Variable handling in XML-related languages

This short document shows how issues with respect to handling of variables as scoping, naming and lifetime are handled in different XML-related languages.
XSLT
http://www.w3.org/TR/xslt20/#variables-and-parameters
XSLT is a functional XML transformation language specified in XML. It supports variables and parameters. The value of a variable can be defined through a select attribute or through the content of the variable element in which case, the content forms a temporary tree. For both, type conversion is supported through the as attribute. Global variables are visible everywhere in the style sheet (including other stylesheet modules) but can be shadowed by other variables of the same name. The scope of a variable is thus visible in the sub tree of the parent of their occurrence.

Example from the XSLT specification:

<xsl:stylesheet

 version="2.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="phase1.xsl"/>

<xsl:import href="phase2.xsl"/>

<xsl:variable name="intermediate">

 <xsl:apply-templates select="/" mode="phase1"/>

</xsl:variable>

<xsl:template match="/">

 <xsl:apply-templates select="$intermediate" mode="phase2"/>

</xsl:template>

</xsl:stylesheet>
TXL

http://www.txl.ca/
TXL is primarily a transformation language which consists of two components:

1) A description of the structures to be transformed (As a grammar in BNF-form)

2) A set of structural Transformation rules (Specified by example as pattern/replacement pairs combined using functional programming)

The Scope of rules is the current parse tree. The scope of variables is the rule, they are specified in, so similar to XSLT.
Example from TXL page:

% Calculator.Txl - simple numerical expression evaluator

% Part I. Syntax specification

define program [expression]

end define

define expression [term] | [expression] [addop] [term]

end define

define term [primary] | [term] [mulop] [primary]

end define

define primary [number] | ([expression])

end define

define addop '+ | '-

end define

define mulop '* | '/

end define
% Part 2. Transformation rules

rule main

 replace [expression]

 E [expression]

 construct NewE [expression]

 E [resolveAddition] [resolveSubtraction]

 [resolveMultiplication] [resolveDivision]

 [resolveParentheses]

 where not

 NewE [= E]

 by

 NewE

end rule

rule resolveAddition

 replace [expression]

 N1 [number] + N2 [number]

 by

 N1 [+ N2]

end rule
...

For both functional approaches (XSLT and TXL), problems with naming and lifetime of variables are simply solved because the scope is limited to the place and descendants where the variables occurred in the tree.
SuperX++

http://xplusplus.sourceforge.net/
SuperX++ is an object oriented language which syntax is completely based on XML. It differentiates between two kinds of variables that do not differ in syntax: variables that are defined in the main part of the program or in methods and variables that are defined within a class. The second one will only be created when the object is instantiated (see second example). As I did not find a language specification, it is only clear, that the scope of a variable can be limited to

a) the level of the main function,

b) the method it is defined, and

c) the class it is a member from. (class members can be referenced through their instances)
Example (fragment) from X++ Page:

<xpp>

 <var type="int" name="iVal">9</var>

 <var type="bool" name="bVal">

 <eval>

 <expr>9 > 10</expr>

 </eval>

 </var>

 <xout processcode="true">

 <eval>

 <parm type="int" name="Parm0">

 <eval object="iVal"/>

 </parm>

 <expr>"iVal = " + Parm0</expr>

 </eval>

 </xout>

 …
</xpp>
other example:

<class name="XStudent" inherit="">

 <construct />

 <scope type="public">

 <var type="int" name="score">

 100

 </var>

 </scope>

</class>

<node name="MyStudent" class="XStudent" />

<xout>The variable has the value </xout>

<xout>

 <eval object="MyStudent" member="score" />

</xout>

o:XML

http://www.o-xml.org/
Taken from the language specification:

Variables are references to objects, they are created and assigned values with the variable key element. Dereferencing an undefined variable is an error, and will result in an UnboundVariable exception.

A variable is bound in any child or following sibling node of the node where it was declared.

Subsequent declarations of the same variable within its scope have the effect of assigning to it a new value.

Within a procedure or function body only parameters and locally declared variables are in scope.

The scope of a variable is not propagated to any included documents or document fragments.

Example from the o:XML page:

 <o:variable name="sum" select="0"/>

 <o:for-each to="10">

 <o:set sum="$sum + current()"/>

 </o:for-each>

 <o:eval select="$sum"/>

