embedded documentation rules.

A global element in the agency’s namespace may optionally be defined and associated with the code list type.

Be aware that the UBL Library currently does not plan to use such elements, but it might be helpful for use in other XML vocabularies that import global elements from other namespaces.

Note: Various features of XSD could be used for purposes not related to this specification, such as attribute groups (to manage the attributes for supplementary components) and the use of non-built-in XSD simple types for the attribute values (for tighter management of constraints on these values).

2.4 Associating
UBL Elements with Code List Types

First, the relevant code list module must be imported into the relevant UBL Library module.

<xs:import

 namespace="...namespace for ISO 3166 code list module..."

 schemaLocation="...location of code list module..." />

Then, an outer code element representing the code BIE must be set up to hold one or more inner code elements. Here, a global CountryIdentificationCode element is assumed to require a code from the hypothetical ISO 3166 code list defined in Section 2.2.1. Thus, it needs to reference the iso3166:ISO3166Code global element.

Every first-order code appearing in the UBL Library must be double-wrapped.

[ISSUE: We need some rules around the naming and construction of types such as CountryIdentificationCodeType, with the types being generated based on the contents of the “Code Lists/Standards” column of the spreadsheet. These rules should probably go in the NDR document, not here.]

<xs:complexType name="Address">

 ...

 <xs:sequence>

 ...other content...

 <xs:element

 ref="ubl:CountryIdentificationCode"/>

 </xs:sequence>

</xs:complexType>

<xs:element name=”CountryIdentificationCode”>

 ...

 <xs:element ref=”iso3166:ISO3166Code”/>

</xs:complexType>

In this case, only one code list is allowed to be used for country codes. However, it is possible for the outer element to allow a choice of one or more inner elements, each containing a code from a different list. For example, if a country code from Codes “R” Us were also allowed, the element definition for CountryIdentificationCode would change as follows (assuming the Codes “R” Us module were properly imported):

<xs:complexType name="Address">

 ...

 <xs:sequence>

 ...other content...

 <xs:element

 ref="ubl:CountryIdentificationCode"/>

 </xs:sequence>

</xs:complexType>

<xs:element name=”CountryIdentificationCode”>

 ...

 <xs:choice>

 <xs:element ref=”iso3166:ISO3166Code”/>

 <xs:element ref=”codesrus:CodeRUsCode”/>

 </xs:choice>

</xs:complexType>

In this way, minimal support for a selection of code lists can be indicated not just through normative prose but through formal schema constraints as well.

2.5 Deriving New Code Lists from Old Ones

[ISSUE: This section is to be supplied. It needs to show the proper way to build new code lists, e.g. by unioning multiple existing code lists and by subsetting existing code lists manually.]

In order to promote maximum reusability and ease code lists maintenance, code list designers are expected to build new code lists from existing lists. They could for example combine several code lists or restrict an existing code list.

These new code lists must be usable in UBL elements the same manner the “basic” code lists are used.

2.5.1 Unioning code lists

Let’s consider we want to union the code”R”Us code list and the ISO3166 code list to create a compound list.

First we need to create a new content type to union the different content types :

<xs:simpleType name="cmp:CodeContentType">

 <xs:union memberTypes="iso3166:CodeContentType codesrus:CodesRUsContentType"/>

</xs:simpleType>

Then we embed it into an outer complex type :

 <xs:complexType name=”cmp:CompoundCodeType”>

 <xs:simpleContent>

 <xs:extension base="cmp:CodeContentType">

 <xs:attribute name="ID"

 type="xs:token" fixed=”Compound Inc”/>

 <xs:attribute name="agencyID"

 type="xs:token" fixed=”6”/>

 <xs:attribute name="versionID"

 type="string" fixed=”0.2”/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

And lastly we need to create a global element :

<xs:element name=”cmp:CompoundCode” ref=”cmp:CompoundCodeType”/>

2.5.2 Restricting code lists

Following the same pattern as the Union use case, a code list designer can restrict a code list by applying the relevant facets in the content simple type.

[Placeholder for section from Gunther on the restrictions for this.]
3 Conformance to UBL Code Lists

This section is for Producers of Code Lists outside of UBL. These lists could be owned by a number of different type of organizations. The conformance

We probably need a Conformance section in this document so that code list producers (who, in general, won’t be UBL itself) will know how/when to claim conformance to the requirements (MUST) and recommendations (SHOULD/MAY) in this specification. This spec is not for the UBL TC, but for code list producers (which may occasionally include UBL itself).
4 Rationale for the Selection of the Code List Mechanism (Non-Normative)

This non-normative section describes the analysis that was undertaken by the OASIS UBL Naming and Design Rules subcommittee to recommend a particular XSD-based solution for the encoding of code lists.

Note that some of the examples in this section may be incorrect or obsolete, without compromising the results of the analysis. If you notice problems, please report them and we will attempt to fix them. Otherwise, please consider this section historical.

4.1 Requirements for a Schema Solution for Code Lists

Following are our major requirements on potential code list schemes for use in the UBL library and customizations of that library. For convenience, a weighted point system is used for scoring the solutions against the requirements.

· Semantic clarity

The ability to “dereference” the ultimate normative definition of the code being used. The supplementary components for “Code.Type” CCTs are the expected way of providing this clarity, but there are many ways to supply values for these components in XML, and it’s even possible to supply values in some non-XML form that can then be referenced by the XML form.

