[bookmark: _Toc177387][bookmark: _Toc193763][bookmark: _Toc193923]Variability Exchange Language Version 1.0	Comment by Damir Nesic: I think that a more appropriate word is format, model, syntax... At REVAMP plenary it was clear that the word language leads to confusion because then people start talking about expressiveness. I think that we can discuss the expressiveness of XML (which is the language used to serialize VEL).
Working Draft 01
[bookmark: _Toc85472892]04 February 2019
Technical Committee:
[bookmark: _GoBack]OASIS Variability Exchange Language (VEL) TC
Chairs:
Michael Schulze (michael.schulze@pure-systems.com), pure-systems GmbH
Uwe Ryssel (uwe.ryssel@pure-systems.com), pure-systems GmbH
Editors:
Michael Schulze (michael.schulze@pure-systems.com), pure-systems GmbH
Uwe Ryssel (uwe.ryssel@pure-systems.com), pure-systems GmbH
[bookmark: AdditionalArtifacts]Additional artifacts:
This prose specification is one component of a Work Product that also includes:
XML schemas: (list file names or directory name)	Comment by michael: Spec-XML file need to be referenced.
Declared XML namespaces:	Comment by michael: Currently we don’t define a namespace and in my opinion we do not need one.
list namespaces declared within this specification (hyperlink if HTTP-based)
Abstract:
The Variability Exchange Language (VEL) enables the exchange of variability information among tools for variant management tools and systems development tools. VEL eliminates the cost of building customized interfaces by defining a standard way for information to be exchanged among corresponding tools. Using VEL, a variant management tool is able to read the variability from a development tool and pass configurations of selected system features to a development tool.
By defining a common variability data interface that can be implemented by both the development tools and the variant management tools, VEL enables a continuous development process for variable systems and more flexible use of tools.
Status:
This Working Draft (WD) has been produced by one or more TC Members; it has not yet been voted on by the TC or approved as a Committee Draft (Committee Specification Draft or a Committee Note Draft). The OASIS document Approval Process begins officially with a TC vote to approve a WD as a Committee Draft. A TC may approve a Working Draft, revise it, and re-approve it any number of times as a Committee Draft.
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-open.org/committees/vel/ipr.php).
Note that any machine-readable content (Computer Language Definitions) declared Normative for this Work Product is provided in separate plain text files. In the event of a discrepancy between any such plain text file and display content in the Work Product's prose narrative document(s), the content in the separate plain text file prevails.
URI patterns:
Initial publication URI:
https://docs.oasis-open.org/vel/VEL/v1.0/csd01/VEL-v1.0-csd01.docx
Permanent "Latest version" URI:
https://docs.oasis-open.org/vel/VEL/v1.0/VEL-v1.0.docx

Copyright © OASIS Open 2019. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Table of Contents
1	Introduction	7
1.1 Variants Management, System Variability, and Variation Points	7
1.2 Variability View and Variants Management Tools	7
1.3 IPR Policy	9
1.4 Terminology	9
1.5 Normative References	10
1.6 Non-Normative References	10
2	Overview of the Variability Exchange Language	11
2.1 VariationPoints and Variations	13
2.2 Variation Point Descriptions versus Variation Point Selections	13
2.3 Binding	13
2.4 Common Concepts	14
2.5 API	14
3	Variability Exchange Language Class Reference	15
3.1 ArtifactElement	< artifact-element-type>	15
3.1.1 Description	15
3.1.2 Attribute uri	15
3.1.3 Attribute type	16
3.1.4 Adding arbitrary XML Elements	16
3.2 BindingTime	<bindingtime-type>	17
3.2.1 Description	18
3.2.2 Attribute selected	18
3.2.3 Attribute name	19
3.2.4 Attribute condition	19
3.3 BindingTimeEnum	<bindingtime-enum>	20
3.3.1 RequirementsTime	20
3.3.2 BluePrintDerivationTime	20
3.3.3 ModelConstructionTime	21
3.3.4 ModelSimulationTime	21
3.3.5 CodeGenerationTime	21
3.3.6 PreprocessorTime	21
3.3.7 CompileTime	21
3.3.8 LinkTime	21
3.3.9 FlashTime	21
3.3.10 PostBuild	21
3.3.11 PostBuildLoadable	21
3.3.12 PostBuildSelectable	21
3.3.13 RunTime	21
3.4 CalculatedParameterVariationPoint 	<calculated-parameter-variationpoint-type>	22
3.4.1 Description	23
3.4.2 Notes	23
3.5 CalculatedVariation	<calculated-variation-type>	24
3.5.1 Description	25
3.5.2 Attribute expression	25
3.5.3 Binding	25
3.5.4 Notes	25
3.6 Capability	<capability-type>	26
3.6.1 Description	26
3.6.2 Attribute importVariabilityExchangeModels	26
3.6.3 Attribute exportVariabilityExchangeModels	26
3.6.4 Attribute getConfiguration	27
3.6.5 Attribute setConfiguration	27
3.7 Expression	<expression-type>	28
3.7.1 Description	28
3.7.2 Attribute type	29
3.7.3 Attribute datatype	29
3.7.4 SingleFeatureCondition	29
3.7.5 AndFeatureCondition	29
3.7.6 OrFeatureCondition	30
3.7.7 PVSCLExpression	30
3.7.8 OCLExpression	30
3.7.9 AUTOSARExpression	30
3.7.10 Representation of expressions and features in XML	30
3.7.10.1 Syntax for single-feature–condition	31
3.7.10.2 Syntax for and-feature-condition and or-feature-condition	31
3.8 ExpressionTypeEnum	<expression-enum>	32
3.8.1 Description	32
3.9 Identifiable	<identifiable-type>	33
3.9.1 Description	34
3.9.2 Attribute id	34
3.9.3 Attribute name	34
3.9.4 Attribute specialData	35
3.9.5 Notes	35
3.10 KeyValuePair	<key-value-pair-type>	36
3.10.1 Description of Class KeyValuePair	37
3.10.2 Attribute key of Class KeyValuePair	37
3.10.3 Description of Class Value	37
3.10.4 Attribute value of Class Value	37
3.10.5 Attribute type of Class Value	37
3.10.6 XML Representation	37
3.11 OptionalStructuralVariationPoint 	<optional-structural-variaton-point-type>	38
3.11.1 Description	39
3.11.2 Notes	39
3.12 OptionalVariation	<optional-variation-type>	40
3.12.1 Description	41
3.12.2 Attribute condition	41
3.12.3 Binding	41
3.12.4 Notes	41
3.13 ParameterVariationPoint	 <parameter-variationpoint-group>	42
3.13.1 Description	43
3.13.2 Notes	43
3.14 SpecialData	<special-data-type>	44
3.14.1 Description	44
3.14.2 Attribute name	44
3.15 StructuralVariationPoint 	<structural-variationpoint-group>	46
3.15.1 Description	47
3.15.2 Notes	47
3.16 ValueVariation	<value-variation-type>	48
3.16.1 Description	49
3.16.2 Attribute condition	49
3.16.3 Attribute value	50
3.16.4 Binding	50
3.16.5 Notes	50
3.17 VariabilityAPI	51
3.17.1 Description	51
3.17.2 Attribute version	51
3.17.3 Attribute capability	51
3.17.4 Method importVariabilityExchangeModels	51
3.17.5 Method exportVariabilityExchangeModels	51
3.17.6 Method getConfiguration	52
3.17.7 Method setConfiguration	52
3.18 VariabilityExchangeModel 	<variability-exchange-model-type>	53
3.18.1 Description	54
3.18.2 Attribute type	54
3.18.3 Attribute uri	55
3.19 VariabilityExchangeModels 	<variability-exchange-models-type>	56
3.19.1 Description	57
3.19.2 Attribute version	57
3.19.3 Attribute cabability	57
3.20 VariabilityAPITypeEnum	<variability-api-enum>	58
3.20.1 Description	58
3.21 Variation	<variation-type>	59
3.21.1 Description	60
3.21.2 Attribute selected	60
3.21.3 Attribute correspondingVariableArtifactElement	60
3.21.4 Notes	61
3.22 VariationPoint	<variationpoint-type>	62
3.22.1 Description	62
3.22.2 Attribute bindingTime	62
3.22.3 Attribute correspondingVariableArtifactElement	63
3.22.4 Notes	63
3.23 VariationPointHierarchy 	<variationpoint-hierarchy-type>	64
3.23.1 Description	65
3.23.2 Attribute variationPoint	66
3.23.3 Notes	66
3.24 VariationDependency	<variation-dependency-type>	67
3.24.1 Description	68
3.24.2 Attribute type	68
3.24.3 Attribute variation	68
3.24.4 Attribute condition	68
3.24.5 Formal Definition	68
3.24.6 Notes	69
3.25 VariationDependencyEnum 	<variation-dependency-enum>	70
3.25.1 Description	70
3.26 XorParameterVariationPoint	 < xor-parameter-variationpoint-type>	71
3.26.1 Description	72
3.26.2 Notes	72
3.27 XorStructuralVariationPoint 	<xor-structural-variationpoint-type>	73
3.27.1 Description	74
3.27.2 Notes	74
3.28 XorVariation	<xor-variation-type>	75
3.28.1 Description	76
3.28.2 Attribute condition	76
3.28.3 Binding	76
3.28.4 Notes	76
4	Security Considerations	77
5	Conformance	78
Appendix A. Acknowledgments	79
Appendix B. Revision History	80

