Enabling Service-Oriented Architecture
[DRAFT] UDDI Executive White Paper

￼

The Stencil Group, Inc.
912 Cole Street, PMB 287
San Francisco, California 94117

www.stencilgroup.com

August 2004

STATUS OF THIS DOCUMENT

This is a preliminary draft of an updated UDDI Executive
 White Paper. This draft is intended to generate critical discussion and questions. As you read this draft, please consider the following questions:

■
Does the paper convey the issues most important for UDDI today? Are there any topics not addressed that should be included?

■
Is technical information accurate, and is it described at the proper level of detail for a reader first learning about the role of UDDI?

■
Is the development/infrastructure distinction when discussing the role of UDDI registries valid and appropriate?

■
Are the analogies and illustrations provided helpful for communicating the goals of this paper?

■
Some of the material in this draft (in particular, the appended use case scenarios) originally appeared in an earlier paper, “The Evolution of UDDI,” which publicized the release of the first UDDI v3 draft. Is this information still appropriate?

■
Does the writing use the proper tone to represent “voice” of OASIS and the UDDI working group?

Feedback and suggestions will be used to prepare a final draft at the end of August 2004.

Please note that this document is a confidential work-in-progress and should not be distributed outside the UDDI member committees.

OVERVIEW

The Universal Description, Discovery, and Integration (UDDI) protocol is a key element of the group of interrelated standards that comprise the web services stack. The UDDI specification defines a standard method for publishing and discovering the network-based software components of a service-oriented architecture (SOA). Its development is led by the OASIS consortium of enterprise software vendors and customers
.

This paper discusses the strategic rationale for UDDI and analyzes its enabling role in the context of today’s enterprise web services applications. In a companion white paper, we provide a concise overview of the UDDI standard and describe key architectural changes in the recent Version 3 specification.

THE SERVICE-ORIENTED IMPERATIVE
The success of IT organizations increasingly is measured by how well the systems they manage adapt to business change. IT leaders must identify and plan for an architecture that provides not only scalability and “nine nines
” reliability, but also the ability to add new application components or to reorient and coordinate existing functions nimbly and rapidly.

Yet, most incumbent enterprise applications were not designed for flexibility and with presumption of rapid change. The layering of several generations of computing technology has resulted in a complex infrastructure that is difficult to integrate and that often limits IT’s options. It is no wonder that the financial and opportunity costs of integration-related projects are so high.

To address these challenges, IT leaders increasingly recognize they must begin to think of IT systems in terms of malleable services, not static assets. Although this service-oriented approach to enterprise software design represents a much-needed solution to the complexity and costs of many legacy practices, it also reflects several well-tested antecedents. Indeed, progressive enterprise software architects have long advocated methods in which applications are designed with modular, loosely coupled interfaces that hide the complexity of the underlying systems
.

Yet, because of a lack of universal standards, most of these solutions
 were not practical for solving broad-based enterprise software needs. This obstacle was particularly difficult in environments where all endpoint components could not be controlled fully, such as when business processes crossed organizational boundaries to include other corporate divisions or external trading partners.

It is in this context that the concept
of web services—a group of interrelated standards based upon the Extensible Markup Language (XML) that defines an open, loosely coupled, and simplified method of integrating enterprise software applications—has been embraced by software vendors and customers alike. Indeed, over the past several years, the vocabulary of this web services architecture
has become familiar to every IT executive. The model’s pragmatic business benefits—better integration and coordination among systems, increased flexibility of IT assets, and reduced development costs—are compelling.

A STANDARDS-BASED WEB SERVICES REGISTRY

UDDI is an important enabling element of the service-oriented approach to software design. The standard specifies a registry
for web services, methods for controlling access to the registry, and a mechanism for distributing or delegating records to other registries. In short, a UDDI registry
manages the information necessary to locate a software service, to invoke that service, and to manage information
 about that service.

Rather than forcing applications to include hard-wired information about an external service’s application programming interface (API
), UDDI registries provide this binding information dynamically, at run-time. The benefits of this approach immediately become clear should some details—even the location of the service—change. Moreover, the UDDI registry can provide different responses depending upon the security, transport, or quality of service defined by arbitrary business rules.

