
[image: image41..pict]
Unstructured Information Management Architecture (UIMA) Version 1.0

Working Draft

11 March 2008

Specification URIs:

This Version:

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .html

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .doc

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .pdf

Previous Version:

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .html

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .doc

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .pdf

Latest Version:

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .html

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .doc

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .pdf

Latest Approved Version:

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .html

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .doc

http://docs.oasis-open.org// MACROBUTTON NoMacro [additional path/filename] .pdf

Technical Committee:

OASIS Unstructured Information Management Architecture (UIMA) TC
Chair(s):

David Ferrucci, IBM

Editor(s):

Adam Lally, IBM

Related work:

This specification replaces or supercedes:

· MACROBUTTON NoMacro [specifications replaced by this standard]
· MACROBUTTON NoMacro [specifications replaced by this standard]
This specification is related to:

· MACROBUTTON NoMacro [related specifications]
· MACROBUTTON NoMacro [related specifications]
Declared XML Namespace(s):

http://docs.oasis-open.org/uima/cas.ecore

http://docs.oasis-open.org/uima/peMetadata.ecore

http://docs.oasis-open.org/uima/pe.ecore

http://docs.oasis-open.org/uima/peService
Abstract:

 MACROBUTTON NoMacro [Summary of the technical purpose of the document]
Status:

This document was last revised or approved by the MACROBUTTON NoMacro [TC name | membership of OASIS] on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees//
.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees//ipr.php
.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees//
.

Notices

Copyright © OASIS® 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", MACROBUTTON NoMacro [insert specific trademarked names and abbreviations here] are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

Table of Contents

61
Introduction

61.1 Terminology

61.2 Normative References

71.3 Non-Normative References

82
Basic Concepts and Terms

103
Elements of the UIMA Specification

103.1 The Common Analysis Structure (CAS)

113.1.1 Basic Structure: Objects and Slots

113.1.2 Relationship to Type System

123.1.3 The XMI CAS Representation

133.1.4 Example (Not Normative)

173.1.5 Formal Specification

173.2 The Type System Model

183.2.1 Features of the Type System Model

183.2.2 Ecore as the UIMA Type System Representation

193.2.3 Discussion and Example (Not Normative)

223.2.4 Formal Specification

223.3 Base Type System

223.3.1 Primitive Types

233.3.2 Annotation and Sofa Type System

273.3.3 View Type System

293.3.4 Source Document Information

303.4 Abstract Interfaces

303.4.1 Processing Element

303.4.2 Analytic

313.4.3 Analyzer

313.4.4 CAS Multiplier

323.4.5 Flow Controller

343.4.6 Examples (Not Normative)

353.4.7 Formal Specification

383.5 Behavioral Metadata

383.5.1 Goals

383.5.2 Elements of Behavioral Metadata

393.5.3 Example (Not Normative)

403.5.4 Using Views in Behaivoral Metadata

403.5.5 Formal Semantics for Behavioral Metadata

413.5.6 Behavioral Metadata UML

413.5.7 OCL for Defining Formal Semantics

423.5.8 Behavioral Metadata XML Representation

473.5.9 Formal Specification

483.6 Processing Element Metadata

483.6.1 Overview

493.6.2 Elements of PE Metdata

523.6.3 Example (Not Normative)

523.6.4 Formal Specification

533.7 Service WSDL Descriptions

533.7.1 SOAP Service Example (Not Normative)

543.7.2 Overview of the WSDL Definition

573.7.3 Delta Responses

583.7.4 Formal Specification

59A.
Acknowledgements

60B.
Formal Specification Artifacts

60B.1 XMI XML Schema

63B.2 Ecore XML Schema

68B.3 PE Metadata and Behavioral Metadata Ecore Model

71B.4 PE Metadata and Behavioral Metadata XML Schema

74B.5 PE Service WSDL Definition

87B.6 PE Service XML Schema (uima.peServiceXMI.xsd)

91C.
Non-Normative Text

92D.
Revision History

1 Introduction
The UIMA specification defines Platform-Independent Data Representations & Interfaces for Text & Multi-modal Analytics.

The goal of the UIMA specification is to support interoperability among analytics. This goal is subdivided into the following four design goals:
1. Data Representation. Support the common representation of artifacts and artifact metadata (analysis results) independently of artifact modality and domain model.

2. Data Modeling and Interchange. Support the platform-independent interchange of analysis data in a form that facilitates a formal modeling approach and alignment with existing programming systems and standards.

3. Discovery, Reuse and Composition. Support the discovery, reuse and composition of independently-developed analytics.
4. Service-Level Interoperability. Support concrete interoperability of independently developed analytics based on a common service description and associated SOAP bindings.

The text of this specification is normative with the exception of sections that explicitly state “Not Normative” in their heading.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].

1.2 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[OCL1]
http://www.omg.org/technology/documents/formal/ocl.htm

[OSGi1]
OSGi Alliance. OSGi Service Platform Core Specification, Release 4, Version 4.1. Available from http://www.osgi.org.

[SOAP1]
http://www.w3.org/TR/soap/
[UML1]
http://www.omg.org/technology/documents/formal/uml.htm
[XMI1]
http://www.omg.org/docs/formal/03-05-02.pdf
[XML1]
http://www.w3.org/TR/REC-xml
[XML2]
http://www.w3.org/TR/xml-names11

1.3 Non-Normative References

[BPEL1]
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
[EcoreEMOF1]
http://dev.eclipse.org/newslists/news.eclipse.tools.emf/msg04197.html
[EMF1]
The Eclipse Modeling Framework (EMF) Overview. http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.emf.doc//references/overview/EMF.html

[EMF2]
Budinsky et al. Eclipse Modeling Framework. Addison-Wesley. 2004.

[XMI2]
Grose et al. Mastering XMI. Java Programming with XMI, XML, and UML. John Wiley & Sons, Inc. 2002
2 Basic Concepts and Terms

This specification defines and uses the following terms:

Unstructured Information is typically the direct product of human communications. Examples include natural language documents, email, speech, images and video. It is information that was not encoded for machines to understand but rather authored for humans to understand. We say it is “unstructured” because it lacks explicit semantics (“structure”) required for computer programs to interpret the information as intended by the human author or required by the application.
Artifact refers to an application-level unit of information that is subject to analysis by some application. Examples include a text document, a segment of speech or video, a collection of documents, and a stream of any of the above. Artifacts are physically encoded in one or more ways. For example, one way to encode a text document might be as a Unicode string.

Artifact Modality refers to mode of communication the artifact represents, for example, text, video or voice.

Artifact Metadata refers to structured data elements recorded to describe entire artifacts or parts of artifacts. A piece of artifact metadata might indicate, for example, the part of the document that represents its title or the region of video that contains a human face. Another example of metadata might indicate the topic of a document while yet another may tag or annotate occurrences of person names in a document etc. Artifact metadata is logically distinct form the artifact, in that the artifact is the data being analyzed and the artifact metadata is the result of the analysis – it is data about the artifact.

Domain Model refers to a conceptualization of a system, often cast in a formal modeling language. In this specification we use it to refer to any model which describes the structure of artifact metadata. A domain model provides a formal definition of the types of data elements that may constitute artifact metadata. For example, if some artifact metadata represents the organizations detected in a text document (the artifact) then the type Organization and its properties and relationship to other types may be defined in a domain model which the artifact metadata instantiates.

Analysis Data is used to refer to the logical union of an artifact and its metadata.

Analysis Operations are abstract functions that perform some analysis on artifacts and/or their metadata and produce some result. The results may be the addition or modification to artifact metadata and/or the generation of one or more artifacts. An example is an “Annotation” operation which may be defined by the type of artifact metadata it produces to describe or annotate an artifact. Analysis operations may be ultimately bound to software implementations that perform the operations. Implementations may be realized in a variety of software approaches, for example web-services or Java classes.\

An Analytic is a software object or network service that performs an Analysis Operation.

A Flow Controller is a component or service that decides the workflow between a set of analytics.

A Processing Element (PE) is either an Analytic or a Flow Controller. PE is the most general type of component/service that developers may implement.

Processing Element Metadata (PE Metadata) is data that describes a Processing Element (PE) by providing information used for discovering, combining, or reusing the PE for the development of UIM applications. PE Metadata would include Behavioral Metadata for the operation which the PE implements.

3 Elements of the UIMA Specification

In this section we define the seven elements of the UIMA standard. For each element, there is generally a detailed description, UML model, and examples, followed by the Formal Specification for that element. The Formal Specification sections list the precise requirements that UIMA implementations must satisfy in order to comply with this standard.

The elements are listed in brief below:

1. Common Analysis Structure (CAS). Supports interoperability by providing a common data structure shared among analytics. The CAS is a general object graph and is used to represent the artifact and the artifact metadata. UIMA defines an XML representation of analysis data using the XML Metadata Interchange (XMI) specification [XMI1][XMI2].

2. Type System Model. To support data modeling and interchange, a CAS must conform to a user-defined schema called a Type System. Every object in a CAS must be associated with a Type defined by a Type System. UIMA defines the Type System representation using Ecore, which is the modeling language used in the Eclipse Modeling Framework [EMF1] and is tightly aligned with the OMG’s EMOF standard. The XML representation uses XMI.

3. Base Type System. Provides a Standard definition of commonly-used, domain-independent types, in order to establish a basic level of interoperability among applications. For example UIMA defines the type Annotation to represent objects that have references (e.g., offsets) into the value of an attribute of another object. It is intended that annotations describe or “annotate” the unstructured content in these values.

4. Abstract Interfaces. Defines the standard component types and operations that UIMA developers can implement. This element is defined abstractly using a UML model.

5. Behavioral Metadata. Provides a formal declarative description of what a UIMA analytic does. This includes: what types of CASes it can process, what elements in a CAS it analyzes, and what effects it may have on CAS contents as a result of its application.

6. Processing Element Metadata. Provides a standard declarative means for describing identification, configuration and behavioral information about Processing Elements (analytics and flow controllers). This section of the specification refers to the Behavioral Metadata Specification to represent a processing element’s behavioral information.

7. WSDL Service Descriptions. This specification element facilitates interoperability by specifying a WSDL [WSDL1] description of the UIMA interfaces and a binding to a concrete SOAP interface that compliant frameworks/services must implement.

3.1 The Common Analysis Structure (CAS)

The Common Analysis Structure or CAS is the common data structure shared by all UIMA analytics to represent the unstructured information being analyzed or the artifact as well as the metadata produced by the analysis workflow, the artifact metadata.

The CAS represents an essential element of the UIMA specification in support of interoperability since it provides the common foundation for sharing data and results across analytics.

The CAS is an Object Graph where Objects are instances of Classes and Classes are Types in a type system. The Type System Model is described in detail in Section 3.2.

There are two fundamental types of objects in a CAS:

· Subject of analysis (Sofa), which holds the artifact

· Annotation, a type of artifact metadata that points to a region within a Sofa and “annotates” (labels) the designated region in the artifact. This is an example of a stand-off annotation approach.

The definitions of the Sofa and Annotation types are introduced in Section 3.3.2
The CAS provides a domain neutral, object-based representation scheme that has expressive representational power and is aligned with UML and XML standards.

3.1.1 Basic Structure: Objects and Slots

At the most basic level a CAS contains an object graph – a collection of objects that may point to or cross-reference each other. Objects are defined by a set of properties which may have values. Values can be primitive types like numbers or strings or can refer to other objects in the CAS.

This approach allows UIMA to adopt general object-oriented modeling and programming standards for representing and manipulating analysis data.

UIMA uses the Unified Modeling Language (UML) [UML1] to represent the structure and content of a CAS.

In UML an object is a data structure that has 0 or more slots. We can think of a slot as representing an object’s properties and values. Formally a Slot in UML is a (feature, value) pair. Features in UML represent an object’s properties. A slot is an assignment of one or more values to a feature. Values can be either primitives (strings or various numeric types) or references to other objects.

UML uses the notion of classes to represent the required structure of objects. Classes define the slots that objects must have. We refer to a set of classes as a type system.

3.1.2 Relationship to Type System

Every object in a CAS is an instance of a class defined in a UIMA type system.

A type system defines a set of classes. A class may have multiple features. Features may either be attributes or references.

All features define their type. The type of an attribute is a primitive dataType. The type of a reference is a class. Features also have a cardinality (defined by a lower bound and a upper bound), which define how many values they may take. We sometimes refer to features with an upper bound greater than one as multi-valued features.

An object has one slot for each feature defined by its class.

Slots for attributes take primitive values; slots for references take objects as values. In general a slot may take multiple values; the number of allowed values is defined by the lower bound and upper bound of the feature.

The metamodel describing how a CAS relates to a type system is diagrammed in Figure 1.

Note that some UIMA components may manipulate a CAS without knowledge of its type system. A common example is a CAS Store, which might allow the storage and retrieval of any CAS regardless of what its type system might be.

[image: image2.wmf]
Figure 1: CAS Specification UML
3.1.3 The XMI CAS Representation

A UIMA CAS is represented as an XML document using the XMI (XML Metadata Interchange) standard [XMI1, XMI2]. XMI is an OMG standard for expressing object graphs in XML.

UIMA uses XMI because it is an established standard, aligned with the object-graph representation of the CAS, aligned with UML and with object-oriented programming, and supported by tooling such as the Eclipse Modeling Framework [EMF1].

3.1.4 Example (Not Normative)

This section describes how the CAS is represented in XMI, by way of an example. This is not normative. The exact specification for XMI is defined by the OMG XMI standard [XMI1].

TODO: Align with Fred Center example?
3.1.4.1 XMI Tag

The outermost tag is typically <xmi:XMI> (this is just a convention; the XMI spec allows this tag to be arbitrary). The outermost tag must, however, include an XMI version number and XML namespace attribute:
 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
 <!-- CAS Contents here -->
 </xmi:XMI>

XML namespaces [XML1] are used throughout. The xmi namespace prefix is typically used to identify elements and attributes that are defined by the XMI specification.

The XMI document will also define one namespace prefix for each CAS namespace, as described in the next section.

3.1.4.2 Objects

Each Object in the CAS is represented as an XML element. The name of the element is the name of the object's class. The XML namespace of the element identifies the package that contains that class.

For example consider the following XMI document:

 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myorg="http:///org/myorg.ecore">
 ...
 <myorg:Foo xmi:id="1"/>
 ...
 </xmi:XMI>
This XMI document contains an object whose class is named Foo. The Foo class is in the package with URI http:///org/myorg.ecore. Note that the use of the http scheme is a common convention, and does not imply any HTTP communication. The .ecore suffix is due to the fact that the recommended type system definition for a package is an ECore model.

Note that the order in which Objects are listed in the XMI is not important, and components that process XMI do not have to maintain this order.

The xmi:id attribute can be used to refer to an object from elsewhere in the XMI document. It is not required if the object is never referenced. If an xmi:id is provided, it must be unique among all xmi:ids on all objects in this CAS.

All namespace prefixes (e.g., myorg) in this example must be bound to URIs using the

"xmlns..." attribute, as defined by the XML namespaces specification.