[bookmark: _Toc287332006]
VEL-v1.0-wd01	Working Draft 01	04 February 2019
Standards Track Draft	Copyright © OASIS Open 2019. All Rights Reserved.	Page 2 of 80
[bookmark: _Toc193924]Introduction
VEL is an interoperability standard that enables the exchange of variability information among variant management tools and systems development tools. The essential tasks of a variants management tool are to represent and analyze the variability of a system abstractly and to define system configurations by selecting the desired system features. A system development tool captures information of a specific kind, such as requirements, architecture, component design, or tests. In order to support the development of variable systems a development tool either has to offer the capability to express and deal with variability directly, or an adaptor must be provided that adds this capability to the development tool.	Comment by Damir Nesic: Abstract analysis sounds quite unclear. I guess that we want to say that the analysis is implementation independent.	Comment by Damir Nesic: Aren’t the system configurations defined by a feature model? The tool should allow defining a feature model a selecting one of the configurations defined by the feature model.	Comment by Damir Nesic: “variable system” sounds strange to me. Maybe configurable system is better?	Comment by Damir Nesic: What does “to deal” means?	Comment by Damir Nesic: Maybe rephrase to: to another tool is provided where the other tool offers variability management capabilities.
To interconnect variants management with systems development the information exchange among the corresponding tools must be established. A variants management tool must be able to read or extract the variability from a development tool and to pass a configuration, i.e. a set of selected system features, to the development tool. Up to now the interfaces that support this information exchange are built for each development tool anew. With VEL, a common interface is defined that can be implemented by both the development tools and the variants management tool, thus VEL eliminates the cost of building customized interfaces by defining a standard way for information to be exchanged between tools.	Comment by Damir Nesic: Integrate?	Comment by Damir Nesic: A variant… tool with… tool
[bookmark: _Toc411856494][bookmark: _Toc193925][bookmark: _Toc367432837]Variants Management, System Variability, and Variation Points
Variants management is an activity that accompanies the whole system development process and, therefore, is orthogonal to the other development tasks. Like safety, security, and other system properties, variability cannot be built into a system at the end of the process. Rather, the desired variability has to be determined, analyzed, designed, implemented and tested continuously, starting at the very beginning of the process through to the final delivery of the system or the system variant respectively. That means that within each development stage – requirements analysis, design, implementation, test, documentation, etc. – variability is an aspect that has to be considered. 	Comment by Damir Nesic: If it was "variability management" I wouldn't react. For me, variant management implies that each variant is explicitly managed which is very often not feasible due to the high number of variants. T
	Comment by Damir Nesic: This comment actually applies to the whole standard. Is the scope variants management or variability management?
We consider as variable system a system that can be tailored by the system producer according to individual clients’ needs. All variants of a variable system are developed within one development process. In addition to the standard development tasks the process must also provide the means to tailor the system, i.e. to derive the client specific variant of the system. This may happen at different stages, also known as (variance) binding times. 	Comment by Damir Nesic: Is this a correct word?
Variability is embodied in variation points. Consider as example a requirements document. A requirement toward a variable system may be optional. In this casecase, two system variants can be formed by either selecting or deselecting the requirement. A set of requirements may be alternatives, then each selection of one of these requirements forms one system variant. FinallyFinally, a requirement may contain a parameter, thenand then each value that can be selected for this parameter yields a system variant. 	Comment by Damir Nesic: Shouldn't we used derived instead of formed? Also, the intuition seems a bit weird because of the requirements example. Maybe it’s better to talk about things that actually comprise the system, e.g. SW, HW, mechanical part.
The same definition of variation points holds for all other artifacts that are created in the development process – be it analysis or design models such as the views defined in the SPES-XT meta model, test specifications, code, documentation, or whatever. In each artifact there may be optional elements, alternative elements, and parameterized elements.
We do not specify here how these variation points are represented in the artifacts. Some artifact formats support the definition of variation points, in other cases appropriate means have to be added. This obviously also has an impact on the tools that are used to create and manage the artifacts. In some cases they are capable to express variation points. In other cases adaptors have to be built in order to incorporate variation points.
[bookmark: _Toc411856495][bookmark: _Toc193926]Variability View and Variants Management Tools
It is an accepted best practice to define an explicit abstract variability view on a system under development to support variants management continuously throughout the process. This abstraction contains the bare information on the variability of the system. That means that it describes which variants exist, but does not describe how the variability is realized. The variability information is derived from an analysis of the commonalities, differences, and dependencies of the system’s variants and is often represented as a feature model.	Comment by Damir Nesic: 1. This paragraph is quite vague. What is a view, what is the bare information...
2. It is a bit confusing. The view is defined for the system under development but the view is obtained by analyzing existing system variants that already exist. This sounds like the difference between extractive and proactive PL adoption. I think that this shouldn't be mentioned at all because whichever approach a company chooses, the use of VEL will be the same.
3. Why not use "variability model" at the end of last sentence. Then it connects nicely to the next paragraph.
A variants management tool supports the creation of an artifact – a variability model – that represents the abstract variability information. Moreover, it offers operations to select or deselect system features and via this feature configuration to specify the system’s variants.	Comment by Damir Nesic: I understand the difference between a feature configuration and a system variant but I think that for the sake of clarity these terms/concepts should be explained somewhere, e.g. a glossary.
The information of the variability view has to be connected with the system development artifacts in order to define how the feature selection (system configuration) determines the resolution of the variation points within these artifacts, i.e. the selection of a variation for each variation point. As soon as these connections are established a feature configuration can be carried over to a configuration of the variation points of the concerned artifact. The technical realization of this connection is addressed by the Variability Exchange Language.	Comment by Damir Nesic: Maybe we should use "lifecycle" instead of “development”. Currently it is implicit that VEL can be used only during development. I could imagine using VEL to look at aftermarket failure reports where I want to run a query: give me all failure reports for product of configuration X.	Comment by Damir Nesic: New term! What is the difference to system variant?	Comment by Damir Nesic: I would rather say that a variation point (which is basically a variable) can have a value. Variation is vague for me.
At present there is no standard that would define how variation points are expressed in different artifacts. That means that a tool supplier who builds a variants management tool has to implement an individual interface to each other tool that is used in a development process to create the corresponding artifacts. The purpose of the Variability Exchange Language is to support the standardization of these interfaces by a common exchange format that defines which information is exchanged between a variants management tool and a tool that is used to manage a specific kind of artifacts in a development process. As mentioned above, such a tool may either be a tool that already supports the definition of variation points for the concerned artifact type, or it may be an adaptor that adds this capability to a base tool.
In fact, the Variability Exchange Language defines a requirement on tools or tool adaptors that intend to support variants management. Such a tool has to be able to extract the data that is defined in the Variability Exchange Language from the artifact that it manages and to incorporate the data that is sent from the variants management tool into this artifact. Beyond the exchange format, i.e. the contents of the information that is exchanged, also some basic operations are defined here. They define in which direction the variability information is intended to flow.	Comment by Damir Nesic: Does this mean that a variant management tool will be able to invoke a function (operation) of the artifact tool? Or maybe vice versa?
[image:]	Comment by Damir Nesic: I would add adapters to this figure. Or maybe split this figure in two figure. One describing the scenario when two tools natively support VEL and the second where adapters are needed.	Comment by Damir Nesic: Maybe this figure and the above text should be restructured into Problem Space vs Solution Space story. It is well-grounded in literature, terms are well-defined and it makes it easier to clearly explain the role of VEL.
[bookmark: _Ref408318739][bookmark: _Toc411856535]Figure 1 Use case for the Variability Exchange Language
A use case for the Variability Exchange Language can be defined as follows. Assume an artifact with variation points is given, for instance an artifact created with tool A in Figure 1. First the development tool has to collect the data defined in the Variability Exchange Language, essentially given by the variation points contained in the artifact. It passes this data to the variants management tool that builds a variability model based on the data. The variability model can be used to define a system configuration by selecting the desired system features. The corresponding data, i.e. the configuration, formatted according to the Variability Exchange Language, is passed back to the development tool or adaptor that uses this data to create or derive an artifact variant that corresponds to the system variant defined in the variants management tool.
Applying this scenario to all development tools and artifacts yields a consistent set of development artifacts for any system variant automatically. The variation points that correspond to customer relevant system features should coincide in all artifacts, i.e. they always induce the same variability model in the variants management tool. In addition to that there may also be internal variation points, for instance implementation variants that do not alter the visible properties of the system but are relevant for the system construction process. These variation points give rise to a staged variability model in which customer features are separated from internal features.	Comment by Damir Nesic: What if the artifact defines a variation point whose values are constrained by an expression over features that are not defined in the variability model?	Comment by Damir Nesic: Unclear for me.	Comment by Damir Nesic: Is staged configuration something we need to consider explicitly? Does VEL need to define/consider types of features (internal/customer)?

Perhaps we should have a section on applications where we explain how VEL supports different variability management patterns?

Since the system configuration is built once and for all in the variants management tool an identical configuration is passed to all development tools and thereby ensures consistency of the variants selection. It might only happen that internal features for instance are not interpreted by some development tool because it is not concerned with internal decisions, such as a requirements document or a system test. 	Comment by Damir Nesic: Is this true? What about evolution?	Comment by Damir Nesic: Unclear for me.
1.1 [bookmark: _Toc193927][bookmark: _Toc85472893][bookmark: _Toc287332007]IPR Policy
This specification is provided under the Non-Assertion Mode of the OASIS IPR Policy, the mode chosen when the Technical Committee was established. For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the TC's web page (https://www.oasis-open.org/committees/vel/ipr.php).
[bookmark: _Toc193928]Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] and [RFC8174].
MUST – This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute requirement of the specification.
MUST NOT – This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute prohibition of the specification.
SHOULD – This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons in particular circumstances to ignore a particular item, but the full implications must be understood and carefully weighed before choosing a different course.
SHOULD NOT – This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid reasons in particular circumstances when the particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.
MAY – This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the feature the option provides.)
Furthermore, we are using the following typographic conventions:
An underlined word is the name of an UML class, ULM UML attribute or other UML element.
A word set in typewriter font is the name of an XML element or or XML code.
A paragraph that is marked with a symbol on the margin is a constraint.	Comment by Damir Nesic: Many things marked with this are not constraints but rather guidelines/recommendations. For example, things under 3.1.2.
[bookmark: _Ref7502892][bookmark: _Toc12011611][bookmark: _Toc85472894][bookmark: _Toc287332008][bookmark: _Toc193929]Normative References
[bookmark: RFC2119][RFC2119]	Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
[bookmark: RFC8174][RFC8174]	Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <http://www.rfc-editor.org/info/rfc8174>.	Comment by michael: Do we want to write key words always uppercase?
[bookmark: RFC3986][bookmark: XMLSpecification][RFC3986]	Berners-Lee T., “Uniform Resource Identifier (URI): Generic Syntax”, RFC3986, <http://tools.ietf.org/html/rfc3986>.	Comment by michael: The references are not correctly typed at the moment. Need to be fixed. For publication.
[bookmark: OCL][XML]	„Extensible Markup Language (XML) 1.1 (Second Edition),“ 2006. [Online]. Available: <http://www.w3.org/TR/2006/REC-xml11-20060816/>.
[bookmark: AUTOSAR][OCL]	Object Constraint Language, <http://www.omg.org/spec/OCL/>.
[AUTOSAR]	AUTOSAR, <http://www.autosar.org/>.
[bookmark: _Toc85472895][bookmark: _Toc287332009][bookmark: _Toc193930]Non-Normative References
[bookmark: RFC3552][RFC3552]	Rescorla, E. and B. Korver, "Guidelines for Writing RFC Text on Security Considerations", BCP 72, RFC 3552, DOI 10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/info/rfc3552>.
[bookmark: PS][PS]	pure•systems GmbH, "pure::variants User's Guide," 2013. [Online]. Available: <http://www.pure-systems.com/>.

(Note: Each reference to a separate document or artifact in this work must be listed here and must be identified as either a Normative or a Non-Normative Reference.
For all References – Normative and Non-Normative:
Recommended approach: Set up [Reference] label elements as "Bookmarks", then create hyperlinks to them within the document. (Here's how: Insert hyperlinkPlace in this documentscroll down to Bookmarks, select appropriate one.)
Use the "Ref" paragraph style to format references.
The proper format for citation of technical work produced by an OASIS TC (whether Standards Track or Non-Standards Track) is:
[Citation Label]	Work Product title (italicized). Edited by Albert Alston, Bob Ballston, and Calvin Carlson. Approval date (DD Month YYYY). OASIS Stage Identifier and Revision Number (e.g., OASIS Committee Specification Draft 01). Principal URI (version-specific URI, e.g., with stage component: somespec-v1.0-csd01.html). Latest version: (latest version URI, without stage identifiers).
For example:
[OpenDoc-1.2]	Open Document Format for Office Applications (OpenDocument) Version 1.2. Edited by Patrick Durusau and Michael Brauer. 19 January 2011. OASIS Committee Specification Draft 07. http://docs.oasis-open.org/office/v1.2/csd07/OpenDocument-v1.2-csd07.html. Latest version: http://docs.oasis-open.org/office/v1.2/OpenDocument-v1.2.html.
Reference sources:
For references to IETF RFCs, use the approved citation formats at:
http://docs.oasis-open.org/templates/ietf-rfc-list/ietf-rfc-list.html.
For references to W3C Recommendations, use the approved citation formats at:
http://docs.oasis-open.org/templates/w3c-recommendations-list/w3c-recommendations-list.html.
Remove this note before submitting for publication.)

[bookmark: _Toc411856496][bookmark: _Toc193931][bookmark: _Toc393199822]Overview of the Variability Exchange Language
The core of the Variability Exchange Language is given by the definition of variation points and their variations – by the classes VariationPoint and Variation (see Figure 2). In the following we immediately use the class names from the meta-model presented in Chapter 3 to discuss the corresponding concepts, such as VariationPoint and Variation. This chapter gives a survey on the main classes, in particular the ones shown in Figure 2.
A detailed specification of all classes is provided in Chapter 3.
[image:]	Comment by Damir Nesic: I think that we should discuss the class Variation Point Hierarchy. Shouldn’t the cardinality od composition +hierarchy be 0..*?

Also, this seems to be an abstract object that will not have a counterpart in the variability management or system engineering tool. Maybe it can be removed and then a variation points to the child variation points?	Comment by Damir Nesic: Why do we need Variation.correspondingVariableArtifactElement? We already have this info through variation belongs to a variation point and variation point has attribute correspondingArtifact.
	Comment by Damir Nesic: Why is the name of the attribute Artifact and Element?
[bookmark: _Ref408311811][bookmark: _Ref408311795][bookmark: _Toc411856536]Figure 2 An Overview of the Variability Exchange Language
A Variability Exchange Language document starts with a VariabilityExchangeModels element, which contains a number of VariabilityExchangeModel elements. Each VariabilityExchangeModel corresponds to one (or possibly several, but this is implementation dependent) artefacts with variable elements.	Comment by Damir Nesic: What is the scenario where we exchange several variability models?
A VariabilityExchangeModel in turn contains a number of VariationPoints. Thus, a VariabilityExchangeModel describes the variable aspects of an artifact, but only those. All non-variable facets of the artifact are discarded because they are not necessary for our purpose.
[bookmark: _Toc411856497][bookmark: _Toc193932]VariationPoints and Variations
As shown in Figure 2, we distinguish between two different kinds of VariationPoints: 	Comment by Damir Nesic: I'm not convinced that we need to distinguish between structural and parameter variation points. Shouldn't the decision about a potential change to the "model" structure after the variation point binding be left for the artifact tool?
1. StructuralVariationPoints are variation points where the structure of a model changes during the binding process. StructuralVariationPoints define which elements are contained in a bound artifact. There are two kinds of structural variation points:	Comment by Damir Nesic: We should define what we mean by model.	Comment by Damir Nesic: Do we want to support OR structural variation points, e.g. 2 out of 3 can be selected but always at least one? I think that this is a very common feature modeling construct.

a. OptionalStructuralVariationPoint – variation points that can be selected or deselected.
b. XorStructuralVariationPoint – i.e. variation points that represent sets of alternatives from which exactly one can be selected.
2. ParameterVariationPoints are variation points which select a numerical value for a parameter during the binding process. They do not change the structure of an artifact. There are two kinds of parameter variation points:	Comment by Damir Nesic: vs model in StructuralVariationPoints!
a. CalculatedParameterVariationPoint – variation points where the parameter value is calculated by an expression.
b. XorParameterVariationPoint – variation points where the parameter value is selected from a list of values.
Each VariationPoint is associated with one or more Variations. The Variations enumerate the possible variants for their respective VariationPoints. When an artifact is bound, then one of these variations (OptionalStructuralVariationPoints also allow zero variations here) is selected to be included in the bound artifact, and all others are discarded.	Comment by Damir Nesic: Which tool discards them?
Both Variations and VariationPoints may refer to artifact elements (correspondingVariableArtifactElement), for example the Simulink block or the line of code which correspond to the VariationPoint respectively Variation.
VariationPoints can further define dependencies on other variation points (VariationDependency), for example one variation point may require another variation points. This is useful to express technical dependencies in artifacts.	Comment by Damir Nesic: What is a dependency? An informal link or something like requires/excludes that has a formal meaning?