To further illustrate the concept of a UDDI web services registry, consider the important roles similar registries have played in other distributed application architectures. The Domain Name System (DNS
) controls the Internet’s network addresses, CORBA had its Object Request Broker
 to direct the flow of system calls, and Microsoft Windows uses an eponymous Windows Registry to manage the interactions of COM/DCOM components. Like these other systems, the value of a UDDI registry is that it provides a mechanism for managing an otherwise ad hoc, chaotic, and unscalable series of interactions.

[UDDI operates at a different level from DNS, COS Naming, DCE CDS, JNDI, and Windows Registry. All of these registries focus on enabling location transparency – resolving a logical address to a physical address. You can use UDDI for this purpose – retrieve the access point at runtime, although you then still use DNS to resolve the URL. (One of the keys advantages of the web services framework over other middleware frameworks is that it uses the native facilities of the Internet (e.g., DNS) rather than requiring a separate infrastructure.) But I don’t think this is the primary focus of UDDI – and certainly not its core value to helping manage an SOA. UDDI is more comparable to CORBA Trader service – help me find a service that matches these criteria.

The Web services framework supports multiple forms of discovery – each addressing different use cases. If you have the URL of the service, then you use DNS to discover the physical address of the service. You can also use WS-MetadataExchange to obtain the service metadata. WS-Discovery allows you to discover services based on presence. WSIL allows you to discover services that have been deployed on a particular server. But none of these discovery mechanisms helps you discovery services that you don’t already know about. UDDI provides a centralized registry of all the services that are available within a given domain. As a developer, you can’t use an existing service if you a) don’t know that it exists and b) don’t know how to find its metadata. UDDI provides the means to register services and service metadata, and to categorize these services and metadata to enable complex query capabilities (search based on attributes). Each service registration provides links to all metadata associated with the service. This is a key enabler of reusability and hence SOA.]
In fact, many adopters of web services methods today are facing this very challenge. Many software developers within IT organizations have begun to take advantage of a wide range of tools that simplify incorporating the SOAP
interfaces that are the basic building blocks of web service interactions. While development managers and enterprise software architects often encourage this “organic” growth of web service implementations, they also are acutely aware of their enterprises’ needs to provide an infrastructure that systematically addresses needs such as discovery, manageability, and security.

UDDI and other standards that have begun to flesh out the web services “stack” ensure that the convenience of developers and the requirements of enterprise architects are not in opposition. In fact, a UDDI registry can make the jobs of both groups of IT users significantly easier.

UDDI’s Role in Web Services Development

Benefits such as standards-based interoperability that are provided to programmers by web services are clear. Nonetheless, when development teams begin to build web services interfaces into their applications, they soon face issues all too familiar to developers who work in any programming environment: code reuse, ongoing maintenance, and documentation. Moreover, as the number of web services created within an IT organization grows, the need to manage these services can increase exponentially.

For development teams, registries based upon UDDI help answer needs such as:

■
How can development managers systematically organize and manage web services across multiple systems and development teams?

■
How can developers systematically manage the process of moving services through each phase of development: from coding to testing to public deployment?

■
How can programmers document interface specifications, message transports, and authentication mechanisms with other developer groups? As the services change over time, how can external applications accommodate the changes?

When developing and deploying web services applications, UDDI registries help drive better code reuse and developer productivity. A UDDI registry provides an interoperable, standards-based approach for systematically documenting and publishing web services, regardless of development environment or platform. It can help developers—even across functional groups—to find a shared service and use that service within his or her own application.

UDDI’s Role in Service-Oriented Infrastructure

Issues of services development point to the larger question of how to design an IT infrastructure that supports web services development efforts. Although questions such as how best to conceive shared services, to design identity management and authentication mechanisms, and so on are beyond the scope of the UDDI standard (and this paper!), UDDI registries represent an important element of this overall question. In a service-oriented environment, enterprise software architects must consider questions such as:

■
How can critical applications be insulated from changes—or failures—in back-end shared services?

■
How can an organization share information about services in a controlled way that reflects the business rules and policies of the business?

Compounding these issues, a service-oriented approach implies that these questions must be addressed as a routine aspect of run-time operations, not hard-coded into the applications themselves.