Points: Low = 0, Medium = 2, High = 4

· Interoperability

The sharing of a common understanding of the limited set of codes that are expected to be used. There is a continuum of possibilities here. For example, a schema datatype that allows only a hard-coded enumerated list of code values provides “hard” (but inflexible) interoperability. On the other hand, merely documenting the intended shared values is more flexible but somewhat less interoperable, since there are fewer penalties for private arrangements that go outside the standard boundaries. This requirement is related to, but distinct from, validatability and context rules friendliness.

Points: Low = 0, Medium = 2, High = 4

· External maintenance

The ability for non-UBL organizations to create XSD schema modules that define code lists in a way that allows UBL to reuse them without modification on anyone’s part. Some standards bodies are already starting to do this, though we recognize that others may never choose to create such modules.

Points: Low = 0, Medium = 2, High = 4

· Validatability

The ability to use XSD to validate that a code appearing in an instance is legitimately a member of the chosen code list. For the purposes of the analysis presented here, “validatability” will not measure the ability for non-XSD applications (for example, based on perl or Schematron) to do validation.

Points: Low = 0, Medium = 2, High = 4

· Context rules friendliness

The ability to use expected normal mechanisms of the context methodology for allowing codes from additional lists to appear (extension) and for subsetting the legitimate values of existing lists (subsetting), without adding custom features just for code lists. This has lower point values because we expect it to be easy to design custom features for code lists. For example, the following is a mock-up of one approach that could be used:

<CodeList fromType="LocaleCodeType" toCode="MyCodeType">

<Add>JP</Add>

<Remove>DE</Remove>

</CodeList>
Points: Low = 0, Medium = 1, High = 2

· Upgradability

The ability to begin using a new version of a code list without the need for upgrading, modifying, or customizing the schema modules being used. This has lower point values because requirements related to interoperability take precedence over a “convenience requirement”.

Points: Low = 0, Medium = 1, High = 2

· Readability

A representation in the XML instance that provides code information in a clear, easily readable form. This is a subjective measurement, and it has lower point values because although we want to recognize readability when we find it, we don’t want it to become more important than requirements related to interoperability.

Points: Low = 0, Medium = 1, High = 2

4.2 Contenders

The methods for handling code lists in schemas are as follows:

The enumerated list method, using the classic method of statically enumerating the valid codes corresponding to a code list in an XSD string-based type internally in UBL

The QName in content method, involving the use of XML Namespaces-based “qualified names” in the content of elements, where the namespace URI is associated with the supplementary components

The instance extension method, where a code is provided along with a cross-reference to somewhere in the same instance to the necessary supplementary information

The single type method, involving a single XSD type that sets up attributes for supplying the supplementary components directly on all elements containing codes

The multiple UBL types method, where each element dedicated to containing a code from a particular code list is bound to a unique UBL type, which external organizations must derive from

The multiple namespaced types method, where each element dedicated to containing a code from a particular code list is bound to a unique type that is qualified with a (potentially external) namespace

Throughout, an element LocaleCode defined as part of the complex type LanguageType is used as an example element in a sample instance, and UBL library schema definitions are demonstrated along with potential opportunities for XSD-style derivation. Each method is assessed to see which requirements it satisfies.

4.2.1 Enumerated List Method

The enumerated list method is the “classic” approach to defining code lists in XML and, before it, SGML. It involves creating a type in UBL that literally lists the allowed codes for each code list.

4.2.1.1 Instance

The enumerated list method results in instance documents with the following structure.

<LocaleCode>code</LocaleCode>

4.2.1.2 Schema Definitions

The schema definitions to support this might look as follows.

<xs:simpleType name="LocaleCodeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="DE"/>

 <xs:enumeration value="FR"/>

 <xs:enumeration value="US"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:element name="LocaleCode" type="LocaleCodeType"/>

4.2.1.3 Derivation Opportunities

Using the XSD feature for creating unions of simple types, it is possible to extend the valid values of such an enumeration. However, it seems that we can't restrict the list of valid values. This is because <xs:enumeration> is not a type construction mechanism, but a facet.

The base schema shown above could be extended to support new codes as follows:

<xs:simpleType name="OtherCodeType">

 <xs:restriction base="xs:token">

 <xs:enumeration value="SP"/>

 <xs:enumeration value="DK"/>

 <xs:enumeration value="JP"/>

 . . .

 </xs:restriction>

</xs:simpleType>

<xs:element name="MyLocalCode">

 <xs:simpleType>

 <xs:union memberTypes="LocaleCodeType OtherCodeType"/>

 </xs:simpleType>

</xs:element>

4.2.1.4 Assessment

Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL itself defeats our hope that code lists can be defined and maintained in a decentralized fashion.

	Requirement
	Score
	Rank

	Semantic clarity
	0
	Low

The supplementary components of the code list could be provided as schema annotations, but they are not directly accessible as first-class information in the instance or schema.

	Interoperability
	4
	High

The allowed values are defined by a closed list defined in the schema itself.

	External maintenance
	0
	Low

We have to modify the type union in the base schema to "import" the new codes.

	Validatability
	4
	High

The allowed values are defined by a closed list defined in the schema itself.

	Context rules friendliness
	0
	Low

The allowed values are defined in the middle of a simple type, whereas the context methodology so far only knows about elements and attributes.

	Upgradability
	0
	Low

A schema extension would be needed to add any new codes defined in a new version.

	Readability
	2
	High

The instance is as compact as it can be, with no extraneous information hindering the visibility of the code itself.

	Total
	11
	

4.2.2 QName in Content Method

The QName method was proposed in V04 of the code lists paper.

