
OASIS UIMA Technical Committee
Specification Overview

(DRAFT)

October 26, 2007

Status

• The UIMA TC has met bi-weekly for 10 months and has
completed a full review of the research report contributed by IBM
as a initial proposal for a standard for interoperable text and
multi-modal analytics based on UIMA.

• The UIMA TC will integrate all revisions gathered in review
reports and meeting minutes into a formal specification draft by
Feb 1, 2008.

• The UIMA TC will then conduct final votes on draft sections and
any outstanding issues that remain.

• The UIMA TC will publish a final draft of the specification by
end of March 2008.

Outline

• Design Goals
• Specification Elements

Design Goals Overview

The UIMA Specification design goals focus
on providing a standard specification for
text and multi-modal analysis that supports
the data and service levels of
interoperability to facilitate the rapid
combination and deployment of analytics in
the development of UIM applications.

Design Goals
• Data Representation. Support the representation of artifacts and

artifact metadata (analysis results) independently of artifact modality
and domain model.

• Data Modeling and Interchange. Support the platform-independent
interchange of analysis data in a form that facilitates object oriented
modeling and programming.

• Discovery, Reuse and Composition. Support the discovery, reuse and
composition of independently-developed analytics to accelerate UIM
applications development.

• Out-of-the-Box Service-Level Interoperability. Support the
interoperability of independently developed analytics based on a
common service description and associated SOAP bindings.

Note: “Platform Independent Development” design goal in original spec draft was dropped as we have
decided to focus on service-level interoperability only.

Specification Elements

1. Common Analysis Structure (CAS)
2. Type System Language
3. Type System Base Model
4. Abstract Interfaces
5. Behavioral Metadata
6. Processing Element Metadata
7. WSDL Service Descriptions

Common Analysis Structure (CAS)
• The common data structure shared by all UIMA analytics
• A CAS Represents the

– Artifact: the unstructured information being analyzed AND
– Artifact Metadata: the metadata produced by the analysis workflow (e.g., Annotations)

• The CAS is an Object Graph where
– Objects are instances of Classes
– Classes are Types in a type system.

• Two fundamental types of objects in a CAS are:
– Subject of analysis (Sofa), holds the artifact data to be analyzed
– Annotation, a type of artifact metadata that points to a region within a Sofa. An annotation

annotates or labels the designated region in the artifact.

• Provides a stand-off representation of annotations over the artifact.

CAS UML

Common Analysis Structure (CAS)

To support data interchange a CAS is represented in
XML using the XML Metadata Interchange (XMI)
format, an OMG standard:

<xmi:XMI xmi:version="2.0" xmlns:xmi=http://www.omg.org/XMI
xmlns:ex="http:///org/example.ecore">

<ex:Quotation xmi:id="1"
text="If we begin in certainties, we shall end with doubts; but if we
begin with doubts and are patient with them, we shall end in
certainties."
author="Francis Bacon"/>

<cas:SofaReference xmi:id="2" sofaObject="1" sofaFeature="text"/>

<ex:Clause sofa="2" begin="0" end="30"/>
<ex:Pronoun sofa="2" begin="3" end="5"/>
<ex:Pronoun sofa="2" begin="29" end="31"/>

</xmi:XMI>

Type System Language

• Every object in a CAS must be associated with a Type.
• The UIMA Type-System language therefore is a

declarative language for defining object models.
• UIMA Type Systems are represented in Ecore, which

is based on the OMG standard, UML and is the
modeling language used by the Eclipse Modeling
Framework (EMF).

Type System Base Model

The Type System Base Model defines the set of
predefined types that are assumed to be available to
any UIMA-compliant analytic or system.
– Primitive Types
– Annotation Model (how annotations are represented and

linked to regions of Sofas)
– Views (Specific collections of objects in a CAS. May be used

to define specific interpretations or views of a Sofa.)
– Other Commonly Used Types (e.g., Source Document

Information)

Annotation Base Model

Abstract Interfaces

The goal of the Abstract Interfaces section is
to provide a platform-independent model of
the types of components that UIMA
developers can implement and the
operations supported by these components.