3.1.4.3 Attributes (Primitive Features)

Attributes (that is, features whose values are of primitive types, for example, strings, integers and other numeric types – see Base Type System for details) can be mapped either to XML attributes or XML elements.

For example, an object of class Foo, with slots:

 begin = 14

 end = 19

 myString = "bar"

could be mapped to the attribute serialization as follows:

 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myorg="http:///org/myorg.ecore">
 ...
 <myorg:Foo xmi:id="1" begin="14" end="19" myString="bar"/>
 ...
 </xmi:XMI>

or alternatively to an element serialization as follows:

 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myorg="http:///org/myorg.ecore">
 ...
 <myorg:Foo xmi:id="1">
 <begin>14</begin>
 <end>19</end>
 <myString>bar</myString>
 </myorg:Foo>
 ...
 </xmi:XMI>

The attribute serialization is preferred for compactness, but either representation is allowed. Mixing the two styles is allowed; some features can be represented as attributes and others as elements.

3.1.4.4 References (Object-Valued Features)

Features that are references to other objects are serialized as ID references.

If we add to the previous CAS example an Object of Class Baz, with feature myFoo that is a reference to the Foo object, the serialization would be.

 <xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
 xmlns:myorg="http:///org/myorg.ecore">
 ...
 <myorg:Foo xmi:id="1" begin="14" end="19" myFeature="bar"/>
 <myorg:Baz xmi:id="2" myFoo="1"/>
 ...
 </xmi:XMI>

As with primitive-valued features, it is permitted to use an element rather than an attribute. However, the XMI spec defines a slightly different syntax for this as is illustrated in this example:

 <myorg:Baz xmi:id="2">
 <myFoo href="#1"/>
 <myorg.Baz>

Note that in the attribute representation, a reference feature is indistinguishable from an integer-valued feature, so the meaning cannot be determined without prior knowledge of the type system. The element representation is unambiguous.

3.1.4.5 Multi-valued Features

Features may have multiple values. Consider the example where the object of class Baz has a feature myIntArray whose value is {2,4,6}. This can be mapped to:

 <myorg:Baz xmi:id="3" myIntArray="2 4 6"/>
or:

 <myorg:Baz xmi:id="3">
 <myIntArray>2</myIntArray>
 <myIntArray>4</myIntArray>
 <myIntArray>6</myIntArray>
 </myorg:Baz>

Note that string arrays whose elements contain embedded spaces must use the latter mapping.

Multi-valued references serialized in a similar way. For example an reference that refers to the elements with xmi:ids "13" and "42" could be serialized as:

 <myorg:Baz xmi:id="3" myRefFeature="13 42"/>
or:

 <myorg:Baz xmi:id="3">
 <myRefFeature href="#13"/>
 <myRefFeature href="#42"/>
 </myorg:Baz>

Note that the order in which the elements of a multi-valued feature are listed is meaningful, and components that process XMI documents must maintain this order.
3.1.4.6 Linking an XMI Document to its Ecore Type System

The structure of a CAS is defined by a UIMA type system which is represented by an Ecore model.

If the CAS Type System has been saved to an Ecore file, it is possible to store a link from an XMI document to that Ecore type system. This is done using an xsi:schemaLocation attribute on the root XMI element.

The xsi:schemaLocation attribute is a space-separated list that represents a mapping from namespace URI (e.g., http:///org/myorg.ecore) to the physical URI of the .ecore file containing the type system for that namespace. For example:

xsi:schemaLocation="http:///org/myorg.ecore file:/c:/typesystems/myorg.ecore"

would indicate that the definition for the org.myorg CAS types is contained in the file c:/typesystems/myorg.ecore. You can specify a different mapping for each of your CAS namespaces. For details see [EMF2].

3.1.4.7 XMI Extensions

XMI defines an extension mechanism that can be used to record information that you may not want to include in your type system. This can be used for system-level data that is not part of your domain model, for example. The syntax is:

 <xmi:Extension extenderId="NAME">
 <!-- arbitrary content can go inside the Extension element -->
 </xmi:Extension>

The extenderId attribute allows a particular "extender" (e.g., a UIMA framework implementation) to record metadata that's relevant only within that framework, without confusing other frameworks that my want to process the same CAS.
3.1.5 Formal Specification

3.1.5.1 Structure

UIMA CAS XML MUST be a valid XMI document as defined by the XMI Specification [XMI1].

This implies that UIMA CAS XML MUST be a valid instance of the XML Schema for XMI, listed in Appendix B.1.

3.1.5.2 Constraints

3.1.5.2.1 Linkage of CAS to Ecore Type System

If the root element of the XML CAS contains an xsi:schemaLocation attribute, the CAS is said to be linked to an Ecore Type System. The xsi:schemaLocation attribute defines a mapping from namespace URI to physical URI as defined by the XML Schema specification [REF]. Each of these physical URIs must be a valid Ecore document as defined by [REF].

Each object in a CAS that is linked to an Ecore Type System must be a valid instance of its corresponding EClass, as defined by Ecore. [Ref].
3.2 The Type System Model

To support the deisng goal of data modeling and interchange, UIMA requires that a CAS conform to a user-defined schema, called a type system.

A type system is a collection of inter-related type definitions. Each type defines the structure of any object that is an instance of that type. For example, Person and Organization may be types defined as part of a type system. Each type definition declares the attributes of the type and describes valid fillers for its attributes. For example lastName, age, emergencyContact and employer may be attributes of the Person type. The type system may further specify that the lastName must be filled with exactly one string value, age exactly one integer value, emergencyContact exactly one instance of the same Person type and employer zero or more instances of the Organization type.

The artifact metadata in a CAS is represented by an object model. Every object in a CAS must be associated with a Type. The UIMA Type-System language therefore is a declarative language for defining object models.

Type Systems are user-defined. UIMA does not specify a particular set of types that developers must use. Developers define type systems to suit their application’s requirements. A goal for the UIMA community, however, would be to develop a common set of type-systems for different domains or industry verticals. These common type systems can significantly reduce the efforts involved in integrating independently developed analytics. These may be directly derived from related standards efforts around common tag sets for legal information or common ontologies for biological data, for example.

Another UIMA design goal is to support the composition of independently developed analytics. The behavior of analytics may be specified in terms of type definitions expressed in a type system language. For example an analytic must define the types it requires in an input CAS and those that it may produce as output. This is described as part of the analytic’s Behavioral Specification (See 3.5 Behavioral Metadata). For example, an analytic may declare that given a plain text document it produces instances of Person annotations where Person is defined as a particular type in a type system.

3.2.1 Features of the Type System Model

TODO: Elaborate
· Object-Oriented

· Inheritance

· Optional and Required Features

· Single and Multi-Valued

· Range Constraints on Features

· Aligned with UML standard

· Supported by Tooling

3.2.2 Ecore as the UIMA Type System Representation

Rather than invent a language for defining UIMA Type System, we have explored standard modeling languages.

The OMG has defined representation schemes for describing object models including UML and its subsets (modeling languages with increasingly lower levels of expressivity). These include MOF [MOF1] and the essential MOF or EMOF [MOF1].

Ecore is the modeling language of the Eclipse Modeling Framework (EMF) [EMF1]. It affords the equivalent modeling semantics provided by EMOF with some minor syntactic differences – see Section 3.2.3.2.

UIMA adopts Ecore as the type system representation, due to the alignment with standards and the availability of EMF tooling.

Figure 2 shows how Ecore is used to define the schema for a CAS.
[image: image3.wmf]
Figure 2: Ecore defines schema for CAS

For an example of a UIMA Type System represented in Ecore, see the appendix 3.2.3.3 Example.

3.2.3 Discussion and Example (Not Normative)

3.2.3.1 An Introduction to Ecore

Ecore is well described in by Budisnky et al. in the book Eclipse Modeling Framework. Some brief introduction to Ecore can be found in a chapter of that book that is available online at http://www.awprofessional.com/content/images/0131425420/samplechapter/budinskych02.pdf (see section 2.3). As a convenience to the reader we include an excerpt from that chapter:

[image: image4]
3.2.3.2 Differences between Ecore and EMOF (Not Normative)

The primary differences between Ecore and EMOF are:

· EMOF does not use the ‘E’ prefix for its metamodel elements. For example EMOF uses the terms Class and DataType rather than Ecore’s EClass and EDataType.

· EMOF uses a single concept Property that subsumes both EAttribute and EReference.

For a detailed mapping of Ecore terms to EMOF terms see [EcoreEMOF1].
3.2.3.3 Example Ecore Model

TODO: Align with “Fred Center” example
Figure 3 shows a simple example of an object model in UML. This model describes two types of Named Entities: Person and Place. They may participate in an At relation (i.e., a Person is located at a particular Place).

[image: image5.png]"NamedEntity

[name - String

[ssn - String|

Figure 3: Example UML Model

XMI [XMI1] is an XML format for representing object graphs. EMF tools may be used to automatically convert this to an Ecore model and generate an XML rendering of the model using XMI:

<ecore:EPackage xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore"
 name="example" nsURI="http:///example.ecore" nsPrefix="example">
 <eClassifiers xsi:type="ecore:EClass" name="NamedEntity">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Relation"/>
 <eClassifiers xsi:type="ecore:EClass" name="Person"
 eSuperTypes="#//NamedEntity">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="ssn"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="At"
 eSuperTypes="#//Relation">
 <eStructuralFeatures xsi:type="ecore:EReference" name="domain"
 lowerBound="1" eType="#//Person"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="range"
 lowerBound="1" eType="#//Place"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Place"
 eSuperTypes="#//NamedEntity"/>
</ecore:EPackage>

This XMI document is a valid representation of a UIMA Type System.

3.2.4 Formal Specification
3.2.4.1 Structure
UIMA Type System XML must be a valid Ecore/XMI document as defined by Ecore [Need Ref] and the XMI Specification [XMI1].

This implies that UIMA Type System XML must be a valid instance of the XML Schema for Ecore, given in Section B.2.

3.3 Base Type System

The UIMA Base Type System is a standard definition of commonly-used, domain-independent types. It establishes a basic level of interoperability among applications.

The Base Type System includes the following:

· Primitive Types (defined by Ecore)

· Annotation and Sofa Types (Annotation representation and linkage to Sofas)

· Views (Specific collections of objects in a CAS)

· Source Document Information (Records information about the original source of unstructured information in the CAS)
The XML namespace for types defined in the UIMA base model is http://docs.oasis-open.org/uima/cas.ecore. (With the exception of types defined as part of Ecore, listed in Section 3.3.1, whose namespace is defined by Ecore.)
3.3.1 Primitive Types

UIMA uses the following primitive types defined by Ecore, which are analogous to the Java (and Apache UIMA) primitive types:

· EString

· EBoolean

· EByte (8 bits)

· EShort (16 bits)

· EInt (32 bits)

· ELong (64 bits)

· EFloat (32 bits)

· EDouble (64 bits)

Also Ecore defines the type EObject, which is defined as the superclass of all non-primitive types (classes).

3.3.2 Annotation and Sofa Type System

3.3.2.1 Overview
A general and motivating UIMA use-case is one where analytics label or annotate regions of unstructured content. A fundamental approach to representing annotations is referred to as “stand-off” annotation model. In a “stand-off” annotation model, annotations are represented as objects of a domain model that “point into” or reference elements of the unstructured content (e.g., document or video stream) rather than as inserted tags that affect and/or are constrained by the original form of the content. A stand-off model allows for multiple, potentially contradictory, interpretations of the content and different representations of the same artifact to be created and manipulated independently.
In UIMA, a CAS stores the artifact (i.e., the unstructured content that is the subject of the analysis) and the artifact metadata (i.e., structured data elements that describes the artifact).
The metadata generated by an analytic may include a set of annotations that label regions of the artifact with respect to some domain model (e.g., persons, organizations, events, times, opinions, etc). These annotations are logically and physical distinct from the subject of analysis, so UIMA adopts the “stand-off” model for annotations.

In UIMA the original content is not affected in the analysis process. Rather, an object graph is produced that stands off from and annotates the content. Stand-off annotations in UIMA allow for multiple content interpretations of graph complexity to be produced, co-exist, overlap and be retracted without affecting the original content representation. The object model representing the stand-off annotations may be used to produce different representations of the analysis results. A common form for capturing document metadata for example is as in-line XML. An analytic in a UIM application, for example, can generate from the UIMA representation an in-line XML document that conforms to some particular domain model or markup language. Alternatively it can produce an XMI or RDF document.

3.3.2.2 Annotation and Sofa Reference

The UIMA Base Type System defines a standard object type called Annotation for representing stand-off annotations. The Annotation type represents a type of object that is linked to a Subject of Analysis (Sofa).

The Sofa is the value of a slot in another object. Since a reference directly to a slot on an object (rather than just an object itself) is not a concept directly supported by typical object oriented programming systems or by XMI, UIMA defines a base type called LocalSofaReference for referring to Sofas from annotations. UIMA also defines a RemoteSofaReference type that allows an annotation to refer to a subject of analysis that is not located in the CAS.
Figure 4 illustrates an example. The CAS contains an object of class Document with a slot text containing the string value, “Fred Center is the CEO of Center Micros.”

Two annotations, a Person annotation and an Organization annotation, refer to that string value. The method of indicating a subrange of characters within the text string is discussed in the next section. For now, note that the LocalSofaReference object is used to indicate which object, and which field (slot) within that object, serves as the Subject of Analysis (Sofa).

[image: image1.png]OASIS)

[image: image6][image: image7.wmf]
Figure 4: Annotation and Subject of Analysis

The UML model for the Annotation and SofaReference types is given in Figure 5.

[image: image8]
Figure 5: Annotation and Sofa Reference UML

3.3.2.3 References to Regions of Sofas

An annotation typically points to a region of the artifact data. One of UIMA’s design goals is to be independent of modality. For this reason UIMA does not constrain the data type that can function as a subject of analysis and allows for different implementations of the linkage between an annotation and a region of the artifact data.

The Annotation class has subclasses for each artifact modality, which define how the Annotation refers to a region within the Sofa. The Standard defines subclasses for common modalities – Text and Temporal (audio or video segments). Users may define other subclasses.

Figure 6 extends the previous example by showing how the TextAnnotation subtype of Annotation is used to specify a range of character offsets to which the annotation applies.

[image: image9]
Figure 6: References from Annotations to Regions of the Sofa

Figure 7 shows the UML diagram for the TextAnnotation and TemporalAnnotation base types.

[image: image10]
Figure 7: TextAnnotation and TemporalAnnotation UML

In TextAnnotation, beginChar and endChar refer to Unicode character offsets in the corresponding Sofa string. For TemporalAnnotation, beginTime and endTime are offsets measured in seconds from the start of the Sofa. Note that applications that require a different interpretation of these fields must accept the standard values and handle their own internal mappings.

3.3.2.4 Options for Extending Annotation Type System

The standard types in the UIMA Base Type system are very high level. Users will likely wish to extend these base types, for instance to capture the semantics of specific kinds of annotations. There are two options for implementing these extensions. The choice of the extension model for the annotation type system is up to the user and depends on application-specific needs or preferences.

