How to deal with repetitive elements in UIML and DISL
The calculator example provided in the open issues document indeed shows a weakness of UIML regarding recurring similar rules that makes specifying the behavior tedious. On a first glance, the DISL approach by

combining sets of states for each transition, seems to provide a reduction of repetitive definitions. However, this is not the case for the calculator example in its current form.
Following, an explanation is given, why this does not work and I will give an example where the power of DISL can be exploited. Finally, I will propose one way to deal with repetitions in UIML.

Consider the following excerpt of the calculator example:

<behavior>

 <rule>

 <condition>

 <event part-name="b0" class="ButtonPressed"/>

 </condition>

 <action>

 <property part-name="output" name="text">

 <call name="String.concatenate">

 <param><property part-name="output" name="text"/></param>

 <param><property part-name="b0" name="label"/></param>

 </call>

 </property>

 </action>

 </rule>

 <rule>

 <condition>

 <event part-name="b1" class="ButtonPressed"/>

 </condition>

 <action>

 <property part-name="output" name="text">

 <call name="String.concatenate">

 <param><property part-name="output" name="text"/></param>

 <param><property part-name="b1" name="label"/></param>

 </call>

 </property>

 </action>

 </rule>

 ...

</behavior>

In common imperative languages this corresponds to a sequence of if-statements or a case-block:

if button-pressed == b0

then concatenate(output, b0);

if button-pressed == b1

then concatenate(output, b1);

...

DISL rules however cover different states and events that are mutual exclusive and correspond more to boolean connected if-statements without the need to formulate all the possible options shown in the following pseudo code:

if (A and B and C) then ...

if (A and B and not C) then ...

if (A and not B and C) then ...

if (A and not B and not C) then ...

...

To explain this in more detail, I will firstly motivate the Dialog Specification Notation (DSN), which is apart from
UIML itself a foundation of the DISL language.

UIs typically have a more complex structure that can be modelled as a cross product over the state space. Consider the following example of a copier, based on lecture notes of Prof. Szwillus (Paderborn University) which gives a nice introduction to the DSN-concept:

[image: image1]
Obviously the possible states of the copier are spanned by the cross product of “Brightness” and “Paper Slot”: {Bright, Normal, Dark} X {Slot 1, Slot 2} which calculates to 6 states and 14 transitions between the states that have to be modelled by the UI designer. In a notation for a finite automaton this looks as follows:

[image: image2]
If only one additional option is added, for example if sorting should be activated, the state space increases and with it the transitions that have to be modelled. For the following example, the state space is the cross product of “Brightness”, “Paper Slot” and “Sorting”: {Bright, Normal, Dark} X {Slot 1, Slot 2} X {Yes, No}, which calculates to 12 individual UI-states and allows 40 transitions.

[image: image3]
The DSN notation was introduced to reduce the complexity of such dialog definitions by describing the state space instead of each individual state.
DSN uses so-called fields that contain finite sets of flags. For example the system state “Brightness” contains the flags “Bright”, “Normal” and “Dark”. For each field, only one flag can be set. In other words, flags are mutual exclusive. Fields can for example be used to model system states, user inputs or internal events. The DSN state space definition for this example is as follows:
USER INPUT EVENTS:

 Buttons (iBrighten, iDarken, iChangeSlot, iSort)

SYSTEM STATES:

 Brightness (#Bright, #Normal, #Dark)
 PaperSlot (#Slot1, #Slot2)

 Sorting (#Yes, #No)

Additionally, a start state for the complete application has to be defined, which may also be done implicitly:

Start (#Dark, #Slot1, #No)
Transitions are defined as rules consisting of a precondition (set of flags) together with an event and a post condition. Only if all flags of a precondition apply, an incoming event may trigger the transition, which sets the new post condition, in other words new flags. The rules of the extended example are specified next:

#Dark iBrighten -> #Normal

#Normal iBrighten -> #Bright

#Bright iDarken -> #Normal

#Normal iDarken -> #Dark

#Slot1 iChangeSlot -> #Slot2

#Slot2 iChangeSlot -> #Slot1

#Yes iSort -> #No

#No iSort -> #Yes
Within the DISL specification, we tried to consolidate this notation with UIML syntax which required some restructuring of the <behaviour> part and the introduction of a <variable> element that is able to store state information. Since DSN basically defines transitions from different state/event combinations to new states, we renamed the UIML <rule>-part to <transition> and used the term <rule> in DISL for the specification of the different flags of a precondition. The different meaning of the same term is somewhat confusing and should be aligned to the way it was introduced in UIML. Coming back to the calculator example, it can be seen now that each button that can be pressed fires one event and that the calculator then reacts on this event. In plain DSN this means that we have
A lot of user Input events:

USER INPUT EVENTS:

 Buttons (b0, b1, b2, ..., e)

But we have no different system states to model (this would be the case for a more complex calculator where there are context sensitive operations like switching from decimal system to hexadecimal or octal). Therefore the calculator would be modelled in DSN by having a state for each button pressed and a transition to this state, when
a suitable event occurs without regarding any precondition and that is exactly what is happening in the standard UIML notation.

If we extend the calculator example with context sensitive operations, the DSN concept can be used. I am thinking of an additional control that specifies if the calculations have to be applied in decimal, octal or hexadecimal. Depending on this state, the buttons still have the same meaning but different methods of the backend applications have to be called, which would mean that each rule has to be specified three times in UIML, whereas in DISL these multiple
Specifications can be saved. I will work this example out when I find some time.

Anyway since the DISL (DSN) concept is not suited for repetitive elements per se, I propose a foreach-like construct known e.g. from shell scripting which is easy to learn, but very powerful regarding reduction of several similar elements to one. The following (DISL) code fragment shows, how the calculator example could be compressed with foreach.
<behavior>

<rule id="ButtonPressed" foreach="b0;b1;b2;b3;b4;b5;b6;b7;b8;b9;bpoint;
 bplusminus;bplus;bmin;bmul;bdiv;dsol;
 ac;sin;cos;tan;pi;e">

 <condition>

 <equal>

 <property-content generic-widget="param:*" property-id="param:*"/>

 <constant>yes</constant>

 </equal>

 </condition>

 </rule>

 <transition id="IfPressed" for-each="b0;b1;b2;b3;b4;b5;b6;b7;b8;b9;bpoint">

 <iftrue rule-id="ButtonPressed" negation="false" for="param:*"/>

 <action>

 <call name="StringConcatenate">

 <param>

 <property-content part-name="output" name="text"/>

 <property-content part-name="param:*" name="label"/>

 </param>

 </call>

 </action>

 </transition>

...

</behavior>
This is just a first shot to make the idea clear and should be improved. I don’t think it is the best idea to put the parameters in an attribute and there should be a real variable mechanism behind it.

Basically implementers should loop through each item of the foreach statement and replace the asterisks within the scope of the elements. If UIML is to be extended with such a statement for any element, where it makes sense, then it is necessary to define scoping rules as foreach statements can be nested. It is arguable whether such a more programmatic statement should go into the UIML specification, however the work saved for the UI-designer and the improved overview are two arguments in favour of it, especially if the designer has to work with a textual representation of UIML (e.g. when no UIML-Editor is available or handcrafted improvements are to be applied.
Brightness

Paper Slot

Bright

Normal

Dark

Slot 1

Slot 2

Brighten

Darken

Change Slot

No

Yes

Sort

Sorting

Change Slot

Darken

Brighten

Slot 2

Slot 1

Dark

Normal

Bright

Paper Slot

Brightness

Bright

Slot 1

Normal

Slot 1

Dark

Slot 1

Bright

Slot 2

Normal

Slot 2

Dark

Slot 2

Change

Slot

Change

Slot

Change

Slot

Darken

Darken

Darken

Darken

Brighten

Brighten

Brighten

Brighten