4.2.2.1 Instance

With the QName method, the code is an XML qualified name, or “QName”, consisting of a namespace prefix and a local part separated by a colon. Following is an example of a QName used in the LocaleCode element, where “iso3166” is the namespace prefix and “US” is the local part. The “iso3166” prefix is bound to a URI by means of an xmlns:iso3166 attribute (which could have been on any ancestor element).

<LocaleCode

 xmlns:iso3166=”http://www.oasis-open.org/committees/ubl/ns/iso3166”>

iso3166:US

</LocaleCode>

The intent is for the namespace prefix in the QName to be mapped, through the use of the xmlns attribute as part of the normal XML Namespace mechanism, to a URI reference that stands for the code list from which the code comes. The local part identifies the actual code in the list that is desired.

The namespace URI shown here is just an example. However, it is likely that the UBL library itself would have to define a set of common namespace URIs in all cases where the owners of external code lists have not provided a URI that could sensibly be used as a code list namespace name.

4.2.2.2 Schema Definitions

QNames are defined by the built-in XSD simple type called QName. The schema definition in UBL should make reference to a UBL type based on QName wherever a code is allowed to appear, so that this particular use of QNames in UBL can be isolated and documented. For example:

<xs:simpleType name=”CodeType”>

 <xs:restriction base=”QName”/>

</xs:simpleType>

<xs:complexType name="LanguageType" id="UBL000013">

 <xs:sequence>

 <xs:element name="IdentificationCode" . . .></xs:element>

 <xs:element name="Name" . . .></xs:element>

 <xs:element name="LocaleCode"

 type="cct:CodeType" id="UBL000016" minOccurs="0">

 </xs:element>

 </xs:sequence>

</xs:complexType>

The documentation for the LocaleCode element should indicate the minimum set of code lists that are expected to be used in this attribute. However, the attribute can contain codes from any other code lists, as long as they are in the form of a QName.

Applications that produce and consume UBL documents are responsible for validating and interpreting the codes contained in the documents.

4.2.2.3 Derivation Opportunities

The QName type does have several facets: length, minLength, maxLength, pattern, enumeration, and whiteSpace. However, since namespace prefixes are ideally changeable, depending only on the presence of a correct xmlns namespace declaration, the facets (which are merely lexical in nature) are not a sure bet for controlling values.

4.2.2.4 Assessment

The idea of using XML namespaces to identify code lists is potentially useful, but because this method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both semantic clarity and validatability suffer.

	Requirement
	Score
	Rank

	Semantic clarity
	1.5
	Low to medium

You have to go through a level of indirection, and a complicated one at that (because QNames in content are pseudo-illegitimate and are not supported properly in many XML tools), in order to refer back to the namespace URI. Further, the namespace URI might not resolve to any useful information. However, in cases where the URI is meaningful or sufficient documentation of the code list exists (something we could dictate by fiat), clarity can be achieved.

	Interoperability
	0
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	0
	Low

There is no good way to define a schema module that controls QNames in content.

	Validatability
	0
	Low

All validation is pushed off to the application.

	Context rules friendliness
	0
	Low

This method is similar to the single type method in this respect. If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the downstream application, there is no need to do anything at all.

	Upgradability
	2
	High

You need to have a different URI for each version of a code list, but if you do this, using a new version is easy: You just use a prefix that is bound to the URI for the version you want. However, there is no magic in namespace URIs that allows version information to be recognized as such; the whole URI is just an undifferentiated string.

	Readability
	1
	Medium

The representation is very compact because the supplementary component details are deferred to another place (and format) entirely, but the QName format and the need for the xmlns: attribute make the information a little obscure.

	Total
	4.5
	

4.2.3 Instance Extension Method

In the instance extension method, a code is provided along with a cross-reference to the ID of an element in the same instance that provides the necessary code list supplementary information. One XML instance might contain many code list declarations.

4.2.3.1 Instance

The instance extension method results in instance documents with something like the following structure. The CodeListDecl element sets up the supplementary information for a code list, and then an element provides a code (here, LocaleCode) also refers to the ID of the relevant declaration.

<CodeListDecl ID=”ID-LocaleCode”

 CodeListIdentifier=”ISO3166”

 CodeListAgencyIdentifier=”ISO”

 CodeListVersionIdentifier=”1.0”/>

. . .

<LocaleCode IDRef=”ID-LocaleCode”>

US

</LocaleCode>

4.2.3.2 Schema Definitions

The schema definitions to support this might look as follows.

<xs:element name=”CodeListDeclaration” type=”CodeListDeclType”/>

<xs:complexType name=”CodeListDeclType”>

 <xs:attribute name="CodeListIdentifier" type="xs:token"/>

 <xs:attribute name="CodeListAgencyIdentifier" type="xs:token"/>

 <xs:attribute name="CodeListVersionIdentifier" type="xs:token">

</xs:complexType>

. . .

<xs:element name=LocaleCode” type=”LocaleCodeType”/>

<xs:complexType name=”LocaleCodeType”>

 <xs:simpleContent>

 <xs:extension base="xs:token">

 <xs:attribute name="IDRef" type="xs:IDREF"/>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

4.2.3.3 Derivation Opportunities

Since code lists are declared in the instance document, there are not many opportunities for schema type derivation. Additional attributes for supplementary components could be added by this means, though this is unlikely to be needed.

4.2.3.4 Assessment

This method allows for great flexibility, but leaves validatability and interoperability nearly out of the picture.

	Requirement
	Score
	Rank

	Semantic clarity
	3
	Medium to high

All of the necessary information is present in the code list declaration, but retrieving it must be done somewhat indirectly.