Furthermore, a VariationPoint may contain other VariationPoints to establish a hierarchy (VariationPointHierarchy), similarly to subsystem blocks in Simulink or hierarchies in software architectures.
[bookmark: _Ref409084549][bookmark: _Toc411856498][bookmark: _Toc193933]Variation Point Descriptions versus Variation Point Selections
A VariabilityExchangeModel as defined in Figure 2 can actually serve two different purposes:
A variation point description lists all variation points and all their variations; that is it describes a complete product line.
A variation point description also lists all variation points, but selects one (or zero for optional variation points) Variation for each variation point. The attribute selected of Variation is used for that purpose. Any such selection must be consistent with the expression or condition attribute of a Variation, as well as with dependencies between variation points. 	Comment by Damir Nesic: Selection? (In contrast to the above bullet.)	Comment by Damir Nesic: I guess that tools guarantee this? Should we be explicit about the responsibilities of different tools?
Both variation point descriptions and variation point selections use the same structure; the attribute type of VariabilityExchangeModel determines how a VariabilityExchangeModel should be interpreted.
[bookmark: _Toc411856499][bookmark: _Toc193934]Binding	Comment by Damir Nesic: We have an attribute called binding time that can have multiple values. How can this be?

Why is this attribute relevant? From my understanding, the configuration does not care about this attribute?

I also think that this subsection can be explained better.

The Variability Exchange Language does not make any assumptions on how the binding process for the associated artifact works. We do however provide a way to attach Conditions or Expressions to Variations:
In a StructuralVariationPoint, a Variation comes with a Condition that determines whether the associated artifact element is part of a bound artifact.
In a ParameterVariationPoint, the Variation determines a value for the associated artifact element. This is done either by computing it (CalculatedVariation) or selecting from one of several values (ValueVariation).
In a variation point description (see section 2.2) the result of the evaluation of a condition or expression in a Variation must be compatible with the attribute selected of a Variation. That is, if the attribute selected of a Variation has the value true, then its condition must also evaluate to true.
[bookmark: _Toc411856500][bookmark: _Toc193935]Common Concepts
Most classes in the Variability Exchange Language are based on the class Identifiable, which provides them with a name and a unique identifier. Identifable also provide a way to attach application-specific data (SpecialData) to elements in the Variability Exchange Language.
[bookmark: _Toc411856501][bookmark: _Toc193936]API
In addition to the contents of the exchange format basic operations of a Variability Interface are defined in the class VariabilityAPI. These operations cover the following operations:
· The import and export of VariabilityExchangeModels
· Getting and setting configurations, which are also VariabilityExchangeModels
· Getting information on the read or write access (Capability) to VariationPoints and VariabilityExchangeModels as configurations.	Comment by Damir Nesic: Are there variation points that cannot be read/written?
[bookmark: _Toc393199827][bookmark: _Ref408305766][bookmark: _Ref408310819][bookmark: _Toc411856502][bookmark: _Toc193937]Variability Exchange Language Class Reference	Comment by Damir Nesic: The order in which things are explained is currently mixed-up. Why not have major subsection that correspond to classes from Fig 2 and then within those explain classes that define types of their attributes.
[bookmark: _Toc393199829][bookmark: _Toc411856503][bookmark: _Toc193938][bookmark: _Toc367432850]ArtifactElement	< artifact-element-type>
[image:]
[bookmark: _Toc411856537]Figure 3 UML Diagram for class ArtifactElement
<xs:complexType name="artifact-element-type">
	<xs:sequence>
		<xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
	</xs:sequence>
	<xs:attribute name="type" type="xs:string" use="optional"/>
	<xs:attribute name="uri" type="xs:anyURI" use="optional"/>
</xs:complexType>
[bookmark: _Ref396826618][bookmark: _Ref396826600][bookmark: _Toc411856573]Listing 1 XML Schema for artifact-element-type
<optional-structural-variationpoint id="vp1">
	<variation id="vp1v1">
		<corresponding-variable-artifact-element uri="file:///C:/SPES/file1.c"/>
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856574]Listing 2 XML Example for artifact-element-type using URIs
<optional-structural-variationpoint id="vp2">
	<variation id="vp2v1">
		<corresponding-variable-artifact-element type="simulink">
			<simulink-id>12</simulink-id>
		</corresponding-variable-artifact-element>
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Ref394051016][bookmark: _Ref394050981][bookmark: _Toc411856575]Listing 3 XML Example for artifact-element-type using artifact-specific XML elements
[bookmark: _Toc193939]Description
An ArtifactElement is a reference to an element in an artifact.	Comment by Damir Nesic: I think that this needs a definition
[bookmark: _Toc193940]Attribute uri
The optional attribute uri is a reference to the artifact. The content of the attribute uri is a Uniform Resource Identifier.
The attribute URI of an ArtifactElement should conform to the definition of Uniform Resource Locators as specified in [RFC3986].
[bookmark: _Toc393201843]Although the attribute URI of ArtifactElement is optional, it is recommended to supply an URI instead of additional attributes (that is, arbitrary XML child elements as described in section 3.1.4) whenever possible.
[bookmark: _Toc193941]Attribute type
The optional attribute type specifies the type of artifact that is addressed by this ArtifactElement.
The attribute type is a string, not an enumeration so that new artifact types can be added without changing the XML schema. Nevertheless, the following types are predefined:
simulink
doors
[bookmark: _Toc393201844]Although the attribute type of an ArtifactElement is defined as optional, it is recommended to supply a type.
[bookmark: _Ref401836486][bookmark: _Toc193942][bookmark: _Toc393199830]Adding arbitrary XML Elements	Comment by Damir Nesic: I would move this somewhere towards the end because this capability covers the more exotic cases.
In the XML schema, the type artifact-element-type allows arbitrary XML child elements. This is implemented by using the <xs:any> element (see Listing 1), which permits the use of any XML element regardless of whether it is defined in the current schema. The type of the artifact is documented in the type attribute.
For example, Listing 3 shows a Variation whose corresponding variable artifact element is a Simulink block with the Identifier 12.

[bookmark: _Ref395705586][bookmark: _Toc411856504][bookmark: _Toc193943]BindingTime	<bindingtime-type>
[image:]
[bookmark: _Toc411856538]Figure 4 UML Diagram for class BindingTime
<xs:complexType name="bindingtime-type">
	<xs:sequence>
		<xs:element name="name"
		 type="bindingtime-enum"/>	Comment by Damir Nesic: Absence of cardinality = 1..1? Maybe we should mention this somewhere.
		<xs:element name="condition"
		 type="expression-type"
		 minOccurs="0"
		 maxOccurs="1" />
	</xs:sequence>
	<xs:attribute name="selected" type="xs:boolean" use="optional"/>
</xs:complexType>
[bookmark: _BindingTimeEnum][bookmark: _Toc411856576]Listing 4 XML Schema for bindingtime-type
<variability-exchange-model type="variationpoint-description" id="model">
	<optional-structural-variationpoint id="vp1">
		<bindingtime>
			<name>preprocessor-time</name>
		</bindingtime>
		<variation id="vp1v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
	<optional-structural-variationpoint id="vp2">
		<bindingtime>
			<name>preprocessor-time</name>
			<condition type="single-feature-condition">
				SmallSoftwareFootprint
			</condition>
		</bindingtime>
		<bindingtime>
			<name>post-build</name>
			<condition type="single-feature-condition">
				LargeSoftwareFootprint
			</condition>
		</bindingtime>
		<variation id="vp2v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
</variability-exchange-model>
[bookmark: _Toc411856577]Listing 5 XML Example for binding-time-type in a variationpoint-configuration
<variability-exchange-model type="variationpoint-configuration" id="model">
	<optional-structural-variationpoint id="vp1">
		<bindingtime>
			<name>preprocessor-time</name>
		</bindingtime>
		<variation id="vp1v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
	<optional-structural-variationpoint id="vp2">
		<bindingtime selected="false">
			<name>preprocessor-time</name>
			<condition type="single-feature-condition">
				SmallSoftwareFootprint
			</condition>
		</bindingtime>
		<bindingtime selected="true">
			<name>post-build</name>
			<condition type="single-feature-condition">
				LargeSoftwareFootprint
			</condition>
		</bindingtime>
		<variation id="vp2v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
</variability-exchange-model>
[bookmark: _Toc411856578]Listing 6 XML Example for binding-time-type in a variationpoint-configuration
[bookmark: _Toc193944]Description
The binding time of a variation point describes how the associated variability is resolved[footnoteRef:1]. Common ways to resolve a variation point are	Comment by Damir Nesic: In the footnote: Why build process? Isn’t it development process? [1: Contrary to what the term BindingTime suggests, this is not a point in time, but rather a phase in the build process.]

· A variation point is removed from its artefact. For example, the #ifdef / #endif idiom commonly found in a C preprocessor code removes part of the source code.	Comment by Damir Nesic: I would rather say something along the lines: a variation point is instantiated OR binded to a single variant (in the lingo of VEL)
· A variation point is set to “inactive”. For example, an if statement may prevent certain code sections from being executed. This is typically used if the binding comes too late in the process and the code cannot be removed.
· A parameter is assigned a fixed value.
What exactly happens when a variation point is bound is implementation specific, and beyond the scope this document.
[bookmark: _Ref395705988][bookmark: _Toc193945]Attribute selected	Comment by Damir Nesic: As far as I understand, the explanation bellow refers to the class VariationPoint which can have “more than one BindingTime”, i.e. this text does not belong here. This text should explain the attribute “selected” of the class “BindingTime”.
A VariationPoint may have more than one BindingTime attributes. This is useful if the decision for the binding time of the variation point is delayed. For example, it may not be clear from the beginning whether a particular subsystem is removed during code generation (binding time CodeGenerationTime, section 3.3.5) or just deactivated during startup (binding time PostBuild, section 3.3.10). This decision is made at some time during the build process.	Comment by Damir Nesic: For me it would be more clear if the cardinality would be 1..1, and if the decision is delayed then the value is “null”, and when it is decided then it is a particular value.	Comment by Damir Nesic: On the other hand, the way in which this attribute is used will be determined by the person building the VEL adaptor so maybe the comment immediately above is not relevant.	Comment by Damir Nesic: See comment about footnote.
The attribute selected of a BindingTime shall be present if the VariabilityExchangeModel which contains the BindingTime is of type VariationPointSelection.	Comment by Damir Nesic: If you search for this string, this is the only appearance. I understand that this one of two ways that VEL can be used but the two usages are described in a single place but not integrated in the VEL meta-model in any way. Should this be an attribute of some class, e.g. VariabilityExchangeModel?
The attribute selected has no effect if the type of the VariabilityExchangeModel is of type VariationPointDescription and thus shall be omitted.	Comment by Damir Nesic: On what?
If a VariationPoint has more than one bindingtime attribute, then the attribute selected is used to designate exactly one of the binding times as the binding time that is actually used for the binding:
Let be a VariationPoint which and let be the values of the selected attributes of the BindingTimes of . Then the following conditions shall hold:	Comment by Damir Nesic: I think that there shouldn’t be an arrow here because it belongs to the previous statement.	Comment by Damir Nesic: Incomplete
1.
2.
If a BindingTime has both an attribute selected and an an attribute condition , then the following condition shall hold:

[bookmark: _Toc193946]Attribute name
The attribute name of a BindingTime is a textual representation of the binding time. It is of type BindingTimeEnum.	Comment by Damir Nesic: Which is shown in Figure 5. In general we should refer to Figures. Preferably with hyperlinks so that the reader can quickly navigate through the document.
[bookmark: _Toc193947]Attribute condition	Comment by Damir Nesic: I don’t understand why binding times themselves have conditions. Where does this use case come from.
If a VariationPoint has multiple BindingTimes, then the attribute condition may be used to select one BindingTime as the actual BindingTime for .	Comment by Damir Nesic: We should choose a way to refer to things. This Camel, underlined notation seemed to be reserved for classes and attributes of VEL but here it is used for a general term.
Let be a VariationPoint which and let be the conditons of the BindingTimes of . Then the following conditions shall hold:	Comment by Damir Nesic: incomplete
3.
4.
[bookmark: _Toc393199831]In other words, if a VariationPoint has more than one BindingTime with a condition, then only one condition shall evaluate to true. Obviously, a condition is only useful iof a VariationPoint has more than one BindingTime.
See section 3.2.2 for more information on condition is used to select a binding time.