The first option is to subclass the Annotation types, as in Figure 8. In this model, the Annotation subtype for each modality will be independently subclassed according to the annotation types found in that modality. One advantage of this approach is that all subtype classes remain subtypes of Annotation. However, a disadvantage is that types that are annotations of the same semantic class, but for different modalities, are not grouped together in the type system. We see in the figure that an annotation of a reference to a Person or an Organization would have a distinct type depending on the nature of the Sofa the reference occurred in.
[image: image11.wmf]
Figure 8: Extending the base type system through subclassing.
The second option, shown in Figure 9, is to create an Entity type that subsumes the relevant semantic classes, and associate the Annotation with the appropriate Entity type. In this model, an Annotation is viewed as an occurrence of an Entity reference in a particular modality. The advantage of this approach is that all annotations corresponding to a particular Entity type (e.g. Person or Organization), regardless of the modality they are expressed in, will have the same occurrence value and can thus be easily grouped together. It does, however, push the semantic information about the annotation into an associated type that needs to be investigated rather than being immediately available in the type of the Annotation object. In other words, it introduces a level of indirection for accessing the semantic information about the Annotation. However, an additional advantage of this approach is that it allows for multiple Annotations to be associated with a single Entity, so that for instance multiple distinct references to a person in a text can be linked to a single Entity object representing that person.
[image: image12.wmf]
Figure 9: Associate Annotation with Entity type
3.3.2.4.1 Additional Annotation Metadata

In many applications, it will be important to capture metadata about each annotation. In the Base Type System, we introduce an AnnotationMetadata class to capture this information. The standard, as expressed in Figure 10, provides fields for confidence, a float indicating how confident the annotation engine that produced the annotation was in that annotation, and provenance, a Provenance object which stores information about the source of an annotation. Users may subclass AnnotationMetadata and Provenance as needed to capture additional application-specific information about annotations.
[image: image13.wmf]
Figure 10: AnnotationMetadata types in the base type system.
3.3.2.4.2 An Example of Annotation Model Extension

The Base Type System is intended to specify only the top-level classes for the Annotation system used in an application. Users will need to extend these classes in order to meet the particular needs of their applications. An example of how an application might extend the base type system comes from examining the redesign of IBM’s Knowledge Level Types in terms of the standard. The current model in KLT appears in Figure 11. It uses the Annotation class, but subclasses it with its own EntityAnnotation, models coreference with a reified HasOccurrence link, and captures provenance through a componentId attribute. Using the standard base type system, this type system could be refactored as in Figure 12. This refactoring uses the standard definitions of Annotation and Entity, but captures provenance using the an extended Provenance object.
[image: image14.wmf]
Figure 11: IBM's Knowledge Level Types

[image: image15.wmf]
Figure 12: Refactoring of KLT using the standard base type system.

3.3.2.5 Complete Annotation Model

Figure 8 shows the complete UML definition for the Annotation Base Type System.

[image: image16]
Figure 13: Annotation Model Complete UML

3.3.3 View Type System

A View, depicted in Figure 9, is a named collection of objects in a CAS. In general a view can represent any subset of the objects in the CAS for any purpose. It is intended however that Views represent different perspectives of the artifact represented by the CAS. Each View is intended to partition the artifact metadata to capture a specific perspective.

For example, given a CAS representing a document, one View may capture the metadata describing an English translation of the document while another may capture the metadata describing a French translation of the document.

In another example, given a CAS representing a document, one view many contain an analysis produced using company-confidential data another may produce an analysis using generally available data.

[image: image17.png]Object

tom cas)

View

name : Stiing

Figure 14: View Type

UIMA does not require the use of Views. However, our experiences developing Apache UIMA suggest that it is a useful design pattern to organize the metadata in a complex CAS by partitioning it into Views. Individual analytics may then declare that they require certain Views as input or produce certain Views as output.

Any application-specific type system could define a class that represents a named collection of objects and then refer to that class in an analytic’s behavioral specification. However, since it is a common design pattern we consider defining a standard View class to facilitate interoperability between components that operate on such collections of objects.

The members of a view are those objects explicitly asserted to be contained in the View. Referring to the UML in Figure 9, we mean that there is an explicit reference from the View to the member object. Members of a view may have references to other objects that are not members of the same View. A consequence of this is that we cannot in general "export" the members of a View to form a new self-contained CAS, as there could be dangling references. We define the reference closure of a view to mean the collection of objects that includes all of the members of the view but also contains all other objects referenced either directly or indirectly from the members of the view.

3.3.3.1 Anchored View

A common and intended use for a View is to contain metadata that is associated with a specific interpretation or perspective of an artifact. An application, for example, may produce an analysis of both the XML tagged view of a document and the de-tagged view of the document.

AnchoredView is as a subtype of View that has a named association with exactly one particular object via the standard feature sofa.

An AnchoredView requires that all Annotation objects that are members of the AnchoredView have their sofa feature refer to the same SofaReference that is referred to by the View’s sofa feature.

Simply put, all annotations in an AnchoredView annotate the same subject of analysis.

Figure 10 shows a UML diagram for the AnchoredView type, including an OCL constraint expression[OCL1] specifying the restriction on the sofa feature of its member annotations.

[image: image18.png]+sofaObject Object | +member
(rom ca3)
o
View
name Siring ",

Anchoredview

SofaReference

sofaf eature - String

sofa

{members orallal a ociTypeOf{uima Annotation)
implies a sofa = self sofs))

Figure 15: Anchored View Type

The concept of an AnchoredView addresses common use cases. For example, an analytic written to analyze the detagged representation of a document will likely only be able to interpret Annotations that label and therefore refer to regions in that detagged representation. Other Annotations, for example whose offsets referred back to the XML tagged representation or some other subject of analysis would not be correctly interpreted since they point into and describe content the analytic is unaware of.

If a chain of analytics are intended to all analyze the same representation of the artifact, they can all declare that AnchoredView as a precondition in their Behavioral Specification (see Section 3.5 Behavioral Metadata). With AnchoredViews, all the analytics in the chain can simply assume that all regional references of all Annotations that are members of the AnchoredView refer to the AnchoredView’s sofa. This saves them the trouble of filtering Annotations to ensure they all refer to a particular sofa.

3.3.4 Source Document Information

Often it is useful to record in a CAS some information about the original source of the unstructured data contained in that CAS. In many cases, this could just be a URL (to a local file or a web page) where the source data can be found. If the source data represents just a subset of a file, then additional offset information may also be needed.

[image: image19.png]‘SourceDocumentinformation

[ui - String
lofsetinSource - Integer
ldocumentSize - Integer
lestSegment - Boolean

Figure 16: Source Document Information UML

Figure 16 contains the specification of a SourceDocumentInformation type included in the BaseType System that can be stored in a CAS and used to capture this information.
3.3.4.1 Formal Specification

The Base Type System is formally defined by the Ecore model in [Ref].
3.4 Abstract Interfaces
The UIMA specification has defines two fundamental types of Processing Elements (PEs) that developers may implement: Analytics and Flow Controllers. In this section we give an abstract definition of the operations that these PE types support. Refer to Figure 12 for a UML model of the Analytic interfaces and Figure 13 for a UML model of the FlowController interface. The abstract definitions in this section lay the foundation for the concrete service specification defined in Section 3.7.

TODO: I think there is too much detail up front here. Thin it out and put more in the body of the formal specification part?
3.4.1 Processing Element

The base ProcessingElement interface defines the following operations, which are common to all subtypes of ProcessingElement:

· getMetadata, which takes no arguments and returns the PE metadata for the service.

· setConfigurationParameters, which takes a ConfigurationParameterSettings object that contains a set of (name, values) pairs that identify configuration parameters and the values to assign to them.

After a client calls setConfigurationParameters, those parameter settings must be “remembered” by the PE and applied to all subsequent requests from that client. Note that if the Processing Element service is shared by multiple clients, it needs to keep their configuration parameter settings separate.

3.4.2 Analytic

An Analytic is a component that performs analysis on CASes. There are two specializations: Analyzer and CasMultiplier. The Analyzer interface supports Analytics that take a CAS as input and output the same CAS, possibly updated. The CasMultiplier interface supports zero or more output CASes per input CAS. This is useful for example to implement a “segmenter” analytic that takes an input CAS and divides it into pieces, outputting each piece as a new CAS.

3.4.3 Analyzer
The Analyzer interface defines one additional operation:

· processCas, which takes a single CAS plus a list of Sofas to analyze, and returns the same CAS, possibly updated
.

Where we say that two CASes are "the same", we mean that all objects in the first CAS appear in the second CAS, except where an explicit delete or modification was performed by the service (which is only allowed if the service declares such operations in its behavioral spec). Also, in the XMI representation we require the xmi:ids of objects that appear in both CASes must be the same, so that the recipient of the CAS can determine the correspondence between objects in the two CASes.
The input CAS may contain a reference to its type system (see Section 3.1.4.6). If it does not, then the PE’s type system (see Section 3.6.2.3) may provide definitions of the types. If the CAS contains an instance of a type that is not defined in either place, then the PE may decide to reject the CAS and return an error. Some PE’s may be capable of handling undefined types, however, and these PE’s need not return an error.

For performance reasons, a concrete Analyzer interface could support passing/returning multiple CASes in a single call. However, an Analyzer may not require multiple CASes to be passed to it in a batch.

If an application needs to consider an entire set of CASes in order to make decisions about annotating each individual CAS, it is up to the application to implement this. TODO: the spec should explicitly note this requirement and discuss how it can be addressed (for example using an external resource populated during one pass and read from during a subsequent pass). We may want to define a standard interface to a simple CAS Store resource.
3.4.4 CAS Multiplier
The CasMultiplier interface can take a CAS as input and produce zero or more additional CASes as output. This is useful for example to implement a “segmenter” analytic that takes an input CAS and divides it into pieces, outputting each piece as a new CAS. The CasMultiplier interface defines the following operations:

· inputCas, which takes a CAS plus a list of Sofas, but returns nothing.

· getNext, which takes no input and returns a CAS. This returns the next output CAS. An empty response indicates no more output CASes.

· retrieveInputCas, which takes no arguments and returns the original input CAS, possibly updated.

Note that in the CasMultiplier interface, there are separate operations to send and to retrieve the input CAS. Typically retreiveInputCas would be called only after all of the output CASes have been generated. However, we would like to leave open the possibility the input CAS may be retrieved before all of the output CASes have been generated, if possible.

A CAS Multiplier may also be used to merge multiple input CASes into one output CAS. Upon receiving the first inputCas call, the CAS Multiplier would return 0 output CASes and would wait for the next inputCas call. It would continue to return 0 output CASes until it has seen some number of input CASes, at which point it would then output the one merged CAS.

[image: image20.png]ProcessingElement

lgetMetadata() - ProcessingElementhetadata
|setConfigurationParameters(settings - ConfigurationParameterSettings)

b

[An Analytic is a component that
performs an analysis operation on
a CAS. Though it provides no
methods (the specializations. A FlowController
|Analyzer and CasMultiplier do). |
this is a central concept in UIMA
and desenves ts own class.
Analyzer CasMuttiplier
[process(cas - CAS, sofas - ObjectList) - CAS| lputCAS(cas - CAS, sofas - ObjectList)
lgetext() - CAS.
retreivelnputCAS() - CAS
ObjectList ConfigurationParameterSettings
I UimaException
sobjocts Jo.r 0. [message - String|
Ty ConfigurationParameterSetting
=) [parametertlame - String
|<<0..n>> values - String

Figure 17: Abstract Interfaces UML (Flow Controller Detail Omitted)

3.4.5 Flow Controller
The FlowController interface defines the operations:

· addAvailableAnalytics, which provides the Flow Controller with access to the Analytic Metadata for all of the Analytics that the Flow Controller may route CASes to. This may be called multiple times, if new analytics are added to the system after the original call is made.

· removeAvailableAnalytics, which instructs the Flow Controller to remove some Analytics from consideration as possible destinations.

· setAggregateMetadata, which provides the Flow Controller with Processing Element Metadata that identifies and describes the desired behavior of the entire flow of components that the FlowController is managing (referred to as an “aggregate” analytic). The most common use for this is to specify the desired outputs of the aggregate, so that the Flow Controller can make decisions about which analytics need to be invoked in order to produce those outputs.

· getNextDestinations, which takes a CAS and returns one or more destinations for this CAS.
continueOnFailure, which can be called by the aggregate/application when a Step issued by the FlowController failed. The FlowController returns true if it can continue, and can change the subsequent flow in any way it chooses based on the knowledge that a failure occurred. The FlowController returns false if it cannot continue.

The application or aggregate framework containing the FlowController must call addAvailableAnalytics and pass an AnalyticMetadataMap, which is a map from String keys to analytic metadata. The keys are arbitrary identifiers that are unique within the set of analytics known to this FlowController. If the FlowController is contained in an Aggregate Analytic, the aggregate framework must also call the setAggregateMetadata operation.

When getNextDestinations is called, the FlowController implementation uses the available metadata along with any data in the CAS to choose the next destinations from this set of analytics. The FlowController responds with the a Step object, of which there are three subtypes:

1. SimpleStep, which identifies a single Analytic to be executed. The Analytic is identified by the String key that was associated with that Analytic in the AnalyticMetadataMap.

2. MultiStep, which identifies one more Steps that should be executed next. The MultiStep also indicates whether these steps must be performed sequentially or whether they may be performed in parallel.

3. FinalStep, which indicates that there are no more destinations for this CAS, i.e., that processing of this CAS has completed.

A FlowController, being a subtype of ProcessingElement, may have configuration parameters. For example, a configuration parameter may refer to a description of the desired flow in some flow language such as BPEL [BPEL1]. This is one way to create a reusable Flow Controller implementation that can be applied in many applications or aggregates.

Note that the FlowController is not responsible for knowing how to actually invoke a constituent analytic. Invoking the constituent analytic is the job of the application or aggregate framework that encapsulates the FlowController. This is an important separation of concerns since applications or frameworks may use arbitrary protocols to communicate with constituent analytics and it is not reasonable to expect a reusable FlowController to understand all possible protocols.

A Flow Controller may not modify the CAS. However, a concrete implementation of the Flow Controller interface could return a separate Flow data structure to allow the application to get information about the flow history.

[image: image21]
Figure 18: Flow Controller Abstract Interface UML

3.4.6 Examples (Not Normative)

The following sequence diagrams show examples of how the Abstract Interfaces are called from an application:

[image: image22.emf]

[image: image23.emf]
3.4.7 Formal Specification
Since the interface definitions in this specification element are abstract (not bound to a particular service protocol or programming language), the formal requirements of the UIMA specification are also abstract.

The following subsections specify requirements that a particular type of UIMA service must provide an operation with certain inputs and outputs. For example, a UIMA PE service must implement a getMetaData operation that returns standard UIMA PE Metadata. In all cases, the protocol for invoking this operation and the format in which the data are returned are not defined by the standard. However, a client must be able to transform the data format of the service to and from the equivalent UIMA standard representation. For example, it must be possible for a client to transform the result of calling a getMetaData operation into valid UIMA PE Metadata XML as defined in section 3.6.4. In all cases the provider of the UIMA service must document how this transformation is performed.