Registries based upon UDDI provide IT administrators a formal layer of indirection necessary for service-oriented application development and management. By providing a sort of firewall between a service and the applications that call it, system administrators more easily can accommodate changes in the life-cycle of specific components—such as for version updates, for policy considerations, or even for service terminatio
n
.

In addition to the fundamental benefits of run-time binding provided by the registry in a service-oriented architecture, administrators often require control of the publication and distribution of information about deployed web services. To facilitate these operational needs, the current version of UDDI adds support for features such as client authentication and publish/subscribe for peer registries
.

THE EVOLUTION OF UDDI
When UDDI first was conceived, much of the attention was focused on the “UDDI Business Registry” (UBR), a public implementation of the UDDI standard that represented a master directory of publicly available e-commerce services. In many ways, this public registry can be considered analogous
to the root node of the DNS database, another successful example of a distributed registry infrastructure.

Although the UBR remains an important part of the UDDI project, it represents only one aspect of the overall effort. Just as the overwhelming majority of DNS activity occurs within the confines of a company’s own network, so too do most UDDI implementations support a business’ internal web services infrastructure.

This understanding of
 is reflected as the UDDI specification has evolved to reflect the need for federated control in real-world operational requirements, as well as to further integrate the standard with other elements of service-oriented infrastructure. Highlights of the standard’s progress are shown in the table below.

Figure 1: History of the UDDI Specification

	UDDI VERSION
	YEAR RELEASED
	KEY OBJECTIVE

	1.0
	2000
	Create foundation for registry of Internet-based business services

	2.0
	2001

	Align specification with emerging web services standards and provide flexible service taxonomies

	3.0
	2004

	Support secure interaction of private and public implementations as key element of service-oriented infrastructure. First release under OASIS aegis

The current 3.0 specification represents a significant milestone in UDDI’s evolution and should be considered very stable. In fact, a prerequisite of its certification by the OASIS standards group was the existence of several deployed commercial implementations.

HOW TO LEARN MORE
The UDDI specification is managed by OASIS, a member-led, international, non-profit standards consortium that concentrates on structured information and e‑business standards. The organization’s members include enterprise IT users, vendors, academics, and governments. In addition to UDDI, OASIS is known best for shepherding web services-related protocols such as ebXML, SAML, WS-Security, BPEL, and others.

To learn more about UDDI and OASIS, please visit www.uddi.org. In addition to the specification itself, the UDDI web site provides detailed technical notes, best practices, case studies, and information about how to contribute to UDDI’s ongoing development. The site also provides links to several commercial and open-source implementations of UDDI registries that are available in the marketplace.

APPENDIX: UDDI USE CASE SCENARIOS
Many practical applications of general web services and specific UDDI concepts exist, and it is not our objective to document them exhaustively here. Instead, we outline two scenarios that are representative of the registry interaction features enabled by Version 3 of the UDDI specification.

Scenario 1: Private Test Registry
Business Scenario
For the past year, the IT organization of a major corporation had begun to explore the possibilities of web services approaches to application development and integration. Using the technology first in pilot projects and other piecemeal efforts, the IT team had skirted around the question of how to deploy and manage its web services applications. As it begins to plan for using web services in the company’s mission-critical business processes and to create services that will be available to the rest of the organization, the IT team realizes that it will require a more controlled and systematic approach.

Overview of Issues
■
Need to test real-world conditions. As software is developed, testing and debugging must occur under conditions as close to real-world production environment as possible and, in fact, incorporate several external, functioning services in the test scenarios. Additionally, it is desirable that as few modifications as possible be made to the component software to switch from “test” to “production” mode.

■
Clear separation between production and test systems. At the same time, development versions of software must not interfere with actual production systems. Because services can be highly distributed and are loosely coupled, maintaining this distinction is paramount to ensure that dependencies are managed systematically.

■
Requirement to support distributed developer base. Developers using the system may be based world-wide and, in fact, use different platforms and technologies from group to group. As a result, interoperability and support for a variety of network connections is an important functional requirement.