[bookmark: _Toc411856505][bookmark: _Toc193948]BindingTimeEnum	<bindingtime-enum>	Comment by michael: Allow other/additional values. Needs other mechanism than a simple enumeration	Comment by Damir Nesic: Are we aiming for a complete list here? Is this feasible? Also, I think that defining/explaining all of these is quite tricky because different people/companies might perceive these binding times quite differently. 	Comment by Damir Nesic: If we decide to have all of these, and with descriptions, then I’ll make comments.
[image:]
[bookmark: _Toc411856539]Figure 5 UML Diagram for enumeration BindingTimeEnum
<xs:simpleType name="bindingtime-enum">
	<xs:restriction base="xs:string">
		<xs:enumeration value="requirements-time"/>
		<xs:enumeration value="blueprint-derivation-time"/>
		<xs:enumeration value="model-construction-time"/>
		<xs:enumeration value="model-simulation-time"/>
		<xs:enumeration value="code-generation-time"/>
		<xs:enumeration value="preprocessor-time"/>
		<xs:enumeration value="compile-time"/>
		<xs:enumeration value="link-time"/>
		<xs:enumeration value="flash-time"/>
		<xs:enumeration value="post-build"/>
		<xs:enumeration value="post-build-loadable-time"/>
		<xs:enumeration value="post-build-selectable-time"/>
		<xs:enumeration value="run-time"/>
	</xs:restriction>
</xs:simpleType>
[bookmark: _Toc411856579]Listing 7 XML Schema for bindingtime-enum
[bookmark: _Toc193949][bookmark: _Toc367432852]RequirementsTime
At RequirementsTime, variants are bound by selecting a subset of the overall requirements for a product line.
[bookmark: _Toc367432851][bookmark: _Toc193950]BluePrintDerivationTime
The binding time BlueprintDerivationTime stems from AUTOSAR. In AUTOSAR, Blueprints are predefined templates for partial models. When a blueprint is applied, the variation points in the blueprint indicate locations in the template where a template processor or even human developer needs to fill in more information.
[bookmark: _Toc193951]ModelConstructionTime
At ModelConstructionTime, variants are bound by modifying the artifact. This may involve deleting part of the model, but may also be achieved by adding new elements to a model or changing parts of the existing model, or a combination of all three.
[bookmark: _Toc367432853][bookmark: _Toc193952]ModelSimulationTime
At ModelSimulationTime, variants are bound by excluding parts of the model during simulation. This is typically done by constructing the model in such a way that some parts are not used during the simulation.
[bookmark: _Toc367432854][bookmark: _Ref396828335][bookmark: _Toc193953]CodeGenerationTime
At CodeGenerationTime, variants are bound by generating code that is tailored for one or more variants.
[bookmark: _Toc367432855][bookmark: _Toc193954]PreprocessorTime
At PreProcessorTime, variants are bound by using a preprocessor that emits code only for specific variants. To do that, the code must contain appropriate preprocessor directives, for example #ifdef statements.
[bookmark: _Toc367432856][bookmark: _Toc193955]CompileTime
At CompileTime, variation points are resolved by the compiler, for example by not generating code for certain variants (dead code elimination) or by using specific compiler switches.
[bookmark: _Toc367432857][bookmark: _Toc193956]LinkTime
At Linktime, variants are bound by using only those files that are necessary for a particular variant are used to build a library or application.
[bookmark: _Toc367432858][bookmark: _Toc193957]FlashTime
At FlashTime, variants are bound by (pre)loading variant specific data sets into the flash memory embedded device.
[bookmark: _Toc367432859][bookmark: _Ref396828358][bookmark: _Toc193958]PostBuild
At PostBuild, variants are bound by activating only certain parts of an application.
[bookmark: _Toc367432860][bookmark: _Toc193959]PostBuildLoadable
At PostBuildLoadable, variants are bound by selecting a parameter set (typically stored in flash memory) at the launch of an application. PostBuildLoadable is often used as a synonym for PostBuild.
[bookmark: _Toc367432861][bookmark: _Toc193960]PostBuildSelectable
At PostBuildSelectable, variants are bound by selecting one of several parameter sets (typically stored in flash memory) at the launch of an application. PostBuildSelectable is often used as a synonym for PostBuild.
[bookmark: _Toc367432862][bookmark: _Toc193961]RunTime
At RunTime, variants are bound by switching between different program states or executing different parts of an application. Runtime is usually not regarded as a binding time, but is included for completeness here.
[bookmark: _Toc367432863][bookmark: _Toc393199832][bookmark: _Toc411856506][bookmark: _Toc193962][bookmark: _Toc367432864]CalculatedParameterVariationPoint
	<calculated-parameter-variationpoint-type>
 [image:]
[bookmark: _Toc411856540]Figure 6 UML Diagram for class CalculatedParameterVariationPoint
<xs:complexType name="calculated-parameter-variationpoint-type">
	<xs:complexContent>
		<xs:extension base="variationpoint-type">
			<xs:sequence>
				<xs:element name="variation" type="calculated-variation-type"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856580]Listing 8 XML Schema for calculated-parameter-variationpoint-type
<calculated-parameter-variationpoint id="vp1">
	<variation id="vp1v1">
		<expression type="pvscl-expression">6*9</expression>
	</variation>
</calculated-parameter-variationpoint>
[bookmark: _Toc411856581]Listing 9 XML Example for calculated-parameter-variationpoint-type
[bookmark: _Toc193963]Description
A CalculatedParameterVariatonPoint is a ParameterVariationPoint that defines a value for a variation point in an artifact. Unlike a XorParameterVariationPoint, which picks one value from a number of choices, a CalculatedParameterVariatonPoint uses an expression to define the value.
A CalculatedParameterVariatonPoint contains a single CalculatedVariation whose attribute expression defines the expression that is used to calculate the value for the associated variation point.
[bookmark: _Toc193964]Notes
The class CalculatedParameterVariationPoint inherits from the class ParameterVariationPoint, which inherits from VariationPoint.
[bookmark: _Toc393199833][bookmark: _Toc411856507][bookmark: _Toc193965]CalculatedVariation	<calculated-variation-type>
 [image:]
[bookmark: _Toc411856541]Figure 7 UML Diagram for class CalculatedVariation
<xs:complexType name="calculated-variation-type">
	<xs:complexContent>
		<xs:extension base="variation-type">
			<xs:sequence>
				<xs:element name="expression"
			 type="expression-type"
				 minOccurs="0" maxOccurs="1"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856582]Listing 10 XML Schema for calculated-variation-type
<calculated-parameter-variationpoint id="vp1">
	<variation id="vp1v1">
		<expression type="pvscl-expression">6*9</expression>
	</variation>
</calculated-parameter-variationpoint>
[bookmark: _Toc411856583]Listing 11 XML Example for calculated-variation-type
[bookmark: _Toc193966]Description
Each CalculatedParameterVariationPoint aggregates a single CalculatedVariation. A CalculatedVariation is a Variation that determines a value for a CalculatedVariationPoint.	Comment by Damir Nesic: Aggregation is a white square. This one (black one) is composition.
 In 3.4.1 it says “contains” and there “aggregates”
[bookmark: _Toc367432865][bookmark: _Toc193967]Attribute expression
The optional attribute expression of a CalculatedVariation specifies the expression that is used to compute the value of a CalculatedVariation.	Comment by Damir Nesic: What if we have a CalcualtedVariation without an expression? Who and how handles this case?
The attribute expression of a CalculatedVariation may return an arbitrary value. Which values are allowed depends on the artifact elements which are referenced by the attribute correspondingVariableArtifactElement (see 3.21.3).	Comment by Damir Nesic: Given what?
[bookmark: _Toc193968]Binding
When a CalculatedParameterVariationPoint is bound, the expression of its CalculatedVariation is evaluated. The result of the evaluation gets assigned to the artifact element(s) which are referenced by the attribute correspondingVariableArtifactElement (see section 3.21.3).	Comment by Damir Nesic: Yes conceptually. But this must be done by the tool that manages the “correspondingVariableArtifactElement” in accordance with the specifics of the element. Because we have no control over that process, I wouldn’t mention this at all.
A CalculatedParameterVariationPoint can only be bound when its CalculatedVariation has an attribute expression.
[bookmark: _Toc193969]Notes	Comment by Damir Nesic: Obvious from Figure 7. Either add this note to each Class or remove.
The class CalculatedVariation inherits from the class Variation.

[bookmark: _Toc367432866][bookmark: _Toc393199834][bookmark: _Toc411856508][bookmark: _Toc193970]Capability	<capability-type>
[image:]
[bookmark: _Toc411856542]Figure 8 UML Diagram for class Capability
<xs:complexType name="capability-type">
	<xs:sequence>
		<xs:element name="import-variability-exchange-model" type="xs:boolean" />
		<xs:element name="export-variability-exchange-model" type="xs:boolean" />
		<xs:element name="get-configuration" type="xs:boolean" />
		<xs:element name="set-configuration" type="xs:boolean" />
	</xs:sequence>
</xs:complexType>
[bookmark: _Toc411856584]Listing 12 XML Schema for capability-type
<?xml version="1.0" encoding="UTF-8"?>
<variability-exchange-models id="root"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">
	<version>1</version>
	<capability>
		<import-variability-exchange-model>true</import-variability-exchange-model>
		<export-variability-exchange-model>true</export-variability-exchange-model>
		<get-configuration>true</get-configuration>
		<set-configuration>true</set-configuration>
	</capability>
</variability-exchange-models>
[bookmark: _Toc411856585]Listing 13 XML Example for capability-type
[bookmark: _Toc193971][bookmark: _Toc367432867]Description
A Capability describes which operations are supported by a particular instance of VariabilityAPI. The rationale for introducing Capability is that not all implementations of the VariabilityAPI support all its operations.	Comment by Damir Nesic: Yes. So why is this an attribute of class VariabilityExchangeModels? I think that conceptually, this doesn’t belong here.
[bookmark: _Toc193972]Attribute importVariabilityExchangeModels
The attribute getVariationPoints determines whether the operation importVariabilityExchangeModels of the class VariabilityAPI is supported:	Comment by Damir Nesic: ?
· If getVariationPoints is , then the VariabilityAPI supports the operation importVariabilityExchangeModels.
· If getVariationPoints is , then the VariabilityAPI does not support the operation importVariabilityExchangeModels.
[bookmark: _Toc367432868][bookmark: _Toc193973]Attribute exportVariabilityExchangeModels
The attribute setVariationPoints determines whether the operation exportVariabilityExchangeModels of the class VariabilityAPI is supported:
· If setVariationPoints is , then the VariabilityAPI supports the operation exportVariabilityExchangeModels.	Comment by Damir Nesic: ?
· If setVariationPoints is , then the VariabilityAPI does not support the operation exportVariabilityExchangeModels.
[bookmark: _Toc367432869][bookmark: _Toc193974]Attribute getConfiguration
The attribute getConfiguration determines whether the operation getConfiguration of the class VariabilityAPI is supported:
· If getConfiguration is , then the VariabilityAPI supports the operation getConfiguration.
· If getConfiguration is , then the VariabilityAPI does not support the operation getConfiguration.
[bookmark: _Toc193975]Attribute setConfiguration
The attribute setConfiguration determines whether the operation setConfiguration of the class VariabilityAPI is supported:
· If setConfiguration is , then the VariabilityAPI supports the operation setConfiguration.
· If setConfiguration is , then the VariabilityAPI does not support the operation setConfiguration.

[bookmark: _Toc393199836][bookmark: _Ref396897834][bookmark: _Ref396911354][bookmark: _Toc411856509][bookmark: _Toc193976]Expression	<expression-type>
 [image:]
[bookmark: _Toc411856543]Figure 9 UML Diagram for class Expression
<xs:complexType name="expression-type">
	<xs:simpleContent>
		<xs:extension base="xs:string">
			<xs:attribute name="type" type="expression-enum" use="required"/>
			<xs:attribute name="datatype" type="xs:string" use="optional"/>
		</xs:extension>
	</xs:simpleContent>
</xs:complexType>
[bookmark: _Ref395686035][bookmark: _Toc411856586]Listing 14 XML Schema for expression-type
<xor-structural-variationpoint id="vp1">
	<variation id="vp1v1">
		<condition type="single-feature-condition" datatype="bool">
			Feature1
		</condition>
	</variation>
	<variation id="vp1v2">
		<condition type="and-feature-condition" datatype="bool">
			Feature2,Feature3
		</condition>
	</variation>
	<variation id="vp1v3">
		<condition type="or-feature-condition" datatype="bool">
			Feature4, Feature5, Feature6
		</condition>
	</variation>
	<variation id="vp1v4">
		<condition type="pvscl-expression" datatype="ps:boolean">
			Feaure7 AND Feature8
		</condition>
	</variation>
</xor-structural-variationpoint>
[bookmark: _Ref403984631][bookmark: _Toc411856587]Listing 15 XML Example for expression-type
[bookmark: _Toc193977]Description
An Expression is similar to an expression in a programming language. In our the case of VEL, expressions fall into two categories:
“Genuine” expressions which may return any kind of value. These are represented by the type PVSCLExpression.	Comment by Damir Nesic: Why do we need a term and moreover, why do we need to distinguish between the two types of expressions?	Comment by Damir Nesic: This sounds quite pure-variant- specific. Does this mean that the “variants management” tool must be one that supports PVSCL?
Constraints, which may only return Boolean values. These are represented by the SingleFeatureExpression, AndFeatureExpression and OrFeatureExpression. A constraint may also be of type PVSCLExpression; in this case the return value must be of type Boolean.
Technically, an Expression is a string whose syntax is determined by the attribute type. In the XML representation, the actual expression is contained in the inner text of the expression of condition element[footnoteRef:2].	Comment by Damir Nesic: An explanation regarding XML serialization was not present in other “Description” subsections. [2: For simplicity and consistency, XML elements of type expression-type are always named expression or condition.]