3.4.7.1 ProcessingElement.getMetaData

A UIMA Processing Element (PE) Service must provide an operation that returns PE Metadata. This method should be called getMetaData. In the following sections, we use the term “this PE Service’s Metadata” to refer to the PE Metadata returned by this operation.

3.4.7.2 ProcessingElement.setConfigurationParameters

A UIMA Processing Element (PE) Service must provide an operation that accepts Configuration Parameter Settings. This method should be called setConfigurationParameters.

The PE Service must return an error if the ConfigurationParameterSettings object passed to this method contains any of:

1. a parameterName that does not match any of the parameter names declared in this PE Service’s Metadata.

2. a value that does not conform to the type of the parameter in this PE Service’s Metadata. (TODO: define “conform”?)
3. multiple values for a parameter that is not declared as multiValued in this PE Service’s Metadata.

After a client calls setConfigurationParameters, those parameter settings must be applied to all subsequent requests from that client, until such time as a subsequent call to setConfigurationParameters specifies new values for the same parameter(s). If the PE service is shared by multiple clients, the PE service must provide a way to keep their configuration parameter settings separate.

3.4.7.3 Analyzer.processCas
A UIMA Analyzer Service must provide an operation that accepts a single CAS plus a list of Sofas to analyze (references to objects in the input CAS), and returns a single CAS. This method should be called processCas.

The output CAS of this operation represents an update of the input CAS. Formally, this means :

1. A all objects in the input CAS must appear in the output CAS, except where an explicit delete or modification was performed by the service (which is only allowed if such operations are declared in the Behavioral Metadata element of this service’s PE Metadata).

2. For the processCas operation, an object that appears in both the input CAS and output CAS must have the same value for xmi:id.

3. No newly created object in the output CAS may have the same xmi:id as any object in the input CAS.

Rather than return a complete CAS as output, the UIMA Analyzer service may return a description of the changes to be applied to the input CAS. Logically, this is an equivalent operation. Note that the XMI representation provides a differences language that may be used for this purpose – see [Ref to description XMI deltas].
The input CAS may contain a reference to its type system (see Section 3.1.4.6). If it does not, then the PE’s type system (see Section 3.6.2.3) may provide definitions of the types. If the CAS contains an instance of a type that is not defined in either place, then the PE may decide to reject the CAS and return an error. Some PE’s may be capable of handling undefined types, however,

and these PE’s need not return an error.

A UIMA Analyzer service may provide an operation that accepts and returns multiple CASes in a single call. However, the CASes that are returned from this operation must be identical to the CASes that would result from several individual processCas operations each taking only one CAS as input.

3.4.7.4 CasMultiplier.inputCas
A UIMA CAS Multiplier service must provide an operation that accepts a single CAS plus a list of Sofas to analyze (references to objects in the input CAS). This operation should be called inputCas.

The CAS that is passed to this operation becomes this service’s active CAS.
3.4.7.5 CasMultiplier.getNext

A UIMA CAS Multiplier service must provide an operation that returns a single CAS, or a result indicating that there are no more CASes available. This operation should be called getNext.

If the client calls getNext when this service has no active CAS, the service must return an error.

3.4.7.6 CasMultiplier.retrieveInputCas

A UIMA CAS Multiplier service must provide an operation that returns a single CAS, where that CAS represents an update (as defined in 3.4.7.3) of the active CAS (the CAS most recently passed to this service’s inputCas operation).

If the client calls retrieveInputCas when this service has no active CAS, the service must return an error.

After this method completes, this service no longer has an active CAS, until the client’s next call to inputCas.

Concrete service interfaces may allow multiple CASes to be passed to the inputCas operation and/or multiple CASes to be returned from the getNext or retrieveInputCas operations. However, the resulting CASes must be identical to the CASes that would result from individual operations each passing only one CAS or returning one CAS.

3.4.7.7 FlowController.addAvailableAnalytics
A UIMA Flow Controller service must provide an operation that accepts a Map from String keys to PE Metadata objects. This operation should be called addAvailableAnalytics. Each of the String keys passed to this operation is added to the set of available analytic keys for this Flow Controller service.

3.4.7.8 FlowController.removeAvailableAnalytics
A UIMA Flow Controller service must provide an operation that accepts one or more String keys. This operation should be called removeAvailableAnalytics. If any of the String keys passed to this operation are not a member of the set of available analytic keys for this Flow Controller service, an error must be returned. Each of the String keys passed to this operation is removed from the set of available analytic keys for this FlowController service.

3.4.7.9 FlowController.setAggregateMetadata
A UIMA Flow Controller service must provide an operation that accepts a PE Metadata object. This operation should be called setAggregateMetadata.

There are no formal requirements on what the Flow Controller does with this PE Metadata, but the intention is for the PE Metadata to specify the desired outputs of the workflow, so that the Flow Controller can make decisions about which analytics need to be invoked in order to produce those outputs. (Then, maybe we should change this method to setAggregateBehavioralMetadata?)
3.4.7.10 FlowController.getNextDestinations
A UIMA Flow Controller service must provide an operation that accepts a single CAS and returns a Step object. This operation should be called getNextDestinations. The different types of Step objects are defined in the UML diagram in Figure 13 and XML schema in Appendix B.7. Their intending meanings are documented in section 3.4.5.

Each analyticKey value returned from the getNextDestinations operation must be a member of the set of active analytic keys of this Flow Controller service.

3.4.7.11 FlowController.continueOnFailure
A UIMA FlowController service must define an operation that accepts a CAS, a String key, and a UimaException object, and returns a Boolean. This operation should be called continueOnFailure. If the String key is not a member of the set of active analytic keys of this Flow Conroller, then an error must be returned.

This method is intended to be called by the client when there was a failure in executing a Step issued by the FlowController. The client is expected to pass the CAS that failed, the analytic key from the Step object that was being executed, and the exception that occurred.

Given that the above assumptions hold, the continueOnFailure operation should return true if a further call to getNextDestinations would succeed, and false if a further call to getNextDestinations would fail.

3.5 Behavioral Metadata

The Behavioral Metadata of an analytic declaratively describes what the analytic does; for example, what types of CASs it can process, what elements in a CAS it analyzes, and what sorts of effects it may have on CAS contents as a result of its application.

3.5.1 Goals
1. Discovery: Enable both human developers and automated processes to search a repository and locate components that provide a particular function (i.e., works on certain input, produces certain output)

2. Composition: Support composition either by a human developer or an automated process.

a. Analytics should be able to declare what they do in enough detail to assist manual and/or automated processes in considering their role in an application or in the composition of aggregate analytics.

b. Through their Behavioral Metadata, Analytics should be able to declare enough detail as to enable an application or aggregate to detect “invalid” compositions/workflows (e.g., a workflow where it can be determined that one of the Analytic’s preconditions can never be satisfied by the preceding Analytic).

3. Efficiency: Facilitate efficient sharing of CAS content among cooperating analytics. If analytics declare which elements of the CAS (e.g., views) they need to receive and which elements they do not need to receive, the CAS can be filtered or split prior to sending it to target analytics, to achieve transport and parallelization efficiencies respectively.

Note that analytics are not required to declare behavioral metadata. If an analytic does not provide behavioral metadata, then an application using the analytic cannot assume anything about the operations that the analytic will perform on a CAS.

3.5.2 Elements of Behavioral Metadata

Behavioral Metadata breaks down into the following categories:

· Analyzes: Types of objects (Sofas) that the analytic intends to produce annotations over.

· Required Inputs: Types of objects that must be present in the CAS for the analytic to operate.

· Optional Inputs: Types of objects that the analytic would consult if they were present in the CAS.

· Creates: Types of objects that the analytic may create.

· Modifies: Types of objects that the analytic may modify.

· Deletes: Types of objects that the analytic may delete.
For each of these elements, if an analytic declares the element at all, it must completely declare its behavior with respect to that element. For example, if an analytic declares a creates expression containing only type X, then it must not create instances of any types other than X. This is a requirement for the composition and efficiency goals that we describe next.
3.5.3 Example (Not Normative)

Condiser a “CeoOf Relation Detector” analytic that receives as input a text document in which Persons and Organizations have been annotated, and looks for a relationship that a Person is the CEO Of an Organization. This analytic would declare its Behavioral Metadata as follows:

[image: image24.emf]Behavioral Metadata Example

<behavioralMetadata xmlns:org.example="http://docs.oasis-

open.org/uima/org/example.ecore">

<

analyzes

>

<type name="org.example:TextDocument"/>

</

analyzes

>

<

requiredInputs

>

<type name="org.example:Person"/>

<type name="org.example:Organization"/>

</

requiredInputs

>

<

creates

>

<type name="org.example:CeoOf"/>

</

creates

>

</behavioralMetadata>

Type of Sofa that the Analytic

will process

Inputs – may be required or

optional

Effects – objects that the

analytic creates, modifies, or

deletes

UIMA Analyzer

CAS

TextDocument (Sofa)

Persons

Organizations

CAS

TextDocument (Sofa)

Persons

Organizations

CeoOf

This satisfies the three design goals of Behavioral Metadata:

· Discovery:

· A component repository can be searched to locate an analytic that produces CeoOf annotations.

· Composition:
· Person and Organization annotations are required inputs, so a user knows to combine a Person annotator and a Relation annotator with the CeoOf annotator to produce a valid composition.

· Efficiency:

· If the CAS contains objects in the CAS that are not declared in the analyzes, required inputs, or optional inputs (e.g., Place annotations), then these do not need to be sent to the analytic.
3.5.4 Using Views in Behaivoral Metadata

An issue with the above example is the lack of any relationship of the Sofa to the Annotations. It is not explicit that the Person, Organization, and CeoOf annotations refer to the TextDocument Sofa. Worse, things become completely unclear for analytics that works with multiple Sofas. To address this problem, Behavioral Metadata may be expressed in terms of Views. For example:

[image: image25.emf]Using Views in Behavioral Metadata

• Analytics may specify that inputs & outputs are contained within the same View.

• May explicitly specify that the input & output annotations refer to the same Sofa

<behavioralMetadata xmlns:org.example="http://docs.oasis-

open.org/uima/org/example.ecore">

<

requiredView

sofaType="org.example:Document">

<requiredInputs>

<type name="org.example:Person"/>

<type name="org.example:Organization"/>

</requiredInputs>

<creates>

<type name="org.example:CeoOf"/>

</creates>

<

/requiredView

>

</behavioralMetadata>

3.5.5 Formal Semantics for Behavioral Metadata

All Behavioral Metadata elements may be mapped to THREE kinds of expressions in a formal language: a Precondition, a Postcondition, and a Projection Condition.

A Precondition is a predicate that qualifies CASs that the analytic considers valid input. More precisely the analytic's behavior would be considered unspecified for any CAS that did not satisfy the pre-condition. The pre-condition may be used by a framework or application to filter or skip CASs routed to an analytic whose pre-condition is not satisfied by the CASs. A human assembler or automated composition process can interpret the pre-conditions to determine if the analytic is suitable for playing a role in some aggregate composition.
A Postcondition is a predicate that is declared to be true of any CAS after having been processed by the analytic, assuming that the CAS satisfied the precondition when it was input to the analytic.

For example, if the pre-condition requires that valid input CASs contain People, Places and Organizations, but the Postconditions of the previously run Analytic asserts that the CAS will not contain all of these objects, then the composition is clearly invalid.

A Projection Condition is a predicate that is evaluated over a CAS and which evaluates to a subset of the objects in the CAS. This is the set of objects that the Analytic declares that it will consider to perform its function.

UIMA does not mandate a particular expression language for representing these conditions. Implementations are free to use any language they wish. However, to ensure a standard interpretation of the standard UIMA Behavior Elements, the UIMA specification defines how the Behavior Elements map to preconditions, postconditions, and projection conditions in the Object Contraint Language [OCL1], an OMG standard. See Section 3.5.7 OCL for Defining Formal Semantics for details.

3.5.6 Behavioral Metadata UML

The following UML diagram defines the UIMA Behavioral Metadata representation:

[image: image26]
Figure 19: Behavioral Metadata UML
3.5.7 OCL for Defining Formal Semantics

To give a formal meaning to the analyzes, required inputs, optional inputs, creates, modifies, and deletes expressions, we will define how these map into formal preconditions, postconditions, and projection conditions in the Object Contraint Language [OCL1], an OMG standard.

The UIMA specification defines this mapping in order to ensure a standard interpretation of UIMA Behavior Metadata Elements. There is no requirement on any implementation to evaluate or enforce these expressions. Implementations are free to use other languages for expressing and/or processing preconditions, postconditions, and projection conditions.
The following is an example mapping from Behavioral Metadata to a precondition.

<requiredInputs>

<type name="org.example:Person"/>

<type name="org.example:Organization"/>

 </requiredInputs>

is equivalent to the OCL precondition that all valid input CASs must satisfy

exists(p | p.oclKindOf(org::example::Person) and exists(o | o.oclKindOf(org::example::Organization)
3.5.8 Behavioral Metadata XML Representation

For each of the Behavioral Metadata Elements (analyzes, required inputs, optional inputs, creates, modifies, and deletes), there will be a corresponding XML element. For each element a list of type names is declared.

To address some common situations where an analytic operates on a view (a collection of objects all referring to the same subject of analysis), we also provide a simple way for behavioral metadata to refer to views.

3.5.8.1 Type Naming Conventions
In the XML behavioral metadata, type names are represented in the same way as in Ecore and XMI.

In UML (and Ecore), a Package is a collection of classes and/or other packages. All classes must be contained in a package.

Figure 1 is a UML diagram of an example type system. It depicts a Package “org” containing a Package “example” containing several classes.

[image: image27.png]org

1

+domain

example
TextDocument NarmedEntity
ftext: String narme - String Relation
Person
ssn © String Place A
age Integer

jange

Figure 20: Example Type System UML Model

In the Ecore model, each package is assigned (by the developer) three identifiers: a name, a namespace URI, and a namespace prefix. The name is a simple string that must be unique within the containing package (top-level package names must be globally unique). The namespace URI and namespace prefix are standard concepts in the XML namespaces spec [2] are used to refer to that package in XML, including the behavioral metadata as well as the XMI CAS. An example is given below.

Figure 16 shows the relevant parts of the Ecore definition for this type system. Some details have been omitted (marked with an ellipsis) to show only the parts where packages and namespaces are concerned, and only a subset of the classes in the diagram are shown.

[image: image28]
Figure 21: Partial Ecore Representation of Example Type System

In this example, the namespace URI for the nested “example” project is http://docs.oasis-open.org/uima/org/example.ecore
, and the corresponding prefix is org.example. It is important to note that the URI and prefix are arbitrarily determined by the type system developer and there is no required mapping from the package names “org” and “example” to the URI and prefix. In the above example, the namespace prefix have been set to “foo” and it would be completely valid. (However, for UIMA we could recommend or require the use of particular naming conventions.)