	Interoperability
	1
	Low to medium

Standard XML entities could be provided that define the desired code lists, but there is no a machine-processable way to ensure that they get associated with the right code-usage elements.

	External maintenance
	2
	Medium

Using XML entities, external organizations could create and maintain their own code list declarations.

	Validatability
	0
	Low

Using XSD, there is no way to validate that the usage of a code matches the valid codes in the referenced code list.

	Context rules friendliness
	0
	Low

Since this method resides primarily in the instance and not the schema, the context rules have little opportunity to operate on code list definitions.

	Upgradability
	2
	High

It is easy to declare a code list with a higher version directly in the instance.

	Readability
	1.5
	Medium to high

The instance looks fairly clean, but the code list choice is a bit opaque.

	Total
	9.5
	

4.2.4 Single Type Method

The single type method is currently being used in UBL, as a result of a perl script running over the Library Content SC’s modeling spreadsheet. The script makes use of our decision to use attributes for supplementary components of a CCT and elements for everything else.

4.2.4.1 Instance

The single type method results in instance documents with the following structure.

<LocaleCode

 CodeListIdentifier=”ISO3166”

 CodeListAgencyIdentifier=”ISO”

 CodeListVersionIdentifier=”1.0”>

US

</LocaleCode>

4.2.4.2 Schema Definitions

The relevant UBL library schema definitions are as follows in V0.64 (leaving out all annotation elements). Notice that CodeType is a complex type that sets up a series of attributes (the supplementary components for a code) on an element that has simple content of CodeContentType (the code itself). Also note that, although a CodeName attribute is defined along with its corresponding type, this is a duplicate component for the code itself, and need not be used in the instance.

<xs:simpleType name="CodeContentType" id="000091">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListAgencyIdentifierType" id="000093">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListIdentifierType" id="000092">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeListVersionIdentifierType" id="000099">

 <xs:restriction base="token"/>

</xs:simpleType>

<xs:simpleType name="CodeNameType" id="000100">

 <xs:restriction base="string"/>

</xs:simpleType>

<xs:simpleType name="LanguageCodeType" id="000075">

 <xs:restriction base="language"/>

</xs:simpleType>

<xs:complexType name="CodeType" id="000089">

 <xs:simpleContent>

 <xs:extension base="cct:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType">

 </xs:attribute>

 <xs:attribute name="CodeName" type="cct:CodeNameType">

 </xs:attribute>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType">

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

</xs:complexType>

<xs:complexType name="LanguageType" id="UBL000013">

 <xs:sequence>

 <xs:element name="IdentificationCode" . . .></xs:element>

 <xs:element name="Name" . . .></xs:element>

 <xs:element name="LocaleCode" type="cct:CodeType"

 id="UBL000016"

 minOccurs="0">

 </xs:element>

 </xs:sequence>

</xs:complexType>

4.2.4.3 Derivation Opportunities

While it is possible to derive new simple types that restrict other simple types (including built-in types such as xs:token, used here for the actual code and other components), it is not possible to use such derived simple types directly in a UBL attribute such as CodeListVersionIdentifier without defining a whole new element structure. This is because you need to use the XSD xsi:type attribute to “swap in” the derived type for the ancestor, and you can’t put an attribute on an attribute in XML.

4.2.4.4 Assessment

This method is strong on semantic clarity because of the attributes for supplementary components, but it loses interoperability and schema flexibility because it is using a single type for everything.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The various supplementary components for the code are provided directly on the element that holds the code, allowing the code to be uniquely identified and looked up.

	Interoperability
	0
	Low

The shared understanding of minimally supported code lists would have to be conveyed only in prose.

	External maintenance
	0
	Low

There is no particular XSD formalism provided for encoding the details of a code list; thus, there is no way for external organizations to create a schema module that works smoothly with the UBL library. However, there are no barriers to creating a code list (in some other form) for use in any code-based UBL element.

	Validatability
	0
	Low

There is no XSD structure for testing the legitimacy of any particular codes. All validation would have to happen at the application level (where the application uses the attribute values to find some code list in which it can do a lookup of the code provided).

	Context rules friendliness
	0
	Low

If extensions and subsets are to be managed by means of a context rules document at all, there would need to be a code list-specific mechanism added to reflect this method. If extensions and subsets don’t need to be managed by means of context rules because everything happens in the application, there is no need to do anything at all.

	Upgradability
	2
	High

A document creator could merely change the CodeListVersionIdentifier value and supply a code available only in the new version.

	Readability
	1.5
	Medium to high

The code is accompanied by “live” supplementary components in the instance, which swells the size of instance. However, the latter are only in attributes, and it is nonetheless very clear what information is being provided.

	Total
	7.5
	

4.2.5 Multiple UBL Types Method

In this method, each list is associated with a unique element, whose content is a code from that list. The element is bound to a type that is declared in the UBL library; the type ensures that the Code.Type supplementary components are documented.

4.2.5.1 Instance

The multiple UBL types method results in instance documents with the following structure.

<LocaleCode>

<ISO3166Code>code</ISO3166Code>

</LocaleCode>

The LocaleCode element doesn’t contain the code directly; instead, it contains a subelement that is dedicated to codes from a particular list. If codes from multiple lists are allowed here, the element could contain any one of a choice of subelements, each dedicated to a different code list.

4.2.5.2 Schema Definitions

There are many different ways that UBL can define the ISO3166Code element, but it probably makes sense to base it on something like the single type method (for the supplementary component attributes) and to use the enumerated type method where practical (for the primary component). Thus, the optimal form of the multiple UBL types method is really a hybrid method.