An expression shall not be an empty string.	Comment by Damir Nesic: Why not have a separate subsection “Constraints” instead of mixing it up within description?
[bookmark: _Toc193978]Attribute type
The attribute type defines the kind of expression that in the inner text of the expression of condition element. There are several kinds of expressions: 	Comment by Damir Nesic: New word for type!	Comment by Damir Nesic: I think that we should not refer to the XML serialization when we describe VEL features. XML is just a serialization. I could decide to serialize to JSON, or RDF and then, technically speaking, the VEL specification would not be applicable.
SingleFeatureExpression (single-feature-condition)	Comment by Damir Nesic: It is unclear why exactly these. Especially because OCL, and I assume PVSCL, can express Single/And/Or/Autosar
AndFeatureExpression (and-feature-condition)
OrFeatureExpression (or-feature-condition)
PVSCLExpression (pvscl-expression)
OCLExpression (ocl-expression)
AUTOSARExpression (autosar-expression)
The individual expression types are explained in subsections 3.7.4, 3.7.5, 3.7.6, 3.7.7, 3.7.8 and 3.7.9.
[bookmark: _Toc193979]Attribute datatype	Comment by Damir Nesic: Before reading this, I didn’t get intuition that this is the return type. Maybe rename datatype into returnType, expressionValue…
The attribute datatype constrains the return type of the expression. Since the possible values for datatype depend on the artifact(s) involved, they are not further standardized here.
If the attribute datatype of an Expression exists, then the return type of the Expression should be compatible with the data type given by datatype.	Comment by Damir Nesic: If I understand well, there is no way to enforce this in VEL so this can be non-normative statement.
[bookmark: _Ref403984388][bookmark: _Toc193980]SingleFeatureCondition
A SingleFeatureCondition is a type of expression that models a Boolean condition whose literal is a single Feature. SingleFeatureCondition is a special case of OrFeatureCondition or AndFeatureCondition that can be used in cases where a variable element in an artifact depends on a single feature instead of a combination of features.
The example in Listing 15 translates to the Boolean expression	Comment by Damir Nesic: First time that the text refers to examples. I think that this should be done with each example.
 I think that XML-based examples are quite difficult. Can’t we have graphical like class-diagrams?
	
Formally, if a SingleFeatureCondition references the feature , then this translates into the Boolean expression	Comment by Damir Nesic: I think that “formally” this sentence is not correct. How can a proposition translate to a Boolean function?	Comment by Damir Nesic: Vs Feature1

where is if feature is selected, and is is not selected.	Comment by Damir Nesic: Who selects what, and where? This is missing throughout the document?
The datatype for an Expression of type SingleFeatureExpression should be Boolean.	Comment by Damir Nesic: If this is a constraint, then it should be “shall”!
See also section 3.7.10.1 on how single features are represented in XML.
[bookmark: _Ref403984401][bookmark: _Toc193981]AndFeatureCondition
An AndFeatureCondition is a special Condition that models a Boolean condition whose literals are features, and which are connected by a Boolean AND. The example in Listing 15 translates to the Boolean expression
	
If an AndFeatureCondition references the features , then this translates into the following Boolean expression	Comment by Damir Nesic: Same comment as above

where is if feature is selected, and otherwise.
The datatype for an Expression of type AndFeatureCondition should be Boolean.	Comment by Damir Nesic: Same comment as above
In the XML representation, an AndFeatureCondition is comma-separated list of features. See also section 3.7.10.2 on how features are represented in XML.	Comment by Damir Nesic: Is this because XML forces us to have a comma-separated list or is our decision. If its our decision then effectively we have implicitly defined a grammar for these expressions which should be explicit.	Comment by Damir Nesic: Found the grammar. Maybe just say that 3.7.10.2 is a grammar section.
[bookmark: _Ref403984407][bookmark: _Toc193982]OrFeatureCondition	Comment by Damir Nesic: Same comments as for other expression types
An OrFeatureCondition is a special Condition that models a Boolean condition whose literals are features, and which are connected by a Boolean OR. The example in Listing 15 translates to the Boolean expression
	
Formally, if a OrFeatureCondition references the features , then this translates into the following Boolean expression

where is if feature is selected, and otherwise.
The datatype for an Expression of type OrFeatureCondition should be Boolean.
In the XML representation, an OrFeatureCondition is comma-separated list of features. See also section 3.7.10.2 on how features are represented in XML.
[bookmark: _Ref403984425][bookmark: _Toc193983]PVSCLExpression	Comment by Damir Nesic: We should discuss this. Is it common practice to include tool-specific formats into standards?
In terms of syntax and scope, PVSCLExpression is comparable to what most programming languages offer.	Comment by Damir Nesic: ?
An expression of type PVSCLExpression shall use the syntax defined by [PS].
An expression of type PVSCLExpression shall be evaluated according to the rules defined in[PS].
[bookmark: _Ref404857666][bookmark: _Toc193984]OCLExpression
An OCLExpression uses the expression syntax and semantics defined by OCL,
[OCL]
[bookmark: _Ref404857672][bookmark: _Toc193985]AUTOSARExpression
An AUTOSARExpression uses the expression syntax and semantics defined by AUTOSAR, >.
[AUTOSAR]
[bookmark: _Toc193986]Representation of expressions and features in XML
A Feature is a reference to an element in a model that describes the variability of an artifact, typically a feature model. The exact nature of a feature model is beyond the scope of this document.	Comment by Damir Nesic: I don’t think that we need this here. Maybe move into glossary where we give definitions.
In the XML, a feature is just a name. How exactly a Feature is mapped to its corresponding element in the feature model is implementation dependent and beyond the scope of this document.	Comment by Damir Nesic: I don’t that it is needed, and not a constraint.
The name of a Feature shall be unique. That is, if features and have the same string representation, then they are assumed to refer to the same element of the same feature model.
[bookmark: _Ref400711346][bookmark: _Toc193987]Syntax for single-feature–condition
In the XML representation, a feature is a string that matches the following pattern:
\s*[a-zA-Z_]([a-zA-Z0-9_]*\s*
That is, a feature is a sequence of characters which starts with a letter or an underscore followed by letters, digits and underscores.
An XML element of type expression-type whose attribute type has the value single-feature–condition must match to the above pattern.	Comment by Damir Nesic: I think that this follows from the previous text, i.e. not needed here.
[bookmark: _Ref400711361][bookmark: _Toc193988]Syntax for and-feature-condition and or-feature-condition
In the XML representation, a comma-separated list of features is a string that matches the following pattern[footnoteRef:3]: [3: In this pattern, \s donates a white space, typically a space or tab character,or a newline.]

\s*[a-zA-Z_]([a-zA-Z0-9_]*(\s*,\s*[a-zA-Z_]([a-zA-Z0-9_]*)*\s*
[bookmark: _Toc393201848]An XML element of type expression-type whose attribute type has the value and-feature–condition or or-feature-condition must match to the above pattern.

[bookmark: _Toc411856510][bookmark: _Toc193989][bookmark: _Toc393199838]ExpressionTypeEnum	<expression-enum>	Comment by michael: Other handling for enums
[image:]
[bookmark: _Toc411856544]Figure 10 UML Diagram for class ExpressionTypeEnum
<xs:simpleType name="expression-enum">
	<xs:restriction base="xs:string">
		<xs:enumeration value="single-feature-condition"/>
		<xs:enumeration value="and-feature-condition"/>
		<xs:enumeration value="or-feature-condition"/>
		<xs:enumeration value="pvscl-expression"/>
		<xs:enumeration value="ocl-expression"/>
		<xs:enumeration value="autosar-expression"/>
	</xs:restriction>
</xs:simpleType>
[bookmark: _Toc411856588]Listing 16 XML Schema for expression-enum
[bookmark: _Toc193990]Description
The enumeration ExpressionTypeEnum defines the possible values for the attribute type of the class Expression. The semantics of these expression types is explained in Section 3.7.

[bookmark: _Toc411856511][bookmark: _Toc193991]Identifiable	<identifiable-type>
 [image:]
[bookmark: _Toc411856545]Figure 11 UML Diagram for class Identifiable
<xs:complexType name="identifiable-type" abstract="true">
	<xs:sequence>
		<xs:element name="special-data"
		 type="special-data-type"
		 minOccurs="0"
		 maxOccurs="unbounded"/>
	</xs:sequence>
	<xs:attribute name="name" use="optional">
		<xs:simpleType>
			<xs:restriction base="xs:string">
				<xs:minLength value="1"/>
			</xs:restriction>
		</xs:simpleType>
	</xs:attribute>
	<xs:attribute name="id" type="xs:ID" use="required"/>
</xs:complexType>
[bookmark: _Toc411856589]Listing 17 XML Schema for identifable-type
<optional-structural-variationpoint id="vp1" name="optional variationpoint">
	<special-data name="CreatorInfo">
		<data>
			<key>Created</key>
			<value type="xs:date">1998-11-17</value>
		</data>
	</special-data>
	<variation id="vp1v1" name="optional variation">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856590]Listing 18 XML Example for identifable-type (id attribute)
[bookmark: _Toc193992]Description	Comment by Damir Nesic: Somewhere it should be shown which classes inherit from Identifiable.
Identifiable is an abstract class that defines means to provide unique identifiers for elements of the variability exchange language. Identifiable is used as the base class of for many classes of the Variability Exchange Language.	Comment by Damir Nesic: A maybe radical suggestion is to define VEL as a UML-profile. Then we get the whole MOF machinery about identifiable classes, cardinalities, constraints…	Comment by Damir Nesic: I like the use of word class. I suggest to use it throughout.
In the XML Schema, identifiable-type does not define an XML element of its own, but adds two new attributes id and name to any type that is an extension of identifiable-type.
<xs:complexType name="variationpoint-type" abstract="true">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:element name="bindingtime"
				 type="bindingtime-type"
				 minOccurs="0"
				 maxOccurs="unbounded"/>
				<xs:element name="corresponding-variable-artifact-element"
				 type="artifact-element-type"
				 minOccurs="0"
				 maxOccurs="unbounded"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856546]Figure 12 Use of identifiable-type in the XML Schema	Comment by Damir Nesic: Technically speaking, I don’t think that these are figures but code listings or something along those lines.
[bookmark: _Toc193993]Attribute id
The attribute id of an Identifiable provides a unique identifier for an element.
In XML, id is an attribute of type xs:ID, which means that id is guaranteed to be unique within a Variability Exchange Language document. Other XML elements may use an attribute of type xs:IDREF to refer to an XML clement that is Identifiable.	Comment by Damir Nesic: Who enforces/checks this?	Comment by Damir Nesic: I still don’t like this close dependency to XML rules. I think that the VEL definition should independent.
[bookmark: _Toc393201849]The value of the attribute id of an Identifiable shall be unique within a single Variability Exchange Language document. That is, the following condition holds:	Comment by Damir Nesic: Compared to model?
Let and be the values of the id XML attributes of the XML elements and , with . Then and are the same elements.	Comment by Damir Nesic: Why make this inference? This can easily lead to a contradiction.
For example, VariationPoint1.Variant1.condition=feature1 and VariationPoint1.Variant1.condition=feature2 => feature1=feature2!?
This is consistent with the definition of the types xs:IDREF and xs:IDREFS in XML.
[bookmark: _Toc393201850]The value of the attribute id of an Identifiable shall not change over the lifetime of the element which the Identifiable represents.
The reason for introducing the latter constraint is as follows. Imagine the following situation: the operations importVariabilityExchangeModels and getConfiguration return variability language exchange documents that contain information about the same variation point (in this context, “same” usually means that they refer to the same artifact elements).	Comment by Damir Nesic: Why not throw an error? Let’s discuss this.
Then, the attribute id should have an identical value in both the documents returned from importVariabilityExchangeModels and getConfiguration; otherwise there would be no way to match the variation points.
[bookmark: _Toc193994]Attribute name
The attribute name of an Identifiable provides a human readable name for an element. It is recommended (but not enforced by the XML Schema) that all the name attributes of the Identifiable elements in a Variability Exchange Language document have unique values.
[bookmark: _Toc393201851]The value of the attribute name of an Identifiable is not guaranteed to be unique within a single variability exchange language document. It is however strongly recommended to use unique values for name attributes as well.
The value of attribute name shall not be an empty string.
[bookmark: _Toc193995]Attribute specialData
Each Identifiable may aggregate one or more SpecialData objects. This makes sure that most elements in the Variability Exchange Language can be augmented with application specific data.
[bookmark: _Toc193996]Notes
Identifiable is an abstract class. Most of the classes described in this document inherit from Identifiable.	Comment by Damir Nesic: Exactly which?