Now, to refer to a type name within the behavioral metadata XML, we use the namespace URI and prefix in the normal XML namespaces way, for example:

 <behavioralMetadata xmlns:org.example="http://docs.oasis-open.org/uima/org/example.ecore">

...
 <type name="org.example:Place"/>

...
 </behavioralMetadata>

The “xmlns” attribute declares that the prefix “org.example” is bound to the URI http://docs.oasis-open.org/uima/org/example.ecore. Then, each time we want to refer to a type in that package, we use the prefix “org.example:”

Technically, the XML document does not have to use the same namespace prefix as what is in the Ecore model. It is only a guideline. The namespace URI is what matters. For example, the above XML is completely equivalent to the following

 <behavioralMetadata xmlns:foo="http://docs.oasis-open.org/uima/org/example.ecore">

...
 <type name="foo:Place"/>

...
 </behavioralMetadata>

This is because the namespace URI is a globally unique identifier for the package, but the namespace prefix need only be unique within the current XML document. For more information on XML namespace syntax, see [XML1].

The above discussion centered on the representation of type names in XML. There is a different representation needed within OCL expressions. Since OCL is not primarily XML-based, it does not use the XML namespace URIs or prefixes to refer to packages. Instead, OCL expressions refer directly to the simple package names separated by double colons, as in “org::example::Person”. For more information see [OCL1].

3.5.8.2 XML Syntax for Behavioral Metadata Elements

The following example is the behavioral metadata for an analytic that analyzes a Sofa of type TextDocument, requires objects of type Person, and will inspect objects of type Place if they are present. It may create objects of type At.

 <behavioralMetadata xmlns:org.example="http://docs.oasis-open.org/uima/org/example.ecore" excludeReferenceClosure="true">
 <analyzes>
 <type name="org.example:TextDocument"/>
 </analyzes>
 <requiredInputs>
 <type name="org.example:Person"/>
 <type name="org.example:Place"/>
 </requiredInputs>
 <creates>
 <type name="org.example:At"/>
 </creates>
 </behavioralMetadata>

Note that the inheritance hierarchy declared in the type system is respected. So for example a CAS containing objects of type GovernmentOfficial and Country would be valid input to this analytic, assuming that the type system declared these to be subtypes of org.example:Person and org.example:Place, respectively.

The “excludeReferenceClosure” attribute on the Behavioral Metadata element, when set to true, indicates that objects that are referenced from optional/required inputs of this analytic will not be guaranteed to be included in the CAS passed to the analytic. This attribute defaults to false.

For example, assume in this example the Person object had an employer feature of type Company. With excludeReferenceClosure set to true, the caller of this analytic is not required to include Company objects in the CAS that is delivered to this analytic. If Company objects are filtered then the employer feature would become null. If excludeReferenceClosure were not set, then Company objects would be guaranteed to be included in the CAS.

3.5.8.3 Views
As described in section 3.5.4, we allow the behavioral metadata to refer to a View, where a View may collect all annotations referring to a particular Sofa.

<behavioralMetadata xmlns:org.example="http://docs.oasis-open.org/uima/org/example.ecore">
 <requiredView sofaType="org.example:TextDocument">
 <requiredInputs>
 <type name="org.example:Token"/>
 </requiredInputs>
 <creates>
 <type name="org.example:Person"/>
 </creates>
 </requiredView>
 <optionalView sofaType="org.example:RawAudio">

 <requiredInputs>

 <type name="org.example:SpeakerBoundary"/>
 </requiredInputs>
 <creates>
 <type name="org.example:AudioPerson"/>
 </creates>
 </optionalView>
</behavioralMetadata>

This example requires a TextDocument Sofa and optionally accepts a RawAudio Sofa. It has different input and output types for the different Sofas.

As with an optional input, an “optional view” is one that the analytic would consider if it were present in the CAS. Views that do not satisfy the required view or optional view expressions might not be delivered to the analytic.

NOTE: The meaning of an optionalView having a requiredInput is that a view not containing the required input types is not considered to satisfy the optionalView expression and might not be delivered to the analytic.
An analytic can also declare that it creates a View along with an associated Sofa and annotations. For example, this Analytic transcribes audio to text, and also outputs Person annotations over that text:

<behavioralMetadata xmlns:org.example="http://docs.oasis-open.org/uima/org/example.ecore">
 <requiredView sofaType="org.example:RawAudio">

 <requiredInputs>

 <type name="org.example:SpeakerBoundary"/>
 </requiredInputs>
 </requiredView>

 <createsView sofaType="org.example:TextDocument">
 <creates>
<type name="org.example:Person"/>
 </creates>
 </createsView>
</behavioralMetadata>

3.5.8.4 Specifying Which Features Are Modified

For the “modifies” predicate we allow an additional piece of information: the names of the features that may be modified. This is primarily to support discovery. For example:

<behavioralMetadata xmlns:org.example="http://docs.oasis-open.org/uima/org/example.ecore">
 <requiredInputs>
 <type name="org.example:Person"/>
 </requiredInputs>
 <modifies>
 <type name="org.example:Person">
 <feature name="age"/>
 <feature name="ssn"/>
 </type>
 </modifies>
</behavioralMetadata>

3.5.8.5 Specifying Preconditions, Postconditions, and Projection Conditions

Although we expect it to be rare, analytic developers may declare preconditions, postconditions, and projection conditions directly. The syntax for this is straightforward:

 <behavioralMetadata>
 <precondition language="OCL"
 expression="exists(s | s.oclKindOf(org::example::Sofa) and s.mimeTypeMajor = 'audio')"/>
 <postcondition language="OCL"
 expr="exists(p | p.oclKindOf(org::example::Sofa) and s.mimeTypeMajor = 'text')"/>
 <projectionCondition language="OCL"
 expr=" select(p | p.oclKindOf(org::example::NamedEntity))"/>
 </behavioralMetadata>

UIMA does not define what language must be used for expression these conditions. OCL is just one example.

Preconditions and postconditions are expressions that evaluate to a Boolean value. Projection conditions are expressions that evaluate to a collection of objects.

Behavioral Metadata can include these conditions as well as the other elements (analyzes, requiredInputs, etc.). In that case, the overall precondition and postcondition of the analytic are a combination of the user-specified conditions and the conditions derived from the other behavioral metadata elements as described in the next section. (For precondition and postcondition it is a conjunction; for projection condition it is a union.)
3.5.9 Formal Specification
3.5.9.1 Structure
UIMA Behavioral Metadata XML is a part of UIMA Processing Element Metadata XML. Its structure is defined by the definitions of the BehavioralMetadata class in the Ecore model in B.3.

This implies that UIMA Behavioral Metadata XML must be a valid instance of the BehavioralMetadata element definition in the XML schema given in Section B.5.

3.5.9.2 Constraints
Field values must satisfy the following constraints

3.5.9.2.1 Type

· name must be a valid QName (Qualified Name) as defined by the Namesapces for XML specification [XML2]. The namespace of this QName must match the namespace URI of an EPackage defined in an Ecore model referenced by the PE’s TypeSystemReference. The local part of the QName must match the name of an EClass within that EPackage.

· Each value of feature must be a valid UnprefixedName as specified in [XML2], and must match the name of an EStructuralFeature in the EClass corresponding to the value of the name field as described in the previous bullet.

3.5.9.2.2 Condition

· language must be one of:
· The exact string OCL. If the value of the language field is OCL, then the value of the expression field must be a valid OCL expression as defined by [OCL1].
· A user-defined language, which must be a String containing the ‘.’ Character (for example “org.example.MyLanguage”). Strings not containing the ‘.’ are reserved by the UIMA standard and may be defined at a later date.
· Each value of feature must be a valid UnprefixedName as specified in [XML2], and must match the name of an EStructuralFeature in some EClass in an Ecore model referenced by the PE’s TypeSystemReference.

3.5.9.3 Semantics
TODO: Define mapping from elements to OCL conditions here.
3.6 Processing Element Metadata

All UIMA Processing Elements (PEs) must publish processing element metadata, which describes the analytic to support discovery and composition. This section of the spec defines the structure of this metadata and provides an XML schema in which PEs must publish this metadata.

3.6.1 Overview
The PE Metadata is subdivided into the following parts:
1. Identification Information. Identifies the PE. It includes for example a symbolic/unique name, a descriptive name, vendor and version information.
2. Configuration Parameters. Declares the names of parameters used by the PE to affect its behavior, as well as the parameters’ default values.
3. Behavioral Specification. Describes the PEs input requirements and the operations that the PE may perform.
4. Reference to a Type System. Defines types referenced from the behavioral specification.
5. Extensions. Allows the PE metadata to contain additional elements, , the contents of which are not defined by the UIMA specification. This can be used by framework implementations to extend the PE metadata with additional information that may be meaningful only to that framework.
Figure 17 is a UML model for the PE metadata. We describe each subpart of the PE metadata in detail in the following sections.

[image: image29]
Figure 22: Processing Element Metadata UML Model
3.6.2 Elements of PE Metdata

3.6.2.1 Identification Information
The Identification Information section of the descriptor defines a small set of properties that developers should fill in with information that describes their PE. The main objectives of this information are to:

1. Provide human-readable information about the analytic to assist developers in understanding what the purpose of each PE is.

2. Facilitate the development of repositories of PEs.

The following properties are included:

1. Symbolic Name: A unique name (such as a Java-style dotted name) for this PE.

2. Name: A human-readable name for the PE. Not necessarily unique.

3. Description: A textual description of the PE.

4. Version: A version number. This is necessary for PE repositories that need to distinguish different versions of the same component. The syntax of a version number is as defined in [OSGi1]: up to four dot-separated components where the first three must be numeric but the fourth may be alphanumeric. For example 1.2.3.4 and 1.2.3.abc are valid version numbers but 1.2.abc is not.
5. Vendor: The provider of the component.

6. URL: website providing information about the component and possibly allowing download of the component

3.6.2.2 Configuration Parameters
Many kinds of PEs may be configured to operate in different ways
. UIMA provides a standard way for PEs to declare configuration parameters so that application developers are aware of the options that are available to them.

UIMA provides a standard interface for setting the values of parameters; see Section 3.4 Abstract Interfaces.

For each configuration parameter we should allow the PE developer to specify:

1. The name of the parameter

2. A description for the parameter

3. The type of value that the parameter may take

4. Whether the parameter accepts multiple values or only one

5. Whether the parameter is mandatory

6. A default value or values for the parameter

One common use of configuration parameters is to refer to external resource data, such as files containing patterns or statistical models. Frameworks such as Apache UIMA may wish to provide additional support for such parameters, such as resolution of relative URLs (using classpath/datapath) and/or caching of shared data. It is therefore important for the UIMA configuration parameter schema to be expressive enough to distinguish parameters that represent resource locations from parameters that are just arbitrary strings.

The type of a parameter must be one of the following:

· String

· Integer (32-bit)

· Float (32-bit)

· Boolean

· ResourceURL

The ResourceURL satisfies the requirement to explicitly identify parameters that represent resource locations.

Note that parameters may take multiple values so it is not necessary to have explicit parameter types such as StringArray, IntegerArray, etc.

3.6.2.3 Type System Reference
PE Metadata does not include a type system, it simply refers to it. This specification is only concerned with the format of that reference. For the actual definition of the type system, we have adopted the Ecore/XMI representation. See Section 3.2 The Type System for details.

URIs are used as references by many web-based standards (e.g., RDF), and they are also used within Ecore. Thus we use a URI to refer to the type system.

To achieve interoperability across frameworks, this URI should be a URL at which the Ecore/XMI type system data is located.

The role of this type system is to provide definitions of the types referenced in the PE’s behavioral specification. It is important to note that this is not a restriction on the CASes that may be input to the PE (if that is desired, it can be expressed using a precondition in the behavioral specification). If the input CAS contains instances of types that are not defined by the PE’s type system, then the CAS itself may indicate a URI where definitions of these types may be found (see 3.1.4.6 Linking an XMI Document to its Ecore Type System). Also, some PE’s may be capable of processing CASes without being aware of the type system at all.

Some analytics may be capable of operating on any types. These analytics need not refer to any specific type system and in their behavioral metadata may declare that they analyze or inspect instances of the most general type (EObject in Ecore).

3.6.2.4 Behavioral Metadata
The Behavioral Metadata is discussed in detail in 3.5.

3.6.2.5 Extensions
Extension objects allow a framework implementation to extend the PE metadata descriptor with additional elements, which other frameworks may not necessarily respect. For example Apache UIMA defines an element fsIndexCollection that defines the CAS indexes that the component uses. Other frameworks could ignore that.
This extensibility is enabled by the Extension class in Figure 17. The Extension class defines two features, extenderId and contents.

The extenderId feature identifies the framework implementation that added the extension, which allows framework implementations to ignore extensions that they were not meant to process.

The contents feature can contain any EObject. (EObject is the superclass of all classes in Ecore.) To add an extension, a framework must provide an Ecore model that defines the structure of the extension.
3.6.3 Example (Not Normative)

TODO

[image: image30.emf]PE Metadata Example

<pemd:ProcessingElementMetadata xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI" xmlns:pemd="http://docs.oasis-

open.org/uima/pemetadata.ecore">

<identification

symbolicName="org.oasis-open.uima.example.CeoRelationAnnotator"

name="Ceo Relation Annotator"

description="Detects CeoOf relationships in a text document."

vendor="OASIS"

version="1.0.0"/>

<configurationParameter

name="PatternFile"

description="Location of external pattern file that finds CeoOf relations.”

type="ResourceURL">

<defaultValue>myResources/ceoPatterns.dat</defaultValue>

</configurationParameter>

<typeSystemReference

uri="http://docs.oasis-open.org/uima/types/exampleTypeSystem.ecore"/>

<behavioralMetadata> ... </behavioralMetadata>

<extension extenderId="org.apache.uima"> ... </extension>

</pemd:ProcessingElementMetadata>

Identification

Configuration

Parameters

Type System

Ref

Extension

Behavioral

Metadata

3.6.4 Formal Specification

3.6.4.1 Structure

UIMA Processing Element Metadata XML must be a valid XMI document that is an instance of the UIMA Processing Element Metadata Ecore model given in Section B.3.

This implies that UIMA Processing Element Metadata XML must be a valid instance of the UIMA Processing Element Metadata XML schema given in Section B.5.

3.6.4.2 Constraints

Field values must satisfy the following constraints

Identification Information:

· symbolicName must be a valid symbolic-name as defined by the OSGi specification [OSGi1].

· version must be a valid version as defined by the OSGi specification [OSGi1].

· url must be a valid URL is defined by [URL1].

Configuration Parameter

· name must be a valid Name as defined by the XML specification [XML1].
· type must be one of {String, Integer, Float, Boolean, ResourceURL}

Type System Reference

· uri must be a valid URI as defined by [URI1] (TODO: what if it is not a URL – does not refer to an actual location? Should that be required?)
Extensions

· extenderId must be a valid Name as defined by the XML specification [XML1].
3.7 Service WSDL Descriptions
This specification element facilitates interoperability by specifying a WSDL [WSDL1] description of the UIMA interfaces and a binding to a concrete SOAP interface that compliant frameworks/services must implement.

This SOAP interface implements the Abstract Interfaces defined in Section 3.4 Abstract Interfaces. The use of SOAP facilitates standard use of web services as a CAS transport.

In this section we give examples of how the SOAP service is used and describe the WSDL service definition at a high level. The formal WSDL document is given in Section B.6.