Types of Components

• ProcessingElement
– The supertype of all components

• Analytic: performs analysis of CASes
– Analyzer: Processes a CAS and possibly updates its contents
– CasMultiplier: processes a CAS and possibly creates new CASes

• FlowController
– Determines how CAS should be routed through multiple analytics

Abstract Interfaces UML
ProcessingElement

getMetadata() : Process ingElementMetadata
setConfigurat ionParameters(sett ings : ConfigurationParameterSet tings)

Analyzer

process(cas : CAS, sofas : ObjectList) : CAS

CasMultiplier

inputCAS(cas : CAS, sofas : ObjectList)
getNext() : CAS
retreiveInputCAS() : CAS

FlowController

addAvailableAnalytics(analyticMetadataMap : AnalyticMetadataMap)
removeAvailableAnalytics(analyticKeys : Keys)
setAggregateMetadata(metadata : ProcessingElementMetadata)
getNextDestinations(cas : CAS) : Step
continueOnFailure(cas : CAS, failedAnalyticKey : String, failure : UimaException) : Boolean

AnalyticMetadataMap

ProcessingElementMetadata
(from peMetadata)

AnalyticMetadataMapEntry
key : String

0..*0..*

11

Analyt ic

SimpleStep
analyticKey : String

Step

MultiStep
parallel : boolean

1..*

+steps

1..*

FinalStep

Keys
<<1..n>> key : String

Object
(from cas)

ObjectList

0..*+objects 0..*

UimaException
message : String

Behavioral Metadata
• Declaratively describes what a UIMA analytic does:

– what types of CASs it can process
– what elements in a CAS it analyzes
– what sorts of effects it may have on CAS contents as a result of its

application.

• Supports:
– Discovery: Locate components that provide a particular function.
– Composition: Help determine which components may be combined to

produce a desired result
– Efficiency: Efficient sharing of CAS content among the analytics in a

combination based on knowledge of analytic requirements.

Elements of Behavioral Metadata
• Supporting Discovery:

– Analyzes (Sofas that the analytic intends to produce annotations over)
– Required Inputs
– Optional Inputs
– Creates
– Modifies
– Deletes

• Supporting Composition:
– Precondition: Predicate that qualifies CASs that the analytic considers valid input
– Postcondition: Predicate that is declared to be true of any CAS after having been

processed by the analytic, assuming that the CAS satisfied the precondition when it
was input to the analytic

• Supporting Efficiency:
– Projection Condition: Predicate that evaluates to the set of objects that the Analytic

declares it will consider to perform its function.

Ways of Expressing Behavioral
Metadata

• Type Names
– Simplest Expressions

• OCL Expressions
– Formal standard for more complex applications
– Simple expressions can be captured as OCL
– Other options possible

• Views
– A convenient way to specify inputs and outputs that

pertain to a particular Sofa.

Processing Element Metadata
• All UIMA Processing Elements (PEs) must publish processing

element metadata, which describes the analytic to support discovery
and composition.

• Includes the Behavioral Metadata plus:
– Identification Information. Identifies the PE. It includes for example a

symbolic/unique name, a descriptive name, vendor and version
information.

– Configuration Parameters. Declares the names of parameters used by
the PE to affect its behavior, as well as the parameters’ default values.

– Reference to a Type System. Defines types referenced from the
behavioral specification.

– Extensions. Allows the PE metadata to contain additional elements, ,
the contents of which are not defined by the UIMA specification. This
can be used by framework implementations to extend the PE metadata
with additional information that may be meaningful only to that
framework.

WSDL Service Definitions
• Provides a WSDL document for the UIMA

Processing Element Service Interfaces.
• Defines a binding to the SOAP protocol.
• This WSDL definition is an implementation of the

Abstract Interfaces previously defined in the
UIMA specification.

• This specification element intends to provide true
out-of-the-box interoperability by specifying a
concrete SOAP interface that compliant
frameworks/services must implement.

Backup Slides

Dropped Design Goal
• Original Specification Draft contained the design goal:

– Platform Independent Development. Facilitate the
compliance of existing applications or the development of
new applications on different platforms and in different
programming languages.

• This seems out of place now since the specification is
only defining services interfaces for UIMA. We do
not address programming language bindings at all.
APACHE UIMA defines Java Bindings.