[bookmark: _Toc411856512][bookmark: _Toc193997][bookmark: _Toc367432882][bookmark: _Toc393199839][bookmark: _Toc367432883]KeyValuePair	<key-value-pair-type>
[image:]
[bookmark: _Toc411856547]Figure 13 UML Diagram for class KeyValuePair
<xs:complexType name="key-value-pair-type">
	<xs:sequence>
		<xs:element name="key">
			<xs:simpleType>
				<xs:restriction base="xs:string">
					<xs:minLength value="1"/>
				</xs:restriction>
			</xs:simpleType>
		</xs:element>
		<xs:element name="value">
			<xs:complexType>
				<xs:simpleContent>
					<xs:extension base="xs:string">
						<xs:attribute name="type" type="xs:string" use="optional"/>
					</xs:extension>
				</xs:simpleContent>
			</xs:complexType>
		</xs:element>
	</xs:sequence>
</xs:complexType>
[bookmark: _Toc411856548]Figure 14 XML Schema for key-value-pair-type
<optional-structural-variationpoint id="vp1" name="optional variationpoint">
	<special-data name="CreatorInfo">
		<data>
			<key>Created</key>
			<value type="xs:date">1998-11-17</value>
		</data>
	</special-data>
	<variation id="vp1v1" name="optional variation">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Ref400962860][bookmark: _Toc411856549]Figure 15 XML Example for key-value-pair-type
[bookmark: _Toc193998]Description of Class KeyValuePair
Application specific data for VariationPoint and Variation objects is implemented by the class SpecialData, which aggregates a number of KeyValuePair elements. As the name already suggests, a KeyValuePair consists of a key and a value.
KeyValuePair is restricted to data that can be represented as strings. How key and value are interpreted is up to the application. It is strongly recommended to use the attribute key as some kind of (unique) identifier, and store the data associated with key in the attribute value.	Comment by Damir Nesic: I think that such text should go into some non-normative parts outside of the VEL definition (which this is as far as I understand)
[bookmark: _Toc193999]Attribute key of Class KeyValuePair
The attribute key of class KeyValuePair provides a way to identify a KeyValuePair.
A SpecialData object shall not contain two or more KeyValueData objects whose attribute key have the same value.
[bookmark: _Toc194000]Description of Class Value
An object of class Value is a container for the value of a KeyValuePair.
[bookmark: _Toc194001]Attribute value of Class Value
The attribute value of an object of class Value contains the application specific data that is associated with the key of the KeyValuePair object which aggregates this object.
[bookmark: _Toc194002]Attribute type of Class Value
The attribute type of class Value can be used to indicate the data type of the value of a Value object. The contents of type are not standardized, but using XML data types such as xs:string or xs:date is recommended.
[bookmark: _Toc194003]XML Representation
As shown in Figure 15, a key-value pair is implemented by the XML elements key and value, which are enclosed by a data element[footnoteRef:4]. The elements key and value are XML strings.	Comment by Damir Nesic: Extend how? [4: The XML element data is not strictly necessary, but makes it easier to extend the key-value pair implementation in the future, if neccessary.]

The XML representation of a Value object is an XML element named value which contains an arbitrary string. Its definition is based on the XML type xs:string and defines an additional attribute type which indicates the data type of the content.

[bookmark: _Toc411856513][bookmark: _Toc194004]OptionalStructuralVariationPoint
	<optional-structural-variaton-point-type>
[image:]
[bookmark: _Toc411856550]Figure 16 UML Diagram for class OptionalStructuralVariatonPoint
<xs:complexType name="optional-structural-variationpoint-type">
	<xs:complexContent>
		<xs:extension base="variationpoint-type">
			<xs:sequence>
				<xs:element name="variation"
				 type="optional-variation-type"
				 minOccurs="1"
				 maxOccurs="unbounded"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856591]Listing 19 XML Schema for optional-structural-variaton-point-type
<optional-structural-variationpoint id="vp1">
	<variation id="vp1v1">
		<condition type="single-feature-condition">feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856592]Listing 20 XML Example for optional-structural-variaton-point-type
<optional-structural-variationpoint id="vp2">
	<variation id="vp2v1">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
	<variation id="vp2v2">
		<condition type="single-feature-condition">Feature2</condition>
	</variation>
	<variation id="vp2v3">
		<condition type="single-feature-condition">Feature3</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856593]Listing 21 XML Example for optional-structural-variaton-point-type with multiple variations
[bookmark: _Toc194005]Description
An OptionalStructuralVariationPoint is a VariationPoint that contains one or more OptionalVariation objects.
[bookmark: _Toc194006]Notes
The class OptionalStructuralVariationPoint inherits from the class StructuralVariationPoint.
[bookmark: _Toc393199840][bookmark: _Toc411856514][bookmark: _Toc194007]OptionalVariation	<optional-variation-type>
[image:]
[bookmark: _Toc411856551]Figure 17 UML Diagram for class OptionalVariation
<xs:complexType name="optional-variation-type">
	<xs:complexContent>
		<xs:extension base="variation-type">
			<xs:sequence>
				<xs:element name="condition"
				 type="expression-type"
				 minOccurs="0" maxOccurs="1"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856594]Listing 22 XML Schema for optional-variation-type
<optional-structural-variationpoint id="vp1">
	<variation id="v1">
		<condition type="or-feature-expression">Feature1,Feature2</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856595]Listing 23 XML Example for optional-variation-type
[bookmark: _Toc194008]Description
Each OptionalStructuralVariationPoint aggregates one or more OptionalVariation objects. An OptionalVariation is a Variation that determines whether an OptionalStructuralVariationPoint gets deleted or set inactive during the binding process.	Comment by Damir Nesic: Do we use object for instance of a VEL class?	Comment by Damir Nesic: I still don’t understand why should we explicitly have Optional or Structural or other variation points? We should discuss this.	Comment by Damir Nesic: After additional thinking I’m close to agreeing that we need Optional, XOR… However, I would still like to confirm my thoughts in a live discussion.
[bookmark: _Toc367432884][bookmark: _Toc194009]Attribute condition
The optional attribute condition of an OptionalVariation defines the expression that is used to compute the condition of an OptionalVariation.	Comment by Damir Nesic: To compute? Isn’t the expression the condition and there is nothing to compute? Perhaps you meant we can evaluate the condition w.r.t. a particular configuration and get true/false?
The attribute condition of an OptionalVariation shall return a Boolean value. That is, its datatype attribute (if present) should be a Boolean or a data type which can be converted into a Boolean.	Comment by Damir Nesic: This is unclear. Which are these types, who converts them, is this a standard conversion?
If an OptionalVariation has an attribute condition and an attribute selected (inherited from Variation), then the following condition shall hold:

[bookmark: _Toc194010]Binding
When an OptionalStructuralVariationPoint is bound, the condition of each of its OptionalVariations is evaluated. If the result of the evaluation is is, then the artifact elements which are referenced by the attribute correspondingVariableArtifactElement (see section 3.21.3) of the OptionalVariation get deleted or set inactive.	Comment by Damir Nesic: But this is performed by the artifact tool, right?
An OptionalStructuralVariationPoint can only be bound when all its OptionalVariations have a condition.	Comment by Damir Nesic: But we still allow OptionalVariation without a condition. Why? Should we assume some default value if none is provided?
[bookmark: _Toc194011]Notes
The class OptionalVariation inherits from the class Variation.	Comment by Damir Nesic: This type of clarifications was not present for other classes. But this is similar how UML explains things, i.e. for each class there is a list of its super-classes, subclasses, and classes that reference it.
[bookmark: _Toc367432881][bookmark: _Toc393199842][bookmark: _Toc411856515][bookmark: _Toc194012][bookmark: _Toc367432885]ParameterVariationPoint	
	<parameter-variationpoint-group>
[image:]
[bookmark: _Ref396914104][bookmark: _Toc411856552]Figure 18 UML Diagram for class ParamaterVariationPoint
<xs:group name="parameter-variationpoint-group">
	<xs:choice>
		<xs:element name="calculated-parameter-variationpoint"
		 type="calculated-parameter-variationpoint-type"/>
		<xs:element name="xor-parameter-variationpoint"
		 type="xor-parameter-variationpoint-type"/>
	</xs:choice>
</xs:group>
[bookmark: _Toc411856596]Listing 24 XML Schema for parameter-variationpoint-group
[bookmark: _Toc194013]Description
A ParameterVariationPoint defines a value for a variable element in an artifact, for example
A value or a C-preprocessor symbol (#define)	Comment by Damir Nesic: Of what? Of which type?	Comment by Damir Nesic: Is this a representative example:
#define Printer_Enable

#ifdef Printer_Enable
 Printf(“Alive!”)
#endif

Here Printer_Enable is a ParameterVariationPoint?
A initialization value for a variable or a constant in a programing language
A value for a variable in a Matlab workspace
The artifact elements are referenced by the attribute correspondingVariableArtifactElement of the ParameterVariationPoint and the attribute correspondingVariableArtifactElement of its Variation(s) (see the classes VariationPoint and Variation in Figure 18)	Comment by Damir Nesic: Maybe not needed. Already repeated a couple of times.
[bookmark: _Toc194014]Notes
The class ParameterVariationPoint is an abstract class which inherits from the class VariationPoint.
There are two subclasses of ParameterVariationPoint: CalculatedParameterVariationPoint und XorParameterVariationPoint.
Like StructuralVariationPoint, ParameterVariationPoint is implemented in the XML schema as group, not a type. We chose to use a group here because a type would have established an extra XML element for ParameterVariationPoint, which would only have complicated the document structure.

[bookmark: _Toc411856516][bookmark: _Toc194015][bookmark: _Toc393199846]SpecialData	<special-data-type>	Comment by Damir Nesic: STRUCTURE! A very sudden jump to classes unrelated to variation points.
 [image:]
[bookmark: _Toc411856553]Figure 19 UML Diagram for class SpecialData
<xs:complexType name="special-data-type">
	<xs:sequence>
		<xs:element name="data"
		 type="key-value-pair-type"
		 minOccurs="0"
		 maxOccurs="unbounded"/>
	</xs:sequence>
	<xs:attribute name="name" type="xs:string" use="optional"/>
</xs:complexType>
[bookmark: _Toc411856554]Figure 20 XML Schema for special-data-type
<optional-structural-variationpoint id="vp1" name="optional variationpoint">
	<special-data name="CreatorInfo">
		<data>
			<key>Created</key>
			<value type="xs:date">1998-11-17</value>
		</data>
	</special-data>
	<variation id="vp1v1" name="optional variation">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
</optional-structural-variationpoint>
[bookmark: _Toc411856555]Figure 21 XML Example for special-data-type
[bookmark: _Toc194016]Description
The class SpecialData allows adding application specific information to VariationPoint and Variation objects. SpecialData aggregates a number of KeyValuePair elements which contain the actual information.
[bookmark: _Toc194017]Attribute name
The attribute name of a SpecialData indicates which kind of data is contained in the SpecialData structure. The values of name are not standardized; it is highly recommended to use a descriptive name that has a high probability of being unique.
The attribute name of a SpecialData is optional.
Any application that deals with variability information read from an artifact via methods exportVariabilityExchangeModels or getConfiguration (see Section 3.17) shall not read or write the information contained in SpecialData if its name is unknown to the application.	Comment by Damir Nesic: Why?
If an application reads variability information from an artifact via methods exportVariabilityExchangeModels or getConfiguration (see Section 3.17), then changes this information, and later uses the methods importVariabilityExchangeModels or setConfiguration (see Section 3.17) to write the information to an artifact, then any SpecialData whose type is not known to the application may be in an undefined state. This is because the information contained in SpecialData may depend on the overall structure.	Comment by Damir Nesic: This is more like a note than a constraint. Btw, without an example it is difficult to understand what this means.

[bookmark: _Toc411856517][bookmark: _Toc194018]StructuralVariationPoint
	<structural-variationpoint-group>
[image:]
[bookmark: _Ref395172805][bookmark: _Ref396986098][bookmark: _Toc411856556]Figure 22 UML Diagram for class StructuralVariationPoint
<xs:group name="structural-variationpoint-group">
	<xs:choice>
		<xs:element name="optional-structural-variationpoint"
		 type="optional-structural-variationpoint-type"/>
		<xs:element name="xor-structural-variationpoint"
		 type="xor-structural-variationpoint-type"/>
	</xs:choice>
</xs:group>
[bookmark: _Toc411856597]Listing 25 XML Schema for structural-variationpoint-group
[bookmark: _Toc194019]Description
A StructuralVariationPoint determines whether one or more elements in an artifact gets deleted or set inactive during the binding process.
The artifact elements are referenced by the attribute correspondingVariableArtifactElement of the StructuralVariationPoint and the attribute correspondingVariableArtifactElement of its Variations (see the classes VariationPoint and Variation in Figure 22)
[bookmark: _Toc194020]Notes
The class StructuralVariationPoint is an abstract class which inherits from the class VariationPoint.
The class StructuralVariationPoint has two subclasses: OptionalStructuralVariationPoint and XorStructuralVariationPoint.
Like ParameterVariationPoint, StructuralVariationPoint is implemented in the XML Schema as a group, not as a type. We choose to use a group here because a type would have established an extra XML element for StructuralVariationPoint, which would only have complicated the document structure.