Description of Solution
The IT organization develops a test environment that utilizes a “one-way peering” model of registry interaction to create two overlapping domains for services. Those in the “private” domain can interact with the outside world, but not the other way around. When development versions of software have been fully tested and certified, they are promoted to the production sphere, using the expanded publishing features of the UDDI Version 3 specification.

Figure 2: Illustration of Private Test Registry

￼

Comment: As services are certified and promoted to the production environment, the associated UDDI entities are published from the development registry to the production registry using new features enabled in Version 3 of the UDDI specification.

Scenario 2: Supporting Collaboration among Trading Partners
Business Scenario
A large manufacturer has built a business based on providing “specialty” and custom fabricated plastics components on a spot and contract basis. Its role in the middle of the supply chain—between commodity suppliers like refiners and the plants of manufacturers like consumer packaged goods concerns—requires that the company manage relationships with multiple business partners and even act as an intermediary between its suppliers and customers. In order to increase its value to partners by providing visibility into supply and demand, as well as reduce its own costs of managing inventory and logistics, the company has embarked upon a program of automating a largely manual process of communicating with its suppliers using web services-based interfaces to the key applications.

Overview of Issues
■
Interoperability. The sources of data for the new system range from internal systems like ERP applications to third-party services like inventory and logistics tracking. Because all of these applications are established, long-running systems, standardizing on one particular platform is not an option.

■
Decentralization and collaboration. The company’s business relationships are highly customized, and as a result, the integration infrastructure must be significantly decentralized. In fact, many of the business processes in question cannot be controlled by any single organization but, rather, require the cooperation of all parties involved.

■
Security. Many of the systems in question are highly strategic, and information about these systems—even where they exist—may be highly sensitive and should not be shared with other companies in the network.

Description of Solution
As part of an overall web services solution, the company implements a service broker using a UDDI registry as a central element. By deploying it within the boundaries of a “DMZ” trusted environment, the company can both isolate interactions from its internal network, as well as limit the exposure of the registry to the outside world. In addition, by establishing subscription-based relationships with partners’ registries in the trading network, the company can ensure that information is fully, but safely, distributed among trading partners. The registry also implements the XML Digital Signatures support in Version 3 of the UDDI specification to ensure that only authorized
parties are allowed to modify a record or entity in the registry.

Figure 3: Illustration of Trading Partner Collaboration

￼

Comment: Partners use UDDI Version 3’s new subscription features to monitor the company’s root registry. They gain visibility to only a desired subset of all of the services available, as defined in the company’s business policies.
�A recent analyst report called UDDI the “ugly duckling” of web service standards. Other articles have claimed uddi is not gaining traction, is ill-defined, and doesn’t do what’s required of a SOA registry. The goal of this paper must be to strongly counter these arguments.

�If by executive whitepaper, you mean business analysts and CxOs, then this needs more structure along the lines of:

Part One

What is SOA (you have this)

 Link SOA to Web services, and to the whole standards process

 Link the value and importance of standards to the sudden reemergence of the SOA idea

Summarize briefly the business benefits of SOA

Part Two

Why is a registry important to SOA?

List the essential attributes a registry provides – visibility, control/management, reuse, adaptability/flexibility might work as categories

Part Three

UDDI as the standard approach for SOA registry

�You may want to work in something alongs the line of: The Universal Description, Discovery, and Integration (UDDI) standard had as of recently been the least understood specification of the Web services stack - perhaps due to having been cast as a B2B registry – an unfortunate notion given that its design points have little to do with this specific use case. Unlike its SOAP and WSDL siblings, UDDI hadn’t received its due. No longer.

Enterprise business analysts, architects, developers and operations staffs have now fully realized how registry is and must be a core component of the SOA infrastructure they deploy and build upon. Registry and the Web services registry standard - UDDI - has established itself as the single-most important enabler of visibility, manageability, configurability and adaptability, and reusability of the service-oriented enterprise.

Leveraging the UDDI standard makes it possible to attain the ultimate goal of enabling dynamic interoperability and making a reality Dynamic Business Services. It is through the adoption of UDDI that enterprises have concluded that they will attain what they have for so long longed for: enterprise-wide insight, control and economic leverage of all the organization’s business assets that, increasingly over time, will be realized and used by customers, suppliers, products, and employees as dynamic business services.