3.7.1 SOAP Service Example (Not Normative)

TODO

[image: image31.emf]Web Server

With

SOAP Container

UIMA

Application

SOAP Message

SOAP Service Example

UIMA

CEO

Relation

Annotator

SOAP Message

CAS

TextDocument (Sofa)

Persons

Organizations

CAS

TextDocument (Sofa)

Persons

Organizations

CeoOf

[image: image32.emf]SOAP Service Example

<soapenv:Envelope

...

>

<soapenv:Body>

<processCas xmlns="">

<cas xmi:version="2.0" ... >

<org.example:Document

xmi:id="1"

text="Fred Center is the CEO

of Center Micros."

author="David Ferrucci"/>

<cas:SofaReference xmi:id="2"

sofaObject="1"

sofaFeature="text"/>

<org.example:Person xmi:id="3"

sofa="2" begin="0" end="11"/>

<org.example:Organization

xmi:id="4" sofa="2" begin="26"

end="39"/>

</cas>

<sofas>1</sofas>

</processCas>

</soapenv:Body>

</soapenv:Envelope>

CEO

Relation

Annotator

UIMA

SOAP

Service

<soapenv:Envelope

...

>

<soapenv:Body>

<processCas xmlns="">

<cas xmi:version="2.0" ... >

<org.example:Document

xmi:id="1"

text="Fred Center is the CEO

of Center Micros."

author="David Ferrucci"/>

<cas:SofaReference xmi:id="2"

sofaObject="1"

sofaFeature="text"/>

<org.example:Person xmi:id="3"

sofa="2" begin="0" end="11"/>

<org.example:Organization

xmi:id="4" sofa="2" begin="26"

end="39"/>

<org.example:CeoOf sofa="2"

begin="0" end="31" arg0="3"

arg1="4"/>

</cas>

<sofas>1</sofas>

</processCas>

</soapenv:Body>

</soapenv:Envelope>

Additional example SOAP messages are given in appendix [TODO].

3.7.2 Overview of the WSDL Definition

Before discussing the elements of the UIMA WSDL definition, as a convenience to the reader we first provide an overview of WSDL excerpted from the WSDL Specification.

TODO: Needs to be updated with latest notes from UIMA TC telecons – includes sending multiple CASes in a single process call.

[image: image33]
3.7.2.1 Types
Type Definitions for the UIMA WSDL service are defined using XML schema. These draw from other elements of the specification. For example the ProcessingElementMetadata type, which is returned from the getMetadata operation, is defined by the PE Metadata specification element.

3.7.2.2 Messages
Messages are used to define the structure of the request and response of the various operations supported by the service. Operations are described in the next section.

Messages refer to the XML schema defined under the <wsdl:types> element. So wherever a message includes a CAS (for example the processCasRequest and processCasResponse, we indicate that the type of the data is xmi:XMI (a type defined by XMI.xsd), and where the message consists of PE metadata (the getMetadataResponse), we indicate that the type of the data is uima:ProcessingElementMetadata (a type defined by UimaDescriptorSchema.xsd).

The messages defined by the UIMA WSDL service definition are:

For ALL PEs:

· getMetadataRequest – takes no arguments

· getMetadataResponse – returns ProcessingElementMetadata

· setConfigurationParametersRequest – takes one argument: ConfigurationParameterSettings

· setConfigurationParameterResponse – returns nothing

For Analyzers:

· processCasRequest – takes two arguments – a CAS and a list of Sofas (object IDs) to process

· processCasResponse – returns a CAS

For CAS Multipliers:

· inputCasRequest – takes two arguments – a CAS and a list of Sofas (object IDs) to process

· inputCasResponse – returns nothing

· getNextRequest – takes no arguments

· getNextResponse – returns a CAS (TODO: we decided to return more info here)

· retrieveInputCasRequest – takes no arguments

· retrieveInputCasResponse – returns a CAS
For Flow Controllers: TODO
· addAvailableAnalyticsRequest

· addAvailableAnalyticsResponse

· removeAvailableAnalyticsRequest

· removeAvailableAnalyticsResponse

· setAggregateMetadataRequest

· setAggregateMetadataResponse

· getNextDestinationsRequest

· getNextDestiontionsResponse

· continueOnFailureRequest

· continueOnFailureResponse
3.7.2.3 Port Types and Operations
A port type is a collection of operations, where each operation is an action that can be performed by the service. We define a separate port type for each of the three interfaces defined in Section 3.4 Abstract Interfaces.

The port types and their operations defined by the UIMA WSDL definition are as follows. Each operation refers to its input and output message, defined in the previous section. Operations also have fault messages, returned in the case of an error.

· Analyzer Port Type

· getMetadata

· setConfigurationParameters

· processCas

· CasMultiplier Port Type
· getMetadata

· setConfigurationParameters

· inputCas

· getNext

· retrieveInputCas

FlowController Port Type
· getMetadata

· setConfigurationPsrameters
· addAvailableAnalytics

· removeAvailableAnalytics

· setAggregateMetadata

· getNextDestinations

· continueOnFailure

3.7.2.4 SOAP Bindings

For each port type, we define a binding to the SOAP protocol. There are a few configuration choices to be made:

In <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>:

· The style attribute defines that our operation is an RPC, meaning that our XML messages contain parameters and return values. The alternative is "document" style, which is used for services that logically send and receive XML documents without a parameter structure. This has an effect on how the body of the SOAP message is constructed.

· The transport operation defines that this binding uses the HTTP protocol (the SOAP spec allows other protocols, such as FTP or SMTP, but HTTP is by far the most common)

For each parameter (message part) in each abstract operation, we have a <wsdlsoap:body use="literal"/> element:

· The use of the <wsdlsoap:body> tag indicates that this parameter is sent in the body of the SOAP message. Alternatively we could use <wsdlsoap:header> to choose to send parameters in the SOAP header. This is an arbitrary choice, but a good rule of thumb is that the data being processed by the service should be sent in the body, and "control information" (i.e., how the message should be processed) can be sent in the header.

· The use="literal" attribute states that the content of the message must exactly conform to the XML Schema defined earlier in the WSDL definitions. The other option is "encoded", which treats the XML Schema as an abstract type definition and applies SOAP encoding rules to determine the exact XML syntax of the messages. The "encoded" style makes more sense if you are starting from an abstract object model and you want to let the SOAP rules determine your XML syntax. In our case, we already know what XML syntax we want (e.g., XMI), so the "literal" style is more appropriate.

3.7.3 Delta Responses
If an Analytic makes only a small number of changes to its input CAS, it will be more efficient if the service response specifies the “deltas” rather than repeating the entire CAS. UIMA supports this by using the XMI standard way to specify differences between object graphs. To illustrate this, here is an example delta response:

 <processCasResponse>

 <casList xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI">
 <cas>
 <xmi:Difference>
 <target href="input0.xmi"/>
 <xmi:Add addition="p1">
 <xmi:Add addition="p2"/>
 </xmi:Difference>
 <ex:Pronoun xmi:id="p1" sofa="2" begin="3" end="5"/>
 <ex:Pronoun xmi:id="p2" sofa="2" sofaFeature="text" begin="29" end="31"/>
 </cas>

 </casList>
 </processCasResponse>
You need to specify separate Add elements that refer to the elements to be added, so there are twice as many elements as are really needed. The purpose of this appears to be to allow the Add element to specify an optional position where the object should be added (for adding elements inside of other "container" elements), which we don't really need. Another issue is the target element, which is supposed to be an href to the original XMI file to which these differences will get applied. Here we don't really have a URI for that - it is just the input to the Process CAS Request. The example uses a placeholder input0.xmi for this. (The idea is that if multiple CASes had been passed in a single processCasRequest, then the output would include deltas for each of these CASes, identified as input0.xmi, input1.xmi, input2.xml, etc.)

This format may not be ideal for UIMA but we use it since it is part of the XMI standard that is already a central part of the UIMA specification.

3.7.4 Formal Specification
A UIMA SOAP Service must conform to the WSDL document given in Section B.6 and must implement at least one of the portTypes and corresponding SOAP bindings defined in that WSDL document, as defined in [WSDL1] and [SOAP1].
A UIMA Analyzer SOAP Service must implement the Analyzer portType and the AnalyzerSoapBinding.

A UIMA CAS Multiplier SOAP Service must implkement the CasMultiplier portType and the CasMultiplierSoapBinding.

A. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
B. Formal Specification Artifacts

This section includes artifacts such as Ecore models and XML Schemata, which formally define elements of the UIMA specification.

B.1 XMI XML Schema

This XML schema is defined by the XMI specification [XMI1] and repeated here for completeness:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.omg.org/XMI">
 <xsd:attribute name="id" type="xsd:ID"/>
 <xsd:attributeGroup name="IdentityAttribs">
 <xsd:attribute form="qualified" name="label" type="xsd:string"
 use="optional"/>
 <xsd:attribute form="qualified" name="uuid" type="xsd:string"
 use="optional"/>
 </xsd:attributeGroup>
 <xsd:attributeGroup name="LinkAttribs">
 <xsd:attribute name="href" type="xsd:string" use="optional"/>
 <xsd:attribute form="qualified" name="idref" type="xsd:IDREF"
 use="optional"/>
 </xsd:attributeGroup>
 <xsd:attributeGroup name="ObjectAttribs">
 <xsd:attributeGroup ref="xmi:IdentityAttribs"/>
 <xsd:attributeGroup ref="xmi:LinkAttribs"/>
 <xsd:attribute fixed="2.0" form="qualified" name="version"
 type="xsd:string" use="optional"/>
 <xsd:attribute form="qualified" name="type" type="xsd:QName"
 use="optional"/>
 </xsd:attributeGroup>
 <xsd:complexType name="XMI">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:any processContents="strict"/>
 </xsd:choice>
 <xsd:attributeGroup ref="xmi:IdentityAttribs"/>
 <xsd:attributeGroup ref="xmi:LinkAttribs"/>
 <xsd:attribute form="qualified" name="type" type="xsd:QName"
 use="optional"/>
 <xsd:attribute fixed="2.0" form="qualified" name="version"
 type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:element name="XMI" type="xmi:XMI"/>
 <xsd:complexType name="PackageReference">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="version" type="xsd:string"/>
 </xsd:choice>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:element name="PackageReference"
 type="xmi:PackageReference"/>
 <xsd:complexType name="Model">
 <xsd:complexContent>
 <xsd:extension base="xmi:PackageReference"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Model" type="xmi:Model"/>
 <xsd:complexType name="Import">
 <xsd:complexContent>
 <xsd:extension base="xmi:PackageReference"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Import" type="xmi:Import"/>
 <xsd:complexType name="MetaModel">
 <xsd:complexContent>
 <xsd:extension base="xmi:PackageReference"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="MetaModel" type="xmi:MetaModel"/>
 <xsd:complexType name="Documentation">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="contact" type="xsd:string"/>
 <xsd:element name="exporter" type="xsd:string"/>
 <xsd:element name="exporterVersion" type="xsd:string"/>
 <xsd:element name="longDescription" type="xsd:string"/>
 <xsd:element name="shortDescription" type="xsd:string"/>
 <xsd:element name="notice" type="xsd:string"/>
 <xsd:element name="owner" type="xsd:string"/>
 </xsd:choice>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="contact" type="xsd:string" use="optional"/>
 <xsd:attribute name="exporter" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="exporterVersion" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="longDescription" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="shortDescription" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="notice" type="xsd:string" use="optional"/>
 <xsd:attribute name="owner" type="xsd:string" use="optional"/>
 </xsd:complexType>
 <xsd:element name="Documentation" type="xmi:Documentation"/>
 <xsd:complexType name="Extension">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:any processContents="lax"/>
 </xsd:choice>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="extender" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="extenderID" type="xsd:string"
 use="optional"/>
 </xsd:complexType>
 <xsd:element name="Extension" type="xmi:Extension"/>
 <xsd:complexType name="Difference">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="target">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:any processContents="skip"/>
 </xsd:choice>
 <xsd:anyAttribute processContents="skip"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="difference" type="xmi:Difference"/>
 <xsd:element name="container" type="xmi:Difference"/>
 </xsd:choice>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="target" type="xsd:IDREFS" use="optional"/>
 <xsd:attribute name="container" type="xsd:IDREFS"
 use="optional"/>
 </xsd:complexType>
 <xsd:element name="Difference" type="xmi:Difference"/>
 <xsd:complexType name="Add">
 <xsd:complexContent>
 <xsd:extension base="xmi:Difference">
 <xsd:attribute name="position" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="addition" type="xsd:IDREFS"
 use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Add" type="xmi:Add"/>
 <xsd:complexType name="Replace">
 <xsd:complexContent>
 <xsd:extension base="xmi:Difference">
 <xsd:attribute name="position" type="xsd:string"
 use="optional"/>
 <xsd:attribute name="replacement" type="xsd:IDREFS"
 use="optional"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Replace" type="xmi:Replace"/>
 <xsd:complexType name="Delete">
 <xsd:complexContent>
 <xsd:extension base="xmi:Difference"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="Delete" type="xmi:Delete"/>
 <xsd:complexType name="Any">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:any processContents="skip"/>
 </xsd:choice>
 <xsd:anyAttribute processContents="skip"/>
 </xsd:complexType>
</xsd:schema>