[bookmark: _Toc367432886][bookmark: _Toc393199847][bookmark: _Ref395783492][bookmark: _Toc411856518][bookmark: _Toc194021]ValueVariation	<value-variation-type>
[image:]
[bookmark: _Ref395519635][bookmark: _Ref395519611][bookmark: _Toc411856557]Figure 23 UML Diagram for class ValueVariation
<xs:complexType name="value-variation-type">
	<xs:complexContent>
		<xs:extension base="variation-type">
			<xs:sequence>
				<xs:element name="condition"
				 type="expression-type"
				 minOccurs="0"
				 maxOccurs="1"/>
				<xs:element name="value" type="xs:string"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856598]Listing 26 XML Schema for value-variation-type
<xor-parameter-variationpoint id="vp1">
	<variation id="vp1v1">
		<condition type="single-feature-condition">Feature1</condition>
		<value>1</value>
	</variation>
	<variation id="vp1v2">
		<condition type="single-feature-condition">Feature2</condition>
		<value>2</value>
	</variation>
	<variation id="vp1v3">
		<condition type="single-feature-condition">Feature3</condition>
		<value>3</value>
	</variation>
</xor-parameter-variationpoint>
[bookmark: _Toc411856599]Listing 27 XML Example for value-variation-type
[bookmark: _Toc194022]Description
A ValueVariation selects a value for the corresponding artifact element of a XorParameterVariationPoint. The artifact element in question is referenced by its attribute correspondingVariableArtifactElement (see section 3.21.3).	Comment by Damir Nesic: Is this correct? ValueVariation selects it?
Each XorParameterVariationPoint contains one or more ValueVariation objects. When a XorParameterVariationPoint gets bound, the attribute condition of each ValueVariation is evaluated. The condition may evaluate to for only one ValueVariation, and the attribute value of this ValueVariation is then used to provide a value for its correspondingVariableArtifactElement.	Comment by Damir Nesic: How can you know what are the conditions in an artifact. The could all be: f1, f1, f1, f1, f1, f1 and they all evaluate to true/false simultaneously!
Let be a XorParameterVariationPoint which and let be the values of the attribute selected of the ValueVariations of . Then the following conditions shall hold:
1. 	Comment by Damir Nesic: Same as above w.r.t. these expressions
2.
[bookmark: _Toc367432887][bookmark: _Ref395783697][bookmark: _Toc194023]Attribute condition
When evaluated, the attribute condition of a ValueVariation shall return a Boolean value. That is, its datatype attribute (if present) should be a Boolean or a data type which can be converted into a Boolean.
Let be the conditions of all the ValueVariations that are contained in a given XorParameterVariationPoint. Then the following conditions shall hold
1. 	Comment by Damir Nesic: Same as above w.r.t.
2.
If a ValueVariation has an attribute condition and an attribute selected (inherited from Variation), then the following condition shall hold:

[bookmark: _Toc367432888][bookmark: _Toc194024]Attribute value	Comment by Damir Nesic: If I understand well, this comes from the meta-model of the artifact tool. E.g. allowed values for “Signal” is “Can Signal”
The attribute value of a ValueVariation is a constant, not an expression.
The data type (e.g. Boolean, Integer, Floating Point, or an enumeration) and range (e.g. 1…10) that is allowed for the attribute value of a ValueVariaton is defined by the artifact element that is associated with ValueVariation (see correspondingVariableArtifactElement, section 3.21.3).
[bookmark: _Toc194025]Binding
Each XorParameterVariationPoint contains one or more ValueVariation objects. When a XorParameterVariationPoint gets bound, the attribute condition of each ValueVariation is evaluated. The condition may evaluate to for only one ValueVariation, and the attribute value of this ValueVariation is then used to provide a value for its correspondingVariableArtifactElement.	Comment by Damir Nesic: This is more or less described few paragraphs above.
A XorParameterVariationPoint can only be bound when all its ValueVariations have a condition.
[bookmark: _Toc194026][bookmark: _Toc367432892][bookmark: _Toc393199848][bookmark: _Ref395532036][bookmark: _Ref395532074]Notes
The class ValueVariation inherits from the abstract class Variation.

[bookmark: _Ref400958695][bookmark: _Toc411856519][bookmark: _Toc194027]VariabilityAPI
[image:]
[bookmark: _Ref396986103][bookmark: _Toc411856558]Figure 24 UML Diagram for class VariabilityAPI
[bookmark: _Toc194028]Description
The class VariabilityAPI defines the methods that are available for exchanging variability information through the Variability Exchange Language.
[bookmark: _Toc367432893][bookmark: _Toc194029]Attribute version
The attribute version documents the version of the variability language which is supported by this implementation of the Variability Exchange Language. It is obviously a read-only attribute.
The attribute version shall be a positive integer.	Comment by Damir Nesic: What about 2.1?
See the attribute version of the class VariabilityExchangeModels (section 3.19.2) for further constraints on this attribute.
[bookmark: _Toc367432894][bookmark: _Toc194030]Attribute capability
Not all implementations of the VariabilityAPI support all the methods that are shown in Figure 24. The attribute capability documents which of these methods – most importantly, importVariabilityExchangeModels, exportVariabilityExchangeModels, getConfiguration, and setConfiguration – are supported by this implementation of the VariabilityAPI.
[bookmark: _Toc194031][bookmark: _Toc367432895]Method importVariabilityExchangeModels
The method importVariabilityExchangeModels synchronizes all changes in the artifacts with the VariabilityExchangeModels structure. This means that new variation points may be introduced, and existing variation points in the artifact may be changed or deleted.	Comment by Damir Nesic: Again, just to be clear: this is the responsibility of the artifact tool.
Let be the VariabilityExchangeModel objects which are contained by the parameter of type VariabilityExchangeModels object which is the input to the method importVariabilityExchangeModels. Then for all , the attribute type shall have the value VariationPointDescription.	Comment by Damir Nesic: Hard to follow.	Comment by Damir Nesic: ?
The method importVariabilityExchangeModels is only available if the attribute capability.setVariationPoints has the value .	Comment by Damir Nesic: This notation not used previously!
[bookmark: _Toc194032]Method exportVariabilityExchangeModels
The method exportVariabilityExchangeModels reads information on the variation points in all available artifacts and returns a VariabilityExchangeModels structure.	Comment by Damir Nesic: about	Comment by Damir Nesic: This might be a bit extreme. And when I think about it, this where Himanshu’s comment might come into play. I might want to export only artifact related to Gen5 of my product. Or only artifacts related to products produced after 2005. Can we, add an additional parameter to this method?
Let be the VariabilityExchangeModel objects which are contained by the VariabilityExchangeModels object which is returned from the method exportVariabilityExchangeModels. Then for all , the attribute type shall have the value VariationPointDescription .
The method exportVariabilityExchangeModels is only available if the attribute capability.getVariationPoints is set to .
[bookmark: _Toc367432897][bookmark: _Toc194033][bookmark: _Toc393199849][bookmark: _Toc367432899]Method getConfiguration
The method getConfiguration reads one or more variant configurations from an artifact.	Comment by Damir Nesic: I don’t understand how this can work. For example, we have an RM tool without explicit variability management. However, I have informal annotations in requirements that represent variability. So, if someone calls getConfiguration from the RM tool:
What does the tool return?
Since the RM tool does not have an internal configurator, how do we know that what is returned makes any sense?

This leads me to conclude that only a “variant management”, e.g. pure:variants, can implement this method? Correct?
Let be the VariabilityExchangeModel objects which are contained by the VariabilityExchangeModels object which is returned from the method getConfiguration. Then for all , the attribute type shall have the value VariationPointConfiguration.
The method getConfiguration is only available if the attribute capability.getConfiguration has the value .
[bookmark: _Toc367432898][bookmark: _Toc194034]Method setConfiguration
The method setConfiguration writes one or more variant configurations to an artifact.
Let be the VariabilityExchangeModel objects which are contained by the parameter of type VariabilityExchangeModels object which is the input to the method setConfiguration. Then for all , the attribute type shall have the value VariationPointConfiguration.
The method setConfiguration is only available if the attribute capability.setConfiguration has the value .

[bookmark: _Toc411856520][bookmark: _Toc194035]VariabilityExchangeModel
	<variability-exchange-model-type>
[image:]
[bookmark: _Toc411856559]Figure 25 UML Diagram for class VariabilityExchangeModel
<xs:complexType name="variability-exchange-model-type">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:group ref="variationpoint-group"
				 minOccurs="0"
				 maxOccurs="unbounded"/>
			</xs:sequence>
			<xs:attribute name="type" type="variability-api-enum" use="required"/>
			<xs:attribute name="uri" type="xs:anyURI" use="optional"/>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856600]Listing 28 XML schema for variability-exchange-model-type
<?xml version="1.0" encoding="UTF-8"?>
<variability-exchange-models id="root"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">
	<version>1</version>
	<capability>
		<import-variability-exchange-model>true</import-variability-exchange-model>
		<export-variability-exchange-model>true</export-variability-exchange-model>
		<get-configuration>true</get-configuration>
		<set-configuration>true</set-configuration>
	</capability>
	<variability-exchange-model type="variationpoint-description" id="model1"
 uri="file:///C:/SPES/file1.c">
		…
	</variability-exchange-model>
	<variability-exchange-model type="variationpoint-description" id="model2"
	 uri="file:///C:/SPES/file2.c">
		…
	</variability-exchange-model>
	<variability-exchange-model type="variationpoint-description" id="model3"
	 uri="file:///C:/SPES/file3.c">
		…
	</variability-exchange-model>
	<variability-exchange-model type="variationpoint-description" id="model4"
	 uri="file:///C:/SPES/file4.c">
		…
	</variability-exchange-model>
</variability-exchange-models>
[bookmark: _Toc411856601]Listing 29 XML example for variability-exchange-model-type
[bookmark: _Toc194036]Description
A VariabilityExchangeModel is an artifact which may contain variation points. Examples for artifacts are
C/C++ files
Matlab/Simulink Models
DOORS databases
[bookmark: _Toc194037][bookmark: _Toc367432877]Attribute type	Comment by michael: Extension required for partial config
The attribute type of a VariabilitExchangeModel determines whether this model is a description of the variation points in the artifacts or defines a variant configuration:
If the value of type is VariationPointDescription, then the attribute selected of all Variations (see section 3.21.2) and BindingTimes (see section 3.2.2) has no effect and shall be omitted.	Comment by Damir Nesic: Or if present, it will not be considered?
If the value of type is VariationPointConfiguration, then the attribute selected of all Variations (see section 3.21.2) and BindingTimes (see section 3.2.2) is not optional, and the attribute expression of CalculatedVariation must contain a constant.
See also section 3.21.2.
[bookmark: _Toc194038]Attribute uri
The attribute uri of a VariabilityExchangeModel defines the Uniform Resource Locator (URI, see [RFC3986]) of the artifact that is associated with the VariabilityExchangeModel.

[bookmark: _Toc393199850][bookmark: _Toc411856521][bookmark: _Toc194039][bookmark: _Toc367432878]VariabilityExchangeModels
 	<variability-exchange-models-type>
[image:]
[bookmark: _Ref396987241][bookmark: _Toc411856560]Figure 26 UML Diagram for class VariabilityExchangeModels
<xs:complexType name="variability-exchange-models-type">
	<xs:sequence>
		<xs:element name="version" type="xs:unsignedInt" fixed="1" />
		<xs:element name="capability" type="capability-type" />
		<xs:element name="variability-exchange-model"
		 type="variability-exchange-model-type"
		 minOccurs="0"
		 maxOccurs="unbounded" />
	</xs:sequence>
</xs:complexType>
[bookmark: _Toc411856602]Listing 30 XML Schema for variability-exchange-models-type
<?xml version="1.0" encoding="UTF-8"?>
<variability-exchange-models id="root"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">
	<version>1</version>
	<capability>
		<import-variability-exchange-model>true</import-variability-exchange-model>
		<export-variability-exchange-model>true</export-variability-exchange-model>
		<get-configuration>true</get-configuration>
		<set-configuration>true</set-configuration>
	</capability>
	<variability-exchange-model type="variationpoint-description" id="model1">
		…
	</variability-exchange-model>
	<variability-exchange-model type="variationpoint-configuration" id="model2">
		…
	</variability-exchange-model>
</variability-exchange-models>
[bookmark: _Toc411856603]Listing 31 XML example for variability-exchange-models-type
[bookmark: _Toc194040]Description
VariabilityExchangeModels is the top level object of a Variability Exchange Language document. In the XML representation, variability-exchange-models is the root element of the XML document object.
[bookmark: _Ref396985690][bookmark: _Toc194041]Attribute version
The attribute version of VariabilityExchangeModels defines the version of the Variability Exchange Language to which the Variability Exchange Language document conforms.
The attribute version of VariabilityExchangeModels should be a positive non-zero Integer.
If a specific implementation of the Variability Exchange Language supports version and a Variability Exchange Language document is in version , then the following conditions should hold:
1. The implementation shall reject the document if .
2. The implementation shall accept the document if .
3. The implementation may accept the document if .
In other words, an implementation of the Variability Exchange Language should never accept a document where the attribute version of the element VariabilityExchangeModels is a greater than the one that is supported by the implementation. It may, however accept a document with a smaller version number (backwards compatibility). Obviously, if both version numbers are equal, the document should be accepted[footnoteRef:5]. [5: Of course, the document might still be rejected later for another reason, for example a data type mismatch.]

The attribute version of VariabilityExchangeModels is read-only.
[bookmark: _Toc194042]Attribute capbability
The attribute capability of VariabilityExchangeModels defines which API operations (see section 3.16.5) are supported by the implementation of the Variability Exchange Language that created the Variability Exchange Language document.
For more information see the class Capability.

[bookmark: _Toc393199851][bookmark: _Toc411856522][bookmark: _Toc194043]VariabilityAPITypeEnum	<variability-api-enum>	Comment by michael: Extension required for partial config
[image:]
[bookmark: _Toc411856561]Figure 27 UML Diagram for class VariabilityAPITypeEnum
<xs:simpleType name="variability-api-enum">
	<xs:restriction base="xs:string">
		<xs:enumeration value="variationpoint-description"/>
		<xs:enumeration value="variationpoint-configuration"/>
	</xs:restriction>
</xs:simpleType>
[bookmark: _Toc411856604]Listing 32 XML Schema for variability-api-type-enum
<?xml version="1.0" encoding="UTF-8"?>
<variability-exchange-models id="root"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../VariabilityExchangeLanguage.xsd">
	<version>1</version>
	<capability>
		<import-variability-exchange-model>true</import-variability-exchange-model>
		<export-variability-exchange-model>true</export-variability-exchange-model>
		<get-configuration>true</get-configuration>
		<set-configuration>true</set-configuration>
	</capability>
	<variability-exchange-model type="variationpoint-description" id="model1">
		…
	</variability-exchange-model>
	<variability-exchange-model type="variationpoint-configuration" id="model2">
		…
	</variability-exchange-model>
</variability-exchange-models>
[bookmark: _Toc411856605]Listing 33 XML example for variability-api-type-enum
[bookmark: _Toc194044]Description
The enumeration VariabilityAPITypeEnum differentiates between the two flavors of VariabilityExchangeModel objects:
1. VariationPointDescription
2. VariationPointConfiguration
See the class VariabilityExchangeModel for more details.