The schema definition of the types governing the ISO3166Code element might look like this:

<xs:simpleType name=”ISO3166CodeContentType”>

 <xs:extension base=”token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

</xs:simpleType>

<xs:complexType name=”ISO3166CodeType”>

 <simpleContent>

 <xs:extension base=" ISO3166CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType" fixed=”ISO3166”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type="cct:CodeListAgencyIdentifierType"

 fixed=”ISO”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type="cct:CodeListVersionIdentifierType"

 default=”1.0”/>

 <xs:attribute name="LanguageCode"

 type="cct:LanguageCodeType"

 use=”optional”/>

 </simpleContent>

</xs:complexType>

Such a definition does several things:

· It enumerates the possible values of the code itself. An alternative would be just to allow the code to be a string or token, or to specify a regular expression pattern that the code needs to match.

· It provides a default value for the version of the code list being used, with the possiblity that the default could be overridden in an instance of a UBL message to provide a different version (though, since the codes are enumerated statically, if new codes were added to a new version they could not be used with this element as currently defined). Some alternatives would be to fix the version and to require the instance to set the version value.

· It fixes the values of the code list identifier and code list agency identifier for the code list, such that they could not be changed in an instance of a UBL message. Some alternatives would be to provide changeable defaults and to require that the instance set these values.

· It makes the language code optional to provide in the instance.

4.2.5.3 Derivation Opportunities

Because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful. A derived type could be created that does any of the following:

· Adds to the enumerated list of values by means of the XSD union technique

· Adds defaults where there were none before

· Adds fixed values where there were none before

In addition, the element containing the dedicated code list subelement can be modified to allow the appearance of additional code list subelements.

4.2.5.4 Assessment

This method is quite strong on most requirements; it falls down only on external maintenance.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The supplementary components are always accessible, either through the instance or (through defaulting or fixing of values) the schema.

	Interoperability
	4
	High

Each code-containing construct in UBL can indicate, through schema constraints, exactly what is expected to appear there.

	External maintenance
	0
	Low

In order to work with the UBL library, the code lists maintained by external organizations would have to derive from the UBL type, which creates a circular dependency (UBL needs to include an external schema module, but the external module needs to derive from UBL). Alternatively, the UBL library has to do all the work of setting up all the desired code list types.

	Validatability
	4
	High

The constraint rules can range from very tight to very loose, and anyone who wants to subset or extend the valid values can express this in XSD terms fairly easily. The limitations are only due to XSD’s capabilities.

	Context rules friendliness
	2
	High

Since there is a dedicated element for a code, it can be added or subtracted like a regular element – something that is already assumed to be part of the power of the context rules language.

	Upgradability
	1.5
	Medium to high

Depending on how the constraint rules have been set up, it might be required to define a new (possibly derived) type to allow for a new version of a code list. However, in many cases, it will be desirable to design the schema module to avoid the need for this.

	Readability
	1.5
	Medium to high

Because there is an element dedicated to the list “source” for the code, the code itself is relatively readable. However, the supplementary components are likely to be hidden away from the instance, which makes their values a bit obscure.

	Total
	17
	

4.2.6 Multiple Namespaced Types Method

This method is very similar to the multiple UBL types method, with one important change: The UBL elements that each represent a code from a particular list are bound to types that may have come from an external organization’s schema module.

4.2.6.1 Instance

The namespaced type method results in instance documents with the following structure. This is identical to the multiple UBL types method, because the element dedicated to a single code list is still a UBL-native element.

<LocaleCode>

<ISO3166Code>code</ISO3166Code>

</LocaleCode>

4.2.6.2 Schema Definitions

The schema definitions to support the content of LocaleCode might look as follows. Here, three code list options are offered for a locale code. The xmlns: attributes that provide the namespace declarations for the iso3166:, xxx:, and yyy: prefixes are not shown here. It is assumed that an external organization (presumably ISO) has created a schema module that defines the iso3166:CodeType complex type and that this module has been imported into UBL.

<xs:complexType name="LanguageType">

 <xs:sequence>

 <xs:element name="IdentificationCode" . . .></xs:element>

 <xs:element name="Name" . . .></xs:element>

 <xs:element name="LocaleCode"

 type="cct:LocaleCodeType" minOccurs="0">

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name=”LocaleCodeType” id=”. . .”>

 <xs:choice>

 <xs:element name=”ISO3166Code” type=”iso3166:CodeType”/>

 <xs:element name=”XXXCode” type=”xxx:CodeType”/>

 <xs:element name=”YYYCode” type=”yyy:CodeType”/>

 </xs:choice>

</xs:complexType>

Just as for the multiple UBL types method, there are many different ways that the iso3166:CodeType complex type can be defined, but it probably makes sense to base it on something like the single type method (for the supplementary component attributes) and to use the enumerated type method where practical (for the primary component). Thus, the optimal form of the multiple namespaced types method is really a hybrid method. For example, the definition might look like this:

<xs:simpleType name=”CodeContentType”>

 <xs:extension base=”token”>

 <xs:enumeration value=”DE”/>

 <xs:enumeration value=”FR”/>

 <xs:enumeration value=”US”/>

 . . .