B.2 Ecore XML Schema

This XML schema is defined by Ecore [Need Ref] and repeated here for completeness:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.eclipse.org/emf/2002/Ecore">
 <xsd:import namespace="http://www.omg.org/XMI" schemaLocation="XMI.xsd"/>
 <xsd:complexType name="EAttribute">
 <xsd:complexContent>
 <xsd:extension base="ecore:EStructuralFeature">
 <xsd:attribute name="iD" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EAttribute" type="ecore:EAttribute"/>
 <xsd:complexType name="EAnnotation">
 <xsd:complexContent>
 <xsd:extension base="ecore:EModelElement">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="details" type="ecore:EStringToStringMapEntry"/>
 <xsd:element name="contents" type="ecore:EObject"/>
 <xsd:element name="references" type="ecore:EObject"/>
 </xsd:choice>
 <xsd:attribute name="source" type="xsd:string"/>
 <xsd:attribute name="references" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EAnnotation" type="ecore:EAnnotation"/>
 <xsd:complexType name="EClass">
 <xsd:complexContent>
 <xsd:extension base="ecore:EClassifier">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eSuperTypes" type="ecore:EClass"/>
 <xsd:element name="eOperations" type="ecore:EOperation"/>
 <xsd:element name="eStructuralFeatures" type="ecore:EStructuralFeature"/>
 </xsd:choice>
 <xsd:attribute name="abstract" type="xsd:boolean"/>
 <xsd:attribute name="interface" type="xsd:boolean"/>
 <xsd:attribute name="eSuperTypes" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EClass" type="ecore:EClass"/>
 <xsd:complexType abstract="true" name="EClassifier">
 <xsd:complexContent>
 <xsd:extension base="ecore:ENamedElement">
 <xsd:attribute name="instanceClassName" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EClassifier" type="ecore:EClassifier"/>
 <xsd:complexType name="EDataType">
 <xsd:complexContent>
 <xsd:extension base="ecore:EClassifier">
 <xsd:attribute name="serializable" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EDataType" type="ecore:EDataType"/>
 <xsd:complexType name="EEnum">
 <xsd:complexContent>
 <xsd:extension base="ecore:EDataType">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eLiterals" type="ecore:EEnumLiteral"/>
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EEnum" type="ecore:EEnum"/>
 <xsd:complexType name="EEnumLiteral">
 <xsd:complexContent>
 <xsd:extension base="ecore:ENamedElement">
 <xsd:attribute name="value" type="xsd:int"/>
 <xsd:attribute name="literal" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EEnumLiteral" type="ecore:EEnumLiteral"/>
 <xsd:complexType name="EFactory">
 <xsd:complexContent>
 <xsd:extension base="ecore:EModelElement"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EFactory" type="ecore:EFactory"/>
 <xsd:complexType abstract="true" name="EModelElement">
 <xsd:complexContent>
 <xsd:extension base="ecore:EObject">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eAnnotations" type="ecore:EAnnotation"/>
 </xsd:choice>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EModelElement" type="ecore:EModelElement"/>
 <xsd:complexType abstract="true" name="ENamedElement">
 <xsd:complexContent>
 <xsd:extension base="ecore:EModelElement">
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="ENamedElement" type="ecore:ENamedElement"/>
 <xsd:complexType name="EObject">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="EObject" type="ecore:EObject"/>
 <xsd:complexType name="EOperation">
 <xsd:complexContent>
 <xsd:extension base="ecore:ETypedElement">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eParameters" type="ecore:EParameter"/>
 <xsd:element name="eExceptions" type="ecore:EClassifier"/>
 </xsd:choice>
 <xsd:attribute name="eExceptions" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EOperation" type="ecore:EOperation"/>
 <xsd:complexType name="EPackage">
 <xsd:complexContent>
 <xsd:extension base="ecore:ENamedElement">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eClassifiers" type="ecore:EClassifier"/>
 <xsd:element name="eSubpackages" type="ecore:EPackage"/>
 </xsd:choice>
 <xsd:attribute name="nsURI" type="xsd:string"/>
 <xsd:attribute name="nsPrefix" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EPackage" type="ecore:EPackage"/>
 <xsd:complexType name="EParameter">
 <xsd:complexContent>
 <xsd:extension base="ecore:ETypedElement"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EParameter" type="ecore:EParameter"/>
 <xsd:complexType name="EReference">
 <xsd:complexContent>
 <xsd:extension base="ecore:EStructuralFeature">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eOpposite" type="ecore:EReference"/>
 </xsd:choice>
 <xsd:attribute name="containment" type="xsd:boolean"/>
 <xsd:attribute name="resolveProxies" type="xsd:boolean"/>
 <xsd:attribute name="eOpposite" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EReference" type="ecore:EReference"/>
 <xsd:complexType abstract="true" name="EStructuralFeature">
 <xsd:complexContent>
 <xsd:extension base="ecore:ETypedElement">
 <xsd:attribute name="changeable" type="xsd:boolean"/>
 <xsd:attribute name="volatile" type="xsd:boolean"/>
 <xsd:attribute name="transient" type="xsd:boolean"/>
 <xsd:attribute name="defaultValueLiteral" type="xsd:string"/>
 <xsd:attribute name="unsettable" type="xsd:boolean"/>
 <xsd:attribute name="derived" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="EStructuralFeature" type="ecore:EStructuralFeature"/>
 <xsd:complexType abstract="true" name="ETypedElement">
 <xsd:complexContent>
 <xsd:extension base="ecore:ENamedElement">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="eType" type="ecore:EClassifier"/>
 </xsd:choice>
 <xsd:attribute name="ordered" type="xsd:boolean"/>
 <xsd:attribute name="unique" type="xsd:boolean"/>
 <xsd:attribute name="lowerBound" type="xsd:int"/>
 <xsd:attribute name="upperBound" type="xsd:int"/>
 <xsd:attribute name="eType" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="ETypedElement" type="ecore:ETypedElement"/>
 <xsd:complexType name="EStringToStringMapEntry">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="key" type="xsd:string"/>
 <xsd:attribute name="value" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="EStringToStringMapEntry" type="ecore:EStringToStringMapEntry"/>
</xsd:schema>
B.3 Base Type System Ecore Model

TODO
B.4 PE Metadata and Behavioral Metadata Ecore Model

TODO: fix capitalization: is it peMetadata or pemetdata?
<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0"
 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="uima"
 nsURI="http:///uima.ecore" nsPrefix="uima">
 <eSubpackages name="peMetadata" nsURI="http://docs.oasis-open.org/uima/pemetadata.ecore"
 nsPrefix="uima.peMetadata">
 <eClassifiers xsi:type="ecore:EClass" name="Identification">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="symbolicName" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="description" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="vendor" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="version" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="url" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="ConfigurationParameter">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="description" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="type" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="multiValued" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="mandatory" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EBoolean"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="defaultValue" upperBound="-1"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="TypeSystemReference">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="uri" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="BehavioralMetadata">
 <eStructuralFeatures xsi:type="ecore:EReference" name="analyzes" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="requiredInputs" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="optionalInputs" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="creates" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="modifies" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="deletes" lowerBound="1"
 eType="#//peMetadata/BehaviorElement" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="precondition" lowerBound="1"
 eType="#//peMetadata/Condition" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="postcondition" lowerBound="1"
 eType="#//peMetadata/Condition" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="projectionCondition"
 lowerBound="1" eType="#//peMetadata/Condition" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="requiredView" upperBound="-1"
 eType="#//peMetadata/ViewBehavioralMetadata" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="optionalView" upperBound="-1"
 eType="#//peMetadata/ViewBehavioralMetadata" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="ProcessingElementMetadata">
 <eStructuralFeatures xsi:type="ecore:EReference" name="configurationParameter"
 upperBound="-1" eType="#//peMetadata/ConfigurationParameter" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="identification" lowerBound="1"
 eType="#//peMetadata/Identification" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="typeSystemReference"
 lowerBound="1" eType="#//peMetadata/TypeSystemReference" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="behavioralMetadata" lowerBound="1"
 eType="#//peMetadata/BehavioralMetadata" containment="true"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="extension" upperBound="-1"
 eType="#//peMetadata/Extension" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Extension">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="extenderId" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EReference" name="contents" lowerBound="1"
 eType="ecore:EClass http://www.eclipse.org/emf/2002/Ecore#//EObject"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="BehaviorElement">
 <eStructuralFeatures xsi:type="ecore:EReference" name="type" upperBound="-1"
 eType="#//peMetadata/Type" containment="true"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Type">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="feature" upperBound="-1"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="Condition">
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="language" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="expression" eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 <eStructuralFeatures xsi:type="ecore:EAttribute" name="feature" upperBound="-1"
 eType="ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString"/>
 </eClassifiers>
 <eClassifiers xsi:type="ecore:EClass" name="ViewBehavioralMetadata" eSuperTypes="#//peMetadata/BehavioralMetadata"/>
 </eSubpackages>
</ecore:EPackage>
B.5 PE Metadata and Behavioral Metadata XML Schema

This XML schema was generated from the Ecore model in Appendix B.3 by the Eclipse Modeling Framework tools.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<xsd:schema xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" xmlns:uima.peMetadata="http://docs.oasis-open.org/uima/pemetadata.ecore" xmlns:xmi="http://www.omg.org/XMI" xmlns:xsd="http://www.w3.org/2001/XMLSchema" targetNamespace="http://docs.oasis-open.org/uima/pemetadata.ecore">
 <xsd:import namespace="http://www.eclipse.org/emf/2002/Ecore" schemaLocation="ecore.xsd"/>
 <xsd:import namespace="http://www.omg.org/XMI" schemaLocation="XMI.xsd"/>
 <xsd:complexType name="Identification">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="symbolicName" type="xsd:string"/>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="vendor" type="xsd:string"/>
 <xsd:attribute name="version" type="xsd:string"/>
 <xsd:attribute name="url" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="Identification" type="uima.peMetadata:Identification"/>
 <xsd:complexType name="ConfigurationParameter">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="defaultValue" nillable="true" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 <xsd:attribute name="type" type="xsd:string"/>
 <xsd:attribute name="multiValued" type="xsd:boolean"/>
 <xsd:attribute name="mandatory" type="xsd:boolean"/>
 </xsd:complexType>
 <xsd:element name="ConfigurationParameter" type="uima.peMetadata:ConfigurationParameter"/>
 <xsd:complexType name="TypeSystemReference">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="uri" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="TypeSystemReference" type="uima.peMetadata:TypeSystemReference"/>
 <xsd:complexType name="BehavioralMetadata">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="analyzes" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="requiredInputs" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="optionalInputs" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="creates" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="modifies" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="deletes" type="uima.peMetadata:BehaviorElement"/>
 <xsd:element name="precondition" type="uima.peMetadata:Condition"/>
 <xsd:element name="postcondition" type="uima.peMetadata:Condition"/>
 <xsd:element name="projectionCondition" type="uima.peMetadata:Condition"/>
 <xsd:element name="requiredView" type="uima.peMetadata:ViewBehavioralMetadata"/>
 <xsd:element name="optionalView" type="uima.peMetadata:ViewBehavioralMetadata"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="BehavioralMetadata" type="uima.peMetadata:BehavioralMetadata"/>
 <xsd:complexType name="ProcessingElementMetadata">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="configurationParameter" type="uima.peMetadata:ConfigurationParameter"/>
 <xsd:element name="identification" type="uima.peMetadata:Identification"/>
 <xsd:element name="typeSystemReference" type="uima.peMetadata:TypeSystemReference"/>
 <xsd:element name="behavioralMetadata" type="uima.peMetadata:BehavioralMetadata"/>
 <xsd:element name="extension" type="uima.peMetadata:Extension"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="ProcessingElementMetadata" type="uima.peMetadata:ProcessingElementMetadata"/>
 <xsd:complexType name="Extension">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="contents" type="ecore:EObject"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="extenderId" type="xsd:string"/>
 <xsd:attribute name="contents" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="Extension" type="uima.peMetadata:Extension"/>
 <xsd:complexType name="BehaviorElement">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="type" type="uima.peMetadata:Type"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="BehaviorElement" type="uima.peMetadata:BehaviorElement"/>
 <xsd:complexType name="Type">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="feature" nillable="true" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="Type" type="uima.peMetadata:Type"/>
 <xsd:complexType name="Condition">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="feature" nillable="true" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="language" type="xsd:string"/>
 <xsd:attribute name="expression" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="Condition" type="uima.peMetadata:Condition"/>
 <xsd:complexType name="ViewBehavioralMetadata">
 <xsd:complexContent>
 <xsd:extension base="uima.peMetadata:BehavioralMetadata"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="ViewBehavioralMetadata" type="uima.peMetadata:ViewBehavioralMetadata"/>
</xsd:schema>
B.6 PE Service WSDL Definition