�We need richer “executive summary” that provides a very compelling case for UDDI as a standard. It needs to summarize the key business advantages of using UDDI when deploying Web services and creating an SOA. Classic 1 page.

�Most folks talk of five nines or six nines. I don’t know anyone that’s intent on delivering nine nines.

�You might want to make it clear that this is a definition of SOA?

�What solutions? Is it worth making clear that SOA isn’t a new idea, but that standards-based Web services, etc. make it practical?

�Web services is much more real than a “concept”. I think you need to give the term “web services” a qualifier when talking about anything other than applications that expose their functionality via WSDL-described interfaces (as opposed to the technology used to create them). The best term I’ve been able to come up with to describe the group of interrelated standards is “framework”. “Technology” works, but it’s too generic – it refers to the standards and product implementations and other stuff. “Model” could work, but it’s not quite right. “Model” refers to a representation of a particular design. “Architecture” doesn’t work – it means a style of design. “Infrastructure” should be used to refer implementations of the framework rather than the framework itself.

But the main objection here is that this language is too tentative.

�Not the right term – “architecture” = style of design. You use this term to talk about the design of the web services framework (composable architecture) or the design of a web services infrastructure (what components – e.g., registries, xml gateways, wsm agents, platforms – go where) or the design of a web services application (factoring of functionality into services). I think you mean “framework”.

�I wouldn’t assume too much here. We need a simple, declarative sentence that says what UDDI does in business terms. E.g.

UDDI is the standards-based approach to advertising, discovering and reusing Web services, etc. etc.

�Actually – the spec defines the protocols for accessing the registry. It doesn’t define the actual registry.

�UDDI is NOT a repository.

�It manages (holds) information necessary to manage information?

I always position UDDI in terms of a registry of service instances and service metadata. It provides the means to locate a service and to locate the metadata required to use the service.

�Applications typically need to hardwire the service’ logical API (you can use a dynamic invocation interface, but that’s very complex programming). What they don’t need to do is hardwire specific binding information.

�UDDI is not comparable to DNS – Web services still use DNS to resolve URLs.

�CORBA has two components that correspond to UDDI: COS Naming and Trader. The ORB is the equivalent to a web services platform that routes requests to a local application agent.

�We’ve dropped the idea of using Simple Object Access Protocol

�This format – addressing the questions of developers. Architects and so on, is good.

�Could you add a third constituency to developer and Architect – Business Analyst/Business Management?

How does UDDI answer their concerns? Is this about management? Access control? Service life-cycle management? I think this is very important.

�Keep this simple. What are the roles UDDI plays? What essential abilities does it provide? List these.

�I think you need to elaborate more on how UDDI enables this level of indirection.

UDDI provides the means to register and discover services based on attributes (taxonomies), to obtain the metadata associated with the services, and to notify users of changes to the metadata associated with the services.

Another critical role that UDDI plays in SOA is as a governance gatekeeper. Enterprises can institute policies and procedures that require services to be registered in UDDI before being scheduled into production – any number of governance processes can be required during the registration phase. (This is the use case I see most often.)

��And for users?

�No. It is a registry of public information. The UDDI TC’s goal is to make the UBR the official central registry of web services specifications and domain-specific standards. The place where you should register public metadata. It may also be used to publish public services – and that may turn out to be very useful as time goes by – but for now that use has limited value.

The evolution story should be from the notion of “public cloud” registry to the creation of an enterprise SOA registry.

�“understanding of” what?

�Graduated to a standard in 2003.

�Probably the most important feature of UDDI is its ability to characterize information using taxonomies – yet this is the first time that you’ve mentioned taxonomies.

�V3 was first released by UDDI.org in 2002. It will be published as an OASIS standard this year.

�Supports Subscription/Notifications, federation… what else?

�The goal of this section should be to show that UDDI is a mature, well supported standard, and that V3 provides critical abilities essential for enterprise deployment.

�It is worth mentioning which companies have actively supported UDDI? – in other words, making it clear that the industry as a whole is wholeheartedly behind this.

�DSig can be used to guarantee the integrity of the data within the registry and for authentication – not for authorization.

