Type System Base Model Specification discussion

Goals of spec element

Section 5.3 of the specification aims to define the set of predefined types that are assumed to be available to any UIMA-compliant analytic or system.

The spec adopts the primitive types defined by Ecore, covering String, Boolean, Byte, Short, Int, Long, Float and Double. The main primitive Java type missing from this list is Char, but this is not defined by Ecore and can be handled using Int.

Critique of section

We agreed that 5.1.3 and the whole of 5.3 should be integrated, specifically starting with a conceptual overview of the assumptions of the data model (Annotations, Sofas, Views in particular), including real world examples, and then moving on to specification of the type system base model and the detailed spec for the CAS.

C.1. The data model for Annotations, Views, Sofas, and RegionalReferences should be made explicit. Definitions/assumptions should be clearly called out.

C.2. Figures should consistently use UML. Figures 2, 3, 6 should perhaps be integrated.

C.3. The use of relative offsets from a LocalSofaReference into a sofaFeature should be called out explicitly.
C.4. Examples should use features introduced elsewhere, e.g. "beginChar" and "endChar" rather than "begin" and "end".

C.5. Footnote 4 on p.39 should be resolved: View can contain an optionally instantiated feature sofa.
Votable issues

V.1. Should we adopt the data model in Figure 1, allowing Annotations to be associated with a sofa but not explicitly with a span, allowing users to choose among the two possible representations of spans (through subtyping in the Subtype Offset Annotation Model, or lists of RegionalReferences in the Regional Reference Annotation Model), and adding a metadata field to Annotation to support Provenance and confidence as part of the core, or Upper Type Model?

V.2. Should we add a “Best Practices” section indicating how generic entity and relation types could be represented? This could reference the KLT, or propose an alternative.

[image: image1.jpg]Annotation

SofaReference
I —
Tretadsa
| Annotationbata Provenance
[<confidence: float | +provenance]
eglorarer . (o
ool
ToaoR] [AoAoRTon
Dosrariul [Soarmariet
ondorar ot ottt
Toxogloraltafencs Rusiorosfonalatarsnes
Toancract ogiTinedloe
ontorar
Goper e el
—
ettt it
i Ofear
oo e

Figure 1: Annotation Type System
Compliance points

There are currently three candidate compliance points relevant for the section:

5.1.3: A UIMA component/framework may be “annotation model compliant” if it uses this definition by the UIMA Type-System base model.

5.3.1: A compliant UIMA component/framework may be required to understand this set of primitive types, and may be required to treat EObject as the superclass of all classes.

5.3.3: A UIMA component/framework that is "annotation model compliant" may be required to adhere to the constraint that all Annotation objects must have a sofa slot that holds a reference to either a LocalSofaReference or a RemoteSofaReference.

Comments:

Apart from the obvious language change from "may be required" to "is required" and the removal of the attribution "candidate", there are some other issues here.

CP.1. The 5.1.3 compliance point should be more explicit about what "this definition" precisely refers to. Discussion during the call on 3/02/2007 indicated that this compliant point will be sharpened and moved to the behavioral metadata specification section.

CP.2. A compliance point should be added to reinforce that types in the base type system are immutable.
CP.3. The compliance points could explicitly distinguish between the Upper Type Model of the Type System Base Model, and the alternatives available in the Regional Reference and Subtype Offset Annotation Models. In particular, do all components need to be prepared to handle both span models? [I don’t think so] or rather that applications need to choose one model or the other and be clear on which one they’ve gone with.
[image: image2.jpg]Provenance
Gate : String
time: Fioat

o
f— +componentSources —>|

Component
@ Sining
version : String
name : String
description: String

+resourceFiles

o
ResourceFile
1@ Siring
version : String
name : String
description: String

Figure 2: Possible Provenance type system
Action Items

1. Decide what is in the SourceDocumentInformation type (5.3.4.4). The one I use has uri, offsetInSource, documentSize, mimeType, fileTitle, fileName, and security (e.g. access permission) information. Not all of these should be required, but this is a list to start us thinking about what should be.

2. Decide what is in the Provenance type. See Figure 2 for an example.

3. Add a “Best Practices” section providing examples of how domain-specific graph structures (Trees, Relations, etc.) over Annotations could be represented in the CAS.

4. Address the section critiques highlighted above.

5. Add a compliance point as specified in CP.2.

6. Edit section to reflect decisions made on the votable issues.