TODO: This is out of date
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions
 targetNamespace="http://docs.oasis-open.org/uima/peService"
 xmlns:service="http://docs.oasis-open.org/uima/peService"
 xmlns:pemd="http://docs.oasis-open.org/uima/peMetadata.ecore"
 xmlns:pe="http://docs.oasis-open.org/uima/pe.ecore"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xmi="http://www.omg.org/XMI">
 <wsdl:types>
 <!-- Import the PE Metadata Schema Definitions -->
 <xsd:import
 namespace="http://docs.oasis-open.org/uima/peMetadata.ecore"
 schemaLocation="uima.peMetadataXMI.xsd"/>
 <!-- Import the XMI schema. -->
 <xsd:import namespace="http://www.omg.org/XMI"
 schemaLocation="XMI.xsd"/>
 <!-- Import other type definitions used as part of the service API. -->
 <xsd:import
 namespace="http://docs.oasis-open.org/uima/pe.ecore"
 schemaLocation="uima.peServiceXMI.xsd"/>
 </wsdl:types>
 <!-- Define the messages sent to and from the service. -->
 <!-- Messages for all UIMA Processing Elements -->
 <wsdl:message name="getMetadataRequest">
 </wsdl:message>
 <wsdl:message name="getMetadataResponse">
 <wsdl:part element="metadata"
 type="pemd:ProcessingElementMetadata" name="metadata"/>
 </wsdl:message>
 <wsdl:message name="setConfigurationParametersRequest">
 <wsdl:part element="settings"
 type="pemd:ConfigurationParameterSettings" name="settings"/>
 </wsdl:message>
 <wsdl:message name="setConfigurationParametersResponse">
 </wsdl:message>
 <wsdl:message name="uimaFault">
 <wsdl:part element="exception" type="pe:UimaException" name="exception"/>
 </wsdl:message>
 <!-- Messages for the Analyzer interface -->
 <!-- Note that processCasRequest and processCasResponse allow
 multiple CASes to be sent in one batch, for performance
 reasons. -->
 <wsdl:message name="processCasRequest">
 <wsdl:part element="casList" type="pe:CasList" name="casList"/>
 <wsdl:part element="sofas" type="pe:ObjectList" name="sofas"/>
 </wsdl:message>
 <wsdl:message name="processCasResponse">
 <wsdl:part element="casList" type="pe:CasList" name="casList"/>
 </wsdl:message>
 <!-- Messages for the CasMultiplier interface -->
 <!-- Note that inputCasRequest and getNextResponse allow
 multiple CASes to be sent in one batch, for performance
 reasons. -->
 <wsdl:message name="inputCasRequest">
 <wsdl:part element="casList" type="pe:CasList" name="casList"/>
 <wsdl:part element="sofas" type="pe:ObjectList" name="sofas"/>
 </wsdl:message>
 <wsdl:message name="inputCasResponse">
 </wsdl:message>
 <wsdl:message name="getNextRequest">
 <wsdl:part element="maxCASesToReturn" type="xsd:integer" name="maxCASesToReturn"/>
 <wsdl:part element="timeToWait" type="xsd:integer" name="timeToWait"/>
 </wsdl:message>
 <wsdl:message name="getNextResponse">
 <wsdl:part element="reponse" type="pe:GetNextResponse" name="response"/>
 </wsdl:message>
 <wsdl:message name="retrieveInputCasRequest">
 </wsdl:message>
 <wsdl:message name="retrieveInputCasResponse">
 <wsdl:part element="casList" type="pe:CasList" name="casList"/>
 </wsdl:message>
 <!-- Messages for the FlowController interface -->
 <wsdl:message name="addAvailableAnalyticsRequest">
 <wsdl:part element="analyticMetadataMap"
 type="pe:AnalyticMetadataMap" name="analyticMetadataMap"/>
 </wsdl:message>
 <wsdl:message name="addAvailableAnalyticsResponse">
 </wsdl:message>
 <wsdl:message name="removeAvailableAnalyticsRequest">
 <wsdl:part element="analyticKeys" type="pe:Keys"
 name="analyticKeys"/>
 </wsdl:message>
 <wsdl:message name="removeAvailableAnalyticsResponse">
 </wsdl:message>
 <wsdl:message name="setAggregateMetadataRequest">
 <wsdl:part element="metadata"
 type="pemd:ProcessingElementMetadata" name="metadata"/>
 </wsdl:message>
 <wsdl:message name="setAggregateMetadataResponse">
 </wsdl:message>
 <wsdl:message name="getNextDestinationsRequest">
 <wsdl:part element="cas" type="xmi:XMI" name="cas"/>
 </wsdl:message>
 <wsdl:message name="getNextDestinationsResponse">
 <wsdl:part element="step" type="pe:Step" name="step"/>
 </wsdl:message>
 <wsdl:message name="continueOnFailureRequest">
 <wsdl:part element="cas" type="xmi:XMI" name="cas"/>
 <wsdl:part element="failedAnalyticKey" type="xsd:string" name="failedAnalyticKey"/>
 <wsdl:part element="failure" type="pe:UimaException" name="failure"/>
 </wsdl:message>
 <wsdl:message name="continueOnFailureResponse">
 <wsdl:part element="continue" type="xsd:boolean" name="continue"/>
 </wsdl:message>
 <!-- Define a portType for each of the UIMA interfaces -->
 <wsdl:portType name="Analyzer">
 <wsdl:operation name="getMetadata">
 <wsdl:input message="service:getMetadataRequest"
 name="getMetadataRequest"/>
 <wsdl:output message="service:getMetadataResponse"
 name="getMetadataResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdl:input
 message="service:setConfigurationParametersRequest"
 name="setConfigurationParametersRequest"/>
 <wsdl:output
 message="service:setConfigurationParametersResponse"
 name="setConfigurationParametersResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="processCas">
 <wsdl:input message="service:processCasRequest"
 name="processCasRequest"/>
 <wsdl:output message="service:processCasResponse"
 name="processCasResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name="CasMultiplier">
 <wsdl:operation name="getMetadata">
 <wsdl:input message="service:getMetadataRequest"
 name="getMetadataRequest"/>
 <wsdl:output message="service:getMetadataResponse"
 name="getMetadataResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdl:input
 message="service:setConfigurationParametersRequest"
 name="setConfigurationParametersRequest"/>
 <wsdl:output
 message="service:setConfigurationParametersResponse"
 name="setConfigurationParametersResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="inputCas">
 <wsdl:input message="service:inputCasRequest"
 name="inputCasRequest"/>
 <wsdl:output message="service:inputCasResponse"
 name="inputCasResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="getNext">
 <wsdl:input message="service:getNextRequest"
 name="getNextRequest"/>
 <wsdl:output message="service:getNextResponse"
 name="getNextResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="retrieveInputCas">
 <wsdl:input message="service:retrieveInputCasRequest"
 name="retrieveInputCasRequest"/>
 <wsdl:output message="service:retrieveInputCasResponse"
 name="retrieveInputCasResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name="FlowController">
 <wsdl:operation name="getMetadata">
 <wsdl:input message="service:getMetadataRequest"
 name="getMetadataRequest"/>
 <wsdl:output message="service:getMetadataResponse"
 name="getMetadataResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdl:input
 message="service:setConfigurationParametersRequest"
 name="setConfigurationParametersRequest"/>
 <wsdl:output
 message="service:setConfigurationParametersResponse"
 name="setConfigurationParametersResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="addAvailableAnalytics">
 <wsdl:input message="service:addAvailableAnalyticsRequest"
 name="addAvailableAnalyticsRequest"/>
 <wsdl:output message="service:addAvailableAnalyticsResponse"
 name="addAvailableAnalyticsResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="removeAvailableAnalytics">
 <wsdl:input
 message="service:removeAvailableAnalyticsRequest"
 name="removeAvailableAnalyticsRequest"/>
 <wsdl:output
 message="service:removeAvailableAnalyticsResponse"
 name="removeAvailableAnalyticsResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="setAggregateMetadata">
 <wsdl:input message="service:setAggregateMetadataRequest"
 name="setAggregateMetadataRequest"/>
 <wsdl:output message="service:setAggregateMetadataResponse"
 name="setAggregateMetadataResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="getNextDestinations">
 <wsdl:input message="service:getNextDestinationsRequest"
 name="getNextDestinationsRequest"/>
 <wsdl:output message="service:getNextDestinationsResponse"
 name="getNextDestinationsResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 <wsdl:operation name="continueOnFailure">
 <wsdl:input message="service:continueOnFailureRequest"
 name="continueOnFailureRequest"/>
 <wsdl:output message="service:continueOnFailureResponse"
 name="continueOnFailureResponse"/>
 <wsdl:fault message="service:uimaFault"
 name="uimaFault"/>
 </wsdl:operation>
 </wsdl:portType>
 <!-- Define a SOAP binding for each portType. -->
 <wsdl:binding name="AnalyzerSoapBinding" type="service:Analyzer">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMetadata">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMetadataRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMetadataResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setConfigurationParametersRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="setConfigurationParametersResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="processCas">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="processCasRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="processCasResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="CasMultiplierSoapBinding"
 type="service:CasMultiplier">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMetadata">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMetadataRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMetadataResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setConfigurationParametersRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="setConfigurationParametersResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="inputCas">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="inputCasRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="inputCasResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getNext">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getNextRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getNextResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="retrieveInputCas">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="retrieveInputCasRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="retrieveInputCasResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="FlowControllerSoapBinding"
 type="service:FlowController">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getMetadata">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getMetadataRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMetadataResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="setConfigurationParameters">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setConfigurationParametersRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="setConfigurationParametersResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="addAvailableAnalytics">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="addAvailableAnalyticsRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="addAvailableAnalyticsResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="removeAvailableAnalytics">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="removeAvailableAnalyticsRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="removeAvailableAnalyticsResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="setAggregateMetadata">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="setAggregateMetadataRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="setAggregateMetadataResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getNextDestinations">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getNextDestinationsRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getNextDestinationsResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="continueOnFailure">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="continueOnFailureRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="continueOnFailureResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="uimaFault">
 <wsdlsoap:fault use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <!-- Define an example service as including both portTypes. This is

 just an example, not part of the UIMA Specification -->
 <wsdl:service name="MyAnalyticService">
 <wsdl:port binding="service:AnalyzerSoapBinding"
 name="AnalyzerSoapPort">
 <wsdlsoap:address
 location="http://localhost:8080/axis/services/MyAnalyticService/AnalyzerPort"/>
 </wsdl:port>
 <wsdl:port binding="service:CasMultiplierSoapBinding"
 name="CasMultiplierSoapPort">
 <wsdlsoap:address
 location="http://localhost:8080/axis/services/MyAnalyticService/CasMultiplierPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>
B.7 PE Service XML Schema (uima.peServiceXMI.xsd)

This XML schema is referenced from the WSDL definition in Appendix B.5.
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:pe="http://docs.oasis-open.org/uima/pe.ecore"
 xmlns:pemd="http://docs.oasis-open.org/uima/peMetadata.ecore"
 xmlns:xmi="http://www.omg.org/XMI"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://docs.oasis-open.org/uima/pe.ecore">
 <xsd:import
 namespace="http://docs.oasis-open.org/uima/peMetadata.ecore"
 schemaLocation="uima.peMetadataXMI.xsd"/>
 <xsd:import namespace="http://www.omg.org/XMI"
 schemaLocation="XMI.xsd"/>
 <xsd:complexType name="InputBindings">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="InputBinding" type="pe:InputBinding"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="InputBinding" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="InputBindings" type="pe:InputBindings"/>
 <xsd:complexType name="InputBinding">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="objects" nillable="true"
 type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="handle" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="InputBinding" type="pe:InputBinding"/>
 <xsd:complexType name="AnalyticMetadataMap">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="AnalyticMetadataMapEntry"
 type="pe:AnalyticMetadataMapEntry"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="AnalyticMetadataMapEntry"
 type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="AnalyticMetadataMap"
 type="pe:AnalyticMetadataMap"/>
 <xsd:complexType name="AnalyticMetadataMapEntry">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="ProcessingElementMetadata"
 type="pemd:ProcessingElementMetadata"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 <xsd:attribute name="key" type="xsd:string"/>
 <xsd:attribute name="ProcessingElementMetadata"
 type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="AnalyticMetadataMapEntry"
 type="pe:AnalyticMetadataMapEntry"/>
 <xsd:complexType name="Step">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Step" type="pe:Step"/>
 <xsd:complexType name="SimpleStep">
 <xsd:complexContent>
 <xsd:extension base="pe:Step">
 <xsd:attribute name="analyticKey" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="SimpleStep" type="pe:SimpleStep"/>
 <xsd:complexType name="MultiStep">
 <xsd:complexContent>
 <xsd:extension base="pe:Step">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="steps" type="pe:Step"/>
 </xsd:choice>
 <xsd:attribute name="parallel" type="xsd:boolean"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="MultiStep" type="pe:MultiStep"/>
 <xsd:complexType name="FinalStep">
 <xsd:complexContent>
 <xsd:extension base="pe:Step"/>
 </xsd:complexContent>
 </xsd:complexType>
 <xsd:element name="FinalStep" type="pe:FinalStep"/>
 <xsd:complexType name="Keys">
 <xsd:choice maxOccurs="unbounded" minOccurs="0">
 <xsd:element name="key" nillable="true" type="xsd:string"/>
 <xsd:element ref="xmi:Extension"/>
 </xsd:choice>
 <xsd:attribute ref="xmi:id"/>
 <xsd:attributeGroup ref="xmi:ObjectAttribs"/>
 </xsd:complexType>
 <xsd:element name="Keys" type="pe:Keys"/>
</xsd:schema>
C. Non-Normative Text

D. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	1
	11 March 2008
	Adam Lally
	First spec revision in OASIS template

LocalSofaReference

sofaFeature=“text”

Document

text = “Fred Center is the CEO of Center Micros…”

author = “David Ferrucci”

Excerpt from Budinsky et al. Eclipse Modeling Framework

Ecore is a metamodel - a model for defining other models. Ecore uses very similar terminology to UML, but it is a small and simplified subset of full UML.

The following diagram illustrates the "Ecore Kernel", a simplified subset of the Ecore model.

�

Figure � SEQ Figure * ARABIC �2�: The Ecore Kernel

This model defines four types of objects, that is, four classes:

EClass models classes themselves. Classes are identified by name and can contain a number of attributes and references. To support inheritance, a class can refer to a number of other classes as its supertypes.

EAttribute models attributes, the components of an object's data. They are identified by name, and they have a type.

EDataType models the types of attributes, representing primitive and object data types that are defined in Java, but not in EMF. Data types are also identified by name.

EReference is used in modeling associations between classes; it models one end of the association. Like attributes, references are identified by name and have a type. However, this type must be the EClass at the other end of the association. If the association is navigable in the opposite direction, there will be another corresponding reference. A reference specifies lower and upper bounds on its multiplicity. Finally, a reference can be used to represent a stronger type of association, called containment; the reference specifies whether to enforce containment semantics.

sofaObject

(Person) Annotation

sofa

(Organization) Annotation

sofa

Document

text = “Fred Center is the CEO of Center Micros…”author = “David Ferrucci”

text = “Fred Center is the CEO of Center Micros…”

(Person) TextAnnotation

beginChar=0

endChar=11

(Organization) TextAnnotation

beginChar=26

endChar=39

<ecore:EPackage ... name="org"

 nsURI="http://docs.oasis-open.org/uima/org.ecore" nsPrefix="org">

 <eSubpackages name="example" nsURI="http://docs.oasis-open.org/uima/org/example.ecore"

 nsPrefix="org.example">

 <eClassifiers xsi:type="ecore:EClass" name="NamedEntity">

 ...

 </eClassifiers>

 <eClassifiers xsi:type="ecore:EClass" name="Place" eSuperTypes="#//example/NamedEntity"/>

	...

 </eSubpackages>

</ecore:EPackage>

As communications protocols and message formats are standardized in the web community, it becomes increasingly possible and important to be able to describe the communications in some structured way. WSDL addresses this need by defining an XML grammar for describing network services as collections of communication endpoints capable of exchanging messages. WSDL service definitions provide documentation for distributed systems and serve as a recipe for automating the details involved in applications communication.

A WSDL document defines services as collections of network endpoints, or ports. In WSDL, the abstract definition of endpoints and messages is separated from their concrete network deployment or data format bindings. This allows the reuse of abstract definitions: messages, which are abstract descriptions of the data being exchanged, and port types which are abstract collections of operations. The concrete protocol and data format specifications for a particular port type constitutes a reusable binding. A port is defined by associating a network address with a reusable binding, and a collection of ports define a service. Hence, a WSDL document uses the following elements in the definition of network services:

Types – a container for data type definitions using some type system (such as XSD).

Message – an abstract, typed definition of the data being communicated.

Operation – an abstract description of an action supported by the service.

Port Type – an abstract set of operations supported by one or more endpoints.

Binding – a concrete protocol and data format specification for a particular port type.

Port – a single endpoint defined as a combination of a binding and a network address.

Service – a collection of related endpoints.

Excerpt from WSDL W3C Note [http://www.w3.org/TR/wsdl]

� It might be possible to use an escape sequence to encode a space, which would allow elements containing embedded spaces to be serialized as an attribute value. However, the XMI specification [XMI1] does not appear to specify such escape sequences.

� If an Analytic makes only a smaller number of changes to its input CAS, it will be more efficient to respond with a “delta” rather than repeating the entire CAS. This is an issue to be handled by the concrete service interface.

� The use of the “http” scheme is a common XML namespace convention and does not imply that any actual http communication is occurring.�

� Different configuration parameter settings may affect the behavior of an analytic. UIMA does not provide any mechanism to keep the behavioral specification in sync with the different configurations. It may be suggested as a best practices that configuration settings should not affect behavioral specifications.

� Some PE’s may not be able to process undefined types, and may return an error if given a CAS that contains an instance of an undefined type. It might be useful to have a place in the behavioral metadata for a PE to declare whether it can accept undefined types.

�I just made an assertion here based on the previous TODO. We should discuss whether this is okay.

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 92
uima-spec-wd-01

11 March 2008

Copyright © OASIS® 2008. All Rights Reserved.

Page 31 of 93

[image: image34.jpg]eSuperTypes

0.* EAttribute
V. eAttributes _ [name : String
EClass [* o
LS P o eferences EReference
A Iname : String

1 | eReferenceType

eAttributeType
1

containment : boolean
lowerBound : int

upperBound : int

eOpposite

0.1

EDataType

name : String

[image: image35.bmp][image: image36..pict][image: image37.png]Annotation

L

TextAnnotation | [TemporalAnnotation
lbeginChar - Integer| [beginTime - Float
lendChar - Integer | [endTime - Float

[image: image38..pict][image: image39..pict][image: image40.png]BehavioralMetadata

f-—
+®ondition
1 t +postcdt
+erdates.
requifedinputs odhies “+projectionCondition
IRER A
optionalnputs dpletes e
1 1 1
language - Sting
BehaviorElement et
+requlredView |<<0.n>> feature - String|
1
[+optioralView
0 |os +typa0.*
Type
ViewBehavioralMetadata ————
|<<0. 1> feature - String|

