Type System Base Model Specification discussion

Goals of spec element 

Section 5.3 of the specification aims to define the set of predefined types that are assumed to be available to any UIMA-compliant analytic or system.

The spec adopts the primitive types defined by Ecore, covering String, Boolean, Byte, Short, Int, Long, Float and Double.  The main primitive Java type missing from this list is Char, but this is not defined by Ecore and can be handled using Int.

Critique of section 

We agreed that 5.1.3 and the whole of 5.3 should be integrated, specifically starting with a conceptual overview of the assumptions of the data model (Annotations, Sofas, Views in particular), including real world examples, and then moving on to specification of the type system base model and the detailed spec for the CAS.

C.1. The data model for Annotations, Views, Sofas, and RegionalReferences should be made explicit.  Definitions/assumptions should be clearly called out, after we have resolved the open issues.

C.2. Figures should consistently use UML.  Figures 2, 3, 6 should perhaps be integrated.

C.3. The use of relative offsets from a LocalSofaReference into a sofaFeature should be called out explicitly.
C.4. Examples should use features introduced elsewhere, e.g. "beginChar" and "endChar" rather than "begin" and "end".

Votable issues 

V.1. [image: image1.jpg]Object

Wetadata

Annotation

+sofa ——>]

1 +regionalRef —>]

SofaReference

ReglonalReference




Are types in the base type system immutable?  That is, is an implementation allowed to define an Annotation which differs from the base type system definition, e.g. by adding fields, or can this only be done through subtyping?

V.2. Should there be a new common supertype, below TOP, for “higher level” structures that either represent document metadata or aggregate annotations (e.g. key terms or “Entities”), not tied to specific spans of a document? Annotation could extend that, adding a required RegionalReference. Or should we recommend such structures be represented as Annotations that span the full sofa? (see OI.5) (see Figure 1)

V.3. [image: image2.jpg]Object

AnnotationGraph

AnnotationGraphNode

b +op >

mmlmk: +nodeData t""
v

Object

i

ey

K



Should Annotation be explicitly defined as a CAS object that must be tied to a specific span of a sofa?  This is the assumed meaning of “Annotation”. If this is the case, how do we best reflect that definition in the type system?

Open issues 

OI.1. There is an open issue explicitly called out in the text of 5.3.4.1: whether to define a "RegionalReference" type or to subtype Annotation with different regional reference mechanisms.  After discussion, the authors of the section suggest to include an abstract RegionalReference in the base type system, but not mandate its use.  But, if the definition of Annotation will be immutable, we in fact cannot leave this choice open, because RegionalReference either will be or will not be required as a field of Annotation.

OI.2. We should discuss Footnote 4 on p. 39: should AnchoredView be a sutype of View, or should View contain an optionally instantiated feature sofa?  The latter would make Views heavier in the case when they are not anchored to a sofa, but would allow any view to be anchored at any time.

OI.3. We should discuss Source Document Information, in 5.3.4.4.  This is something that is most likely universal enough to warrant a standard base type.  The one I use has uri, offsetInSource, documentSize, mimeType, fileTitle, fileName, and security (e.g. access permission) information.  Not all of these should be required, but this is a list to start us thinking about what should be.

OI.4. Should we allow for Annotations that refer to discontinuous regional references in the base type system?  Pascal’s suggestion is to define Annotations to have a list of RegionalReferences, rather than just a single RegionalReference.  Thoughts?  (Note: this also depends on the choice we make for OI.1.)

OI.5. Regarding V.2 a problem with having RegionalReferences that span an entire document is that this makes such Annotations difficult to handle in a visualization of the Annotations – what does it really mean to highlight the entire document as being relevant to e.g. a keyterm?  An argument for having a type between TOP and Annotation is that we would be able to store common features of metadata, e.g. Provenance or weight (see next two issues).  Figure 1 assumes that Metadata is defined with respect to a Sofa, while this is not necessarily the case.  However, is this the standard case?

OI.6. Is Provenance an important/universal enough concept that we would like to define a base Provenance type and have it be a standard part of an Annotation?  This would be used to track analytics or systems that created or modified an Annotation (or other CAS object).

OI.7. Should the base definition of an Annotation (or Metadata) include a “relevance”, “confidence” or some other “weight” field?

OI.8. The most standard annotations are perhaps for entities and relations – we could choose to define a generic “Concept” of some sort.  In our work, we chose to define a generic “OntologyObject” which references an external ontology (e.g. a set of tags used by a Named Entity Recognition engine), subclassed by “Concept” (for entities) and “Relation” (for connecting two Concepts).  There are different ways of representing such things – one can also subclass Annotation for each Entity type – and perhaps the spec should be agnostic about this, but perhaps this is common enough that it would be helpful to make an explicit proposal here, i.e. a “best practices” discussion.

OI.9. Should we add a type to support representing tree-structured (or, more generally, graph-structured) Annotation sets?  There are several alternatives here:

a. Define a subtype of Annotation that adds a list of “children” Annotations, i.e. pointers to its nested annotations, and potentially also a (list of?) “parent” Annotation(s) to allow traversal in both directions.

b. Define a new type, similar to View, that represents a structured collection of Annotations.  One possibility is shown in Figure 3.

c. Don’t include support for this in the base type system.  This limits interoperability for a potentially widely used representational structure.

Compliance points 

There are currently three candidate compliance points relevant for the section:

5.1.3: A UIMA component/framework may be “annotation model compliant” if it uses this definition by the UIMA Type-System base model.

5.3.1: A compliant UIMA component/framework may be required to understand this set of primitive types, and may be required to treat EObject as the superclass of all classes.

5.3.3: A UIMA component/framework that is "annotation model compliant" may be required to adhere to the constraint that all Annotation objects must have a sofa slot that holds a reference to either a LocalSofaReference or a RemoteSofaReference.

Comments:

Apart from the obvious language change from "may be required" to "is required" and the removal of the attribution "candidate", there are some other issues here.

CP.1. The 5.1.3 compliance point should be more explicit about what "this definition" precisely refers to.  Discussion during the call on 3/02/2007 indicated that this compliant point will be sharpened and moved to the behavioral metadata specification section.

CP.2. If types are immutable (ref. V.1), then a compliance point should be added to reinforce this.
Figure � SEQ Figure \* ARABIC �2�: One possible Metadata model





Figure � SEQ Figure \* ARABIC �3�: Possible model for an AnnotationGraph