 </xs:extension>

</xs:simpleType>

<xs:complexType name=”CodeType”>

 <simpleContent >

 <xs:extension base="iso3166:CodeContentType">

 <xs:attribute name="CodeListIdentifier"

 type="cct:CodeListIdentifierType"

 fixed=”xxx”/>

 <xs:attribute name="CodeListAgencyIdentifier"

 type=" iso3166:CodeListAgencyIdentifierType"

 fixed=”yyy”/>

 <xs:attribute name="CodeListVersionIdentifier"

 type=" iso3166:CodeListVersionIdentifierType"

 default=”1.0”/>

 <xs:attribute name="LanguageCode"

 type=" iso3166:LanguageCodeType"

 use=”optional”/>

 </simpleContent>

</xs:complexType>

Because the UBL library would not have direct control over the quality and semantic clarity of the datatypes defined by external organizations, it would be important to document UBL’s expectations on these external code list datatypes.

4.2.6.3 Derivation Opportunities

Just as for multiple UBL types, because a whole element is dedicated to the code for each code list, the derivation opportunities are more plentiful.

Also, if the external organization failed to meet our expectations about semantic clarity and didn’t add the supplementary component attributes, we could add them ourselves by defining our own complex type whose primary component (the element content) is bound to their type, or by deriving a UBL type from their external type.

4.2.6.4 Assessment

This is a strong contender in every area.

	Requirement
	Score
	Rank

	Semantic clarity
	4
	High

The supplementary components are always accessible to the parser, either through the instance or (through defaulting or fixing of values) the schema. This assumes that UBL’s high expectations on external types are met, but this is a reasonable assumption.

	Interoperability
	4
	High

Each code-containing construct in UBL can indicate, through schema constraints, exactly what is expected to appear there.

	External maintenance
	4
	High

External organizations can freely create schema modules that define elements dedicated to their particular code lists, and can even make the constraint rules as flexible or as draconian as they want.

	Validatability
	4
	High

The constraint rules can range from very tight to very loose, and anyone who wants to subset or extend the valid values can express this in XSD terms fairly easily. The limitations are only due to XSD’s capabilities.

	Context rules friendliness
	2
	High 2

Since there is a dedicated element for a code, it can be added or subtracted like a regular element – something that is already assumed to be part of the power of the context rules language.

	Upgradability
	1.5
	Medium to high

Depending on how the constraint rules have been set up, it might be required to define a new (possibly derived) type to allow for a new version of a code list. However, in many cases, the organization maintaining the code list might design the schema module in such a way as to avoid the need for this.

	Readability
	1.5
	Medium to high

Because there is an element dedicated to the list “source” for the code, the code itself is relatively readable. However, the supplementary components are likely to be hidden away from the instance, which makes their values a bit obscure.

	Total
	21
	

4.3 Analysis and Recommendation

Following is a summary of the scores of the different methods.

	Method
	Score
	Comments

	Enumerated list
	11
	Spelling out the valid values assures validatability, but defining all the necessary code lists in UBL itself defeats our hope that code lists can be defined and maintained in a decentralized fashion.

	QName in content
	4.5
	The idea of using XML namespaces to identify code lists is potentially useful, but because this method uses namespaces in a hard-to-process (and somewhat non-standard) manner, both semantic clarity and validatability suffer.

	Instance extension
	9.5
	This method allows for great flexibility, but leaves validatability and interoperability nearly out of the picture.

	Single type
	7.5
	This method is strong on semantic clarity because of the attributes for supplementary components, but it loses interoperability and schema flexibility because it is using a single type for everything.

	Multiple UBL types
	17
	This method is quite strong on most requirements; it falls down only on external maintenance.

	Multiple namespaced types
	21
	This is a strong contender in every area.

We recommend the multiple namespaced types method, with the addition of strong documented expectations on the external organizations that define schema modules for code lists in order to ensure maximum semantic clarity and validatability.

Note that is is possible that the UBL library will not have many external schema modules to choose from initially, and some external organizations may choose never to create schema modules for their code lists. Thus, UBL might be in the position of having to create dummy datatypes for some of the code lists it uses. In these cases, at least UBL will achieve most of the benefits, while having to balance the costs of maintenance against these benefits. It may be that UBL can even “kick-start” the interest of some external organizations in producing such a deliverable by supplying a starter schema module.

5 References

[CCTS1.9]
UN/CEFACT Draft Core Components Specification, Part 1, 11 December, 2002, Version 1.9.

[CLTemplate]
OASIS UBL Naming and Design Rules code list module template, http://www.oasis-open.org/committees/ubl/ndrsc/archive/.

[NDR]
M. Cournane et al., Universal Business Language (UBL) Naming and Design Rules, OASIS, 2002, http://www.oasis-open.org/committees/ubl/ndrsc/archive/wd-ublndrsc-ndrdoc-nn/.

[NDRSC]
OASIS UBL Naming and Design Rules subcommittee. Portal: http://www.oasis-open.org/committees/ubl/ndrsc/. Email archive: http://lists.oasis-open.org/archives/ubl-ndrsc/.
[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XSD]
XML Schema, W3C Recommendations Parts 0, 1, and 2. 2 May 2001.

[3166-XSD]
UN/ECE XSD code list module for ISO 3166-1, http://www.unece.org/etrades/unedocs/repository/codelist.htm.

Appendix A. - ebXML Registry ClassificationScheme

5.1 Abstract

This section provides the proposed text for inclusion in the UBL specification to add a non-normative recommendation to use ebXML Registry ClassificationScheme XML Schema as a schema for representing UBL Code lists. The author is committed to working with the UBL TC on this proposal as deemed necessary by that body.

5.2 What is ebXML Registry ClassificationScheme

The OASIS ebXML Registry standard defines an abstract information model for representing structured taxonomies. It also defines a normative binding of this model to XML Schema which may be used to define structured taxonomies in a standard XML format.

In this model a taxonomy is represented by a class named ClassificationScheme while taxonomy values are represented by a class named ClassificationNode. Any taxonomy, its taxonomy values and the hierarchical structure of its taxonomy values may be defined using an instance of a ClassificationScheme and a set of ClassificationNode instances arranged in a hierarchical structure. Figure 1 shows the information model for ClassificationScheme in UML format.

[image: image2.png]ClassificationScheme

classificationgcheme

RegistryObject | g+ <(Classification)= 0

|Registryopject|

ClassificationNodel ¢ fiationNodes

1

parent

classifiedObjects

assotiatedObjects

<{hssociation)>

Figure 1: Information Model Classification View

In addition to the information model classes defined above, ebRIM also defines a class called Slot which is used to add dynamic attributes to any object (including ClassificationScheme and ClassificationNode). Slots provide for attribute extensibility within ebRIM.

5.3 Using ebRIM ClassificationScheme To Represent UBL Code Lists

The ebRIM ClassificationScheme information model and its normative binding to an XML Schema representation is recommended for representing UBL code lists for the following reasons:

· Provide an open, standards-based XML schema that can be used to represent UBL code lists.

· Supports the “ UBL Code List Rules” defined by [wp-ubl-codelist].

· Is extensible to accommodate additional requirements in the future.

· Allows any UBL code lists to be based upon and validated by a single common XML schema.

· Enable the definition of hierarchical UBL code lists.

· Make it easier to use ebXML Registry to store UBL content.

5.4 Mapping Between UBL Code Lists and ebRIM ClassificationScheme

A normative binding to XML schema [ebRIM Schema] has been defined for the abstract ebRIM ClassificationScheme information model shown in Figure 1. This section describes how the ebRIM ClassificationScheme schema may be used to represent UBL code lists.

At the highest level, a UBL code lists maps to an ebRIM ClassificationScheme while the values within the code list map to an ebRIM ClassificationNode. The following example illustrates a very simple code list for representing Gender:

<ClassificationScheme id="urn:uuid:d1462ca5-a643-46e9-b3da-eda1403d9d3a" isInternal="true" nodeType="UniqueCode" userVersion=”1.0”>

 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Gender"/></Name>

 <Description><LocalizedString lang="en-US" charset="UTF-8" value="A gender code list"/></Description>

 <Slot name="xmlNameSpace">

 <ValueList><Value>urn:nameSpaceURN</Value></ValueList>

 </Slot>

 <Slot name="responsibleOrganization">

 <ValueList><Value>urn:orgURN</Value></ValueList>

 </Slot>

 <ClassificationNode id="urn:uuid:4c764c0d-6248-4017-b58e-e0b1667fa2e5" code="Male">

 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Male"/></Name>

 <Description><LocalizedString lang="en-US" charset="UTF-8" value="Code for Male"/></Description>

 </ClassificationNode>

 <ClassificationNode id="urn:uuid:078f0d7b-5f3a-4aa6-8b59-af6b91da4185" code="Female">

 <Name><LocalizedString lang="en-US" charset="UTF-8" value="Female"/></Name>

 <Description><LocalizedString lang="en-US" charset="UTF-8" value="Code for Female"/></Description>

 </ClassificationNode>

</ClassificationScheme>

[wp-ubl-codelist] defines that a UBL code list representations MAY include the following attributes. This section defines the mapping to ebRIM:

	Code Attribute Name
	Mapping in ebRIM

	name
	Name element of ClassificationNode

	listID
	Slot with same name

	listName
	Slot with same name

	listVersionID

	userVersion attribute of ClassificationScheme

	listAgencyID
	Slot with same name

	listAgencyName
	Slot with same name

	listAgency-
SchemeID
	Slot with same name

	listAgency-
SchemeAgencyID
	Slot with same name

	xml:lang
	Lang attribute of LocalizedString in Name and Description

	xlink:href
	Slot with same name

	xlink:role
	Slot with same name

	xlink:type
	Slot with same name

Using the simple mapping provided above, any UBL code lists may be represented within ebRIM Classification XML Schema and be adherent to [wp-ubl-codelist].

5.5 References

[wp-ubl-codelist] UBL Code List Rules: A White Paper

http://www.oasis-open.org/committees/ubl/ndrsc/archive/wp-ubl-codelist-04.doc

[ebRIM] ebXML Registry Information Model version 2.1

http://www.oasis-open.org/committees/regrep/documents/2.1/specs/ebRIM.pdf
[ebRIM Schema] ebXML Registry Information Model Schema

http://www.oasis-open.org/committees/regrep/documents/2.1/schema/rim.xsd
(Note version 2.5 will soon be TC approved. Note sure which you want to reference. Version 2.1 is OASIS approved 2.5 has just been TC approved this week and will be available on web site in next 3 weeks).

Appendix B. List of Rules for Codes

[R 1] All newly defined types must be named; they must not be anonymous.

Note: Only locally scoped code lists should use anonymous types, to prevent the types from being associated with multiple elements or with elements in other namespaces.

[R 2] A properly named target namespace must be assigned to the code list schema module. It is recommended that the types be defined in their own dedicated schema module, so that the namespace unambiguously refers to a single code list.

[R 3] In the code list type, attributes must be defined at least for the code list identification identifier (listID), code list agency identifier (listAgencyID), and code list version identifier (listVersionID). Defining attributes for the code name (name) and its language code (languageCode) is optional. The attributes may be associated with any appropriate simple types. The attribute values need not be fixed; a default could be provided, or the value could simply be required to appear in the instance.

[R 4] The XSD definitions should be made as reasonably constraining as possible, defining value defaults or fixed values for supplementary components and circumscribing the valid values of the code content without compromising the maintainability goals of the agency. It might make sense not to use enumeration but rather to use pattern-matching regular expressions or to avoid strict code validation entirely.

[R 5] Embedded documentation must be provided as shown in the template above in order to indicate the appropriate code list metadata
. If the code list module serves for multiple versions of the same code list, the documentation block for Code List. Version. Identifier is optional. See the Naming and Design Rules specification [NDR] for more information on embedded documentation rules.

[R 6] A global element in the agency’s namespace may optionally be defined and associated with the code list type.

Be aware that the UBL Library currently does not plan to use such elements, but it might be helpful for use in other XML vocabularies that import global elements from other namespaces.

Note: Various features of XSD could be used for purposes not related to this specification, such as attribute groups (to manage the attributes for supplementary components) and the use of non-built-in XSD simple types for the attribute values (for tighter management of constraints on these values).

[R 7] Every first-order code appearing in the UBL Library must be double-wrapped.

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

�PAGE \# "'Page: '#'�'" ��At some point, I got a comment that asked about using XML to structure a code (e.g., <category>AB</category><item>CD</item>. Our rules don’t exactly prevent it, but the emphasis on a simple code content type and strings of characters will seem to prevent a structured code. Is there a way we can soften this wording, or at least provide a footnote that explains that it is not required for the code content type to be simple etc.? Or does the fact that CCTS defines a code as “characters…” doom this idea from the start?

�PAGE \# "'Page: '#'�'" ��This note reminds me that the Conformance section would be a good place to discuss why organizations might or might not choose to have an XSD representation of their code lists. Arofan could probably provide some thoughts here; he hooked me up with Tony Coates and others who dispute, to a degree, the wisdom of doing code lists in XSD (and David RR Webber believes the same). It’s a tough crowd, so providing some rationale would be really useful!

�PAGE \# "'Page: '#'�'" ��As you folks know by now, I now favor the approach of using a generic CodeType etc. a la the ones in Gunther’s CCT handcrafted module for these. So if the group agrees to this, then this sentence needs to be changed. Regardless of the answer, I believe it belongs in the NDR document and not here, since it only governs what UBL as a code list consumer (possibly a producer only by proxy) does, and not what others do. (Oops, note that I should have highlighted the paragraph following this one too.)

�PAGE \# "'Page: '#'�'" ��This type reference needs to have a namespace prefix on it. It would come from the imported code list schema module, so it will never be defined directly in the UBL handcrafted code list adapter module (which is where this element declaration would appear).

�PAGE \# "'Page: '#'�'" ��This probably needs more explanation and an example. Maybe if we use DE 3055 itself as an example somewhere, we can show how the code content type for it can be bound to the listAgencyID of other codes. (Sigh; this brings up the artificial location (in my view) of the line drawn between codes and Ids. The next version of this paper should include a treatment of IDs along the exact same lines as codes…

�PAGE \# "'Page: '#'�'" ��I bet Mark would argue that this shouldn’t be in the rule text, but rather should be commentary that appears below it.

�PAGE \# "'Page: '#'�'" ��Somewhere near here we should actually explain why the doc fields appear twice in the template. The reason is to attach the semantics to both the code type and the code content type, so that if the latter is used for a second-order code, it’s still semantically clear. Also we should have a rule about “MAY” use of attribute groups for convenience, much as UN/ECE has done.

�PAGE \# "'Page: '#'�'" ��This is the section that I believe should be moved to the NDR list. This is advice to the handcrafter of the UBL code list adapter module, pure and simple; code list producers could be referred to this information in the NDR document if they’re curious (or also find themselves in a position of being a code list consumer sometimes), but it’s for us, not them. Once this is moved, this is also the section where we’d talk about dummy/orphan code list modules vs. generic Codetype.

�PAGE \# "'Page: '#'�'" ��This is the only numbered Rule in this section; as an Overview, it shouldn’t (IMO) contain any real rules. If this is a real rule that we want to keep, then it should be in the section with all the other rules. Now, on the merits of this rule itself, I think this is more of a rule for how UBL should bind code list modules to its model, so it’s a rule for a different audience – the code list consumer audience. So actually, I think this rule should go in Section 2.5 (Associating…), which should move in its entirety to the NDR document. Finally, if we do keep this rule, wherever it goes, we should explain what “double-wrapped” means!

�PAGE \# "'Page: '#'�'" ��I bet Mark would argue that this shouldn’t be in the rule text, but rather should be commentary that appears below it.

�PAGE \# "'Page: '#'�'" ��Somewhere near here we should actually explain why the doc fields appear twice in the template. The reason is to attach the semantics to both the code type and the code content type, so that if the latter is used for a second-order code, it’s still semantically clear. Also we should have a rule about “MAY” use of attribute groups for convenience, much as UN/ECE has done.

�PAGE \# "'Page: '#'�'" ��This is the only numbered Rule in this section; as an Overview, it shouldn’t (IMO) contain any real rules. If this is a real rule that we want to keep, then it should be in the section with all the other rules. Now, on the merits of this rule itself, I think this is more of a rule for how UBL should bind code list modules to its model, so it’s a rule for a different audience – the code list consumer audience. So actually, I think this rule should go in Section 2.5 (Associating…), which should move in its entirety to the NDR document. Finally, if we do keep this rule, wherever it goes, we should explain what “double-wrapped” means!

22

12
wd-ublndrsc-codelist-05

9 June 2003

Copyright © OASIS Open 2003. All rights reserved.

Page 1 of 36