[bookmark: _Toc367432889][bookmark: _Toc393199852][bookmark: _Toc411856523][bookmark: _Toc194045][bookmark: _Toc367432900]Variation	<variation-type>
[image:]
[bookmark: _Toc411856562]Figure 28 UML Diagram for class Variation
<xs:complexType name="variation-type" abstract="true">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:element name="hierarchy"
				 type="variationpoint-hierarchy-type"
				 minOccurs="0" maxOccurs="1"/>
				<xs:element name="depencency"
				 type="variation-dependency-type"
				 minOccurs="0" maxOccurs="unbounded"/>
				<xs:element name="corresponding-variable-artifact-element"
				 type="artifact-element-type"
				 minOccurs="0" maxOccurs="unbounded"/>
			</xs:sequence>
			<xs:attribute name="selected" type="xs:boolean" use="optional"/>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856563]Figure 29 XML Schema for variation-type
[bookmark: _Toc194046]Description
The abstract class Variation implements a variation of a variation point. Each instance of the class VariationPoint contains one or more instances of the class Variation.	Comment by Damir Nesic: Is implements the best word here? Maybe represents.
There are four classes that derive from Variation, namely OptionalVariaton, XorVariation, CalculatedVariation and ValueVariation.	Comment by Damir Nesic: Specialize, extend, inherit. I think that object-oriented terminology is the best to use here.
[bookmark: _Toc367432890][bookmark: _Ref397001559][bookmark: _Ref397002305][bookmark: _Toc194047]Attribute selected	Comment by michael: Adaption for partial config needed.
If the attribute type of a VariabilityExchangeModel has the value VariationPointConfiguration, then the attribute selected of a Variation decides wether is contained in the variation point configuration which is defined by the VariabilityExchangeModel which contains .
· If the attribute type of a VariabilityExchangeModel has the value VariationPointDescription, then no Variation in shall have an attribute selected.	Comment by Damir Nesic: Again, maybe it’s easier to say that it is not considered instead of it shall not have the attribute.
· If the attribute type of a VariabilityExchangeModel has the value VariationPointConfiguration, then every Variation in shall have an attribute selected.
If the attribute type of a VariabilityExchangeModel has the value VariationPointConfiguration, and the attribute selected of a Variation contained by has the value , then is a member of the variation point configuration defined by .
If the attribute type of a VariabilityExchangeModel has the value VariationPointConfiguration, and the attribute selected of a Variation contained by has the value , then is not a member of the variation point configuration defined by .
[bookmark: _Toc367432891][bookmark: _Ref395526170][bookmark: _Ref395526190][bookmark: _Ref395526216][bookmark: _Ref395699430][bookmark: _Ref395705701][bookmark: _Ref396826068][bookmark: _Ref396829784][bookmark: _Toc194048]Attribute correspondingVariableArtifactElement
The attribute correspondingVariableArtifactElement of a Variation implements a reference to the artifact elements which correspond to .
The attribute correspondingVariableArtifactElement is optional.
If a Variation has more than one correspondingVariableArtifactElements then the URIs of do not need to point to the same artifacts. That is, the URI attributes of may have different values for each .
[bookmark: _Toc194049]Notes
The class Variation inherits from the class Identifiable.	Comment by Damir Nesic: Good!
The classes OptionalVariation, XorVariation, CalculatedVariation and ValueVariation inherit from Variation.

[bookmark: _Toc393199853][bookmark: _Toc411856524][bookmark: _Toc194050]VariationPoint	<variationpoint-type>
[image:]
[bookmark: _Toc411856564]Figure 30 UML Diagram for class VariationPoint
<xs:complexType name="variationpoint-type" abstract="true">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:element name="bindingtime"
				 type="bindingtime-type"
				 minOccurs="0" maxOccurs="unbounded"/>
				<xs:element name="corresponding-variable-artifact-element"
				 type="artifact-element-type"
				 minOccurs="0" maxOccurs="unbounded"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>

<xs:group name="variationpoint-group">
	<xs:choice>
		<xs:group ref="structural-variationpoint-group"/>
		<xs:group ref="parameter-variationpoint-group"/>
	</xs:choice>
</xs:group>
[bookmark: _Toc411856606]Listing 34 XML Schema for variationpoint-type
[bookmark: _Toc194051]Description
The abstract class VariationPoint describes a variationpoint in an artifact.
[bookmark: _Toc367432901][bookmark: _Toc194052]Attribute bindingTime
The attribute bindingTime defines the binding time of a VariationPoint. For more information on the concept of binding times, see section 3.2.
If a VariationPoint does not declare a BindingTime, then it is up to the binding process to define which binding time to use. For example, a process that uses a single binding time may not state an explicit binding time for its variation points.	Comment by Damir Nesic: What is this process? Who performs it?
A VariationPoint may define more than one binding time. In this case, the attribute selected of the BindingTime elements decides which binding time is used in the actual binding process.	Comment by Damir Nesic: See comments about class BindingTime
[bookmark: _Toc393201846]If the VariabilityExchangeModel which contains a VariationPoint has the type VariationPointConfiguration, then let be the values of the attribute selected of the BindingTime attributes of . Then the following conditions must hold:	Comment by Damir Nesic: Start with: Let…	Comment by Damir Nesic: To follow the convention, this should be underlined
1. 	Comment by Damir Nesic: Same comments as before
2.
[bookmark: _Toc393201847]A consequence of the above condition is that if a VariationPoint in a VariationPointConfiguration has only a single BindingTime attribute , then the attribute selected of shall have the value .	Comment by Damir Nesic: For all configurations. But how is this enforced?
How and when a value for the attribute selected is determined is beyond the scope of this document.
[bookmark: _Toc367432903][bookmark: _Ref395615633][bookmark: _Toc194053]Attribute correspondingVariableArtifactElement
The attribute correspondingVariableArtifactElement of a VariationPoint implements a reference to the artifact elements which correspond to .	Comment by Damir Nesic: Represents?
Not all VariationPoints have a correspondingVariableArtifactElement.	Comment by Damir Nesic: This should be explained. Whose variability does a variation point represents then?
If a VariationPoint has more than one correspondingVariableArtifactElements then the URIs of do not need to point to the same artifacts. That is, the URI attributes of may have different values for each .
[bookmark: _Toc194054]Notes
The class VariationPoint inherits from the class Identifiable.
There classes StructuralVariationPoint and ParameterVariationPoint inherit from the class VariationPoint.

[bookmark: _Toc393199854][bookmark: _Toc411856525][bookmark: _Toc194055][bookmark: _Toc367432904]VariationPointHierarchy
	<variationpoint-hierarchy-type>
[image:]
[bookmark: _Toc411856565]Figure 31 UML Diagram for class VariationPointHierarchy
<xs:complexType name="variationpoint-hierarchy-type">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:element name="variationpoint" minOccurs="1" maxOccurs="unbounded">
					<xs:complexType>
						<xs:attribute name="ref" type="xs:IDREF" use="required"/>
					</xs:complexType>
				</xs:element>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856607]Listing 35 XML Schema for variationpoint-hierarchy-type
<variability-exchange-model type="variationpoint-description" id="model">
	<optional-structural-variationpoint id="vp1">
		<variation id="vp1v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
	<optional-structural-variationpoint id="vp2">
		<variation id="vp2v1">
			<hierarchy id="vp2h1">
				<variationpoint ref="vp1"/>
			</hierarchy>
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
</variability-exchange-model>
[bookmark: _Toc411856608]Listing 36 XML Example for variationpoint-hierarchy-type
[bookmark: _Toc194056]Description
Each Variation may contain a VariationPointHierarchy object. VariationPointHierarchy establishes a hierarchy among VariationPoints and Variations.
The hierarchy is a graph defined as follows:
 where is a VariationPoint in a Variability Exchange Language document[footnoteRef:6].	Comment by Damir Nesic: For me quite unclear [6: Strictly speaking, would be a set of nodes and there is bijective mapping between and the set of elements of type variationpoint-type in the DOM of the Variability Exchange Language document. We use a simplified language for the sake of clarity here.]

Let be a VariationPoint which contains a Variation which contains a VariationPointHierarchy whose attribute ref refers to a VariationPoint . Then .	Comment by Damir Nesic: Not in class diagram above	Comment by Damir Nesic: This graph is then not captured by a VEL model but must be created separately. This link does not exist explicitly.
No two VariationPointHierarchy elements may refer to the same VariationPoints. Formally, the following condition shall hold:
 must not contain circlescycles, that is, there cannot be a sequence. Formally, the following condition shall hold: (.	Comment by Damir Nesic: Shouldn’t the negation of this hold?
These conditions make sure that is a tree or a set of trees.	Comment by Damir Nesic: I think that this is called a “forest”.
[bookmark: _Toc194057]Attribute variationPoint
The attribute variationPoint of a VariationPointHierarchy identifies the endpoint of a variationpoint hierarchy relation.
[bookmark: _Toc194058]Notes
The class VariationPointHierarchy inherits from Identifiable.
In the XML Schema, the attribute variationPoint of VariationPointHierarchy is not implemented as a XML attribute but as a separate XML element named variation with an XML attribute ref that implements the actual reference. This is because variation has an upper multiplicity greater than one, but XML attributes are restricted to an upper multiplicity of 1.

[bookmark: _Toc393199855][bookmark: _Toc411856526][bookmark: _Toc194059]VariationDependency	<variation-dependency-type>
[image:]
[bookmark: _Toc411856566]Figure 32 UML Diagram for class VariationDependenxy
<xs:complexType name="variation-dependency-type">
	<xs:complexContent>
		<xs:extension base="identifiable-type">
			<xs:sequence>
				<xs:element name="variation"
				 minOccurs="1" maxOccurs="unbounded">
					<xs:complexType>
						<xs:attribute name="ref" type="xs:IDREF" use="required"/>
					</xs:complexType>
				</xs:element>
				<xs:element name="condition"
				 type="expression-type"
				 minOccurs="0" maxOccurs="1"/>
			</xs:sequence>
			<xs:attribute name="type"
			 type="variation-dependency-enum"
			 use="required"/>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856609]Listing 37 XML Schema for variation-dependency-type
<variability-exchange-model type="variationpoint-description" id="model">
	<optional-structural-variationpoint id="vp1">
		<variation id="vp1v1">
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
	</optional-structural-variationpoint>
	<optional-structural-variationpoint id="vp2">
		<variation id="vp2v1">
			<depencency type="conflicts" id="vp2d1">
				<variation ref="vp1v1"/>
			</depencency>
			<condition type="single-feature-condition">Feature1</condition>
		</variation>
		<variation id="vp2v2">
			<condition type="single-feature-condition">Feature2</condition>
		</variation>
		<variation id="vp2v3">
			<condition type="single-feature-condition">Feature3</condition>
		</variation>
	</optional-structural-variationpoint>
</variability-exchange-model>
[bookmark: _Toc411856610]Listing 38 XML example for variation-dependency-type
[bookmark: _Toc194060]Description
A VariationDependency defines a dependency between Variation objects. Each Variation may have an arbitrary number of dependencies on to other Variations. There are two types of variations: requires and conflicts.
If a Variation aggregates more than one VariationDependency, then all dependencies must be fulfilled.
[bookmark: _Toc367432905][bookmark: _Toc194061]Attribute type
The attribute type of VariationDependency defines the type of a dependency. There are two types of dependencies:
requires
conflicts
The enumeration VariationDependencyEnum defines the values that are allowed for the attribute type.
[bookmark: _Toc194062]Attribute variation
The attribute variation of a VariationDependency defines the target of a dependency.
[bookmark: _Toc194063]Attribute condition
The optional attribute condition of a VariationDependency defines a condition under which the relation that is defined by the VariationDependency is effective.
[bookmark: _Toc194064]Formal Definition	Comment by Damir Nesic: New type of section! 	Comment by Damir Nesic: Hard to understand. Maybe we can discuss during meetings.
Let be a Variation which contains a VariationDependency , and let be the Variation to which the attribute variation of refers, and let be the value of the attribute type of . Furthermore, let be the content of the attribute condition of .
Then the condition of the VariationDependency , is defined as follows:
If the attribute type of is requires, then

If the attribute type of is conflicts, then

Let be the VariationDependency objects contained by a Variation . Then the condition of , is defined as follows:

Let be the conditions of all Variation objects in a Variability Exchange Language. Then the following condition shall hold:

[bookmark: _Toc194065]Notes
The class VariationDependency inherits from Identifiable.
In the XML Schema, the attribute variation is not implemented as a XML attribute but as a separate XML element named variation with an XML attribute ref that implements the actual reference. This is because variation has an upper multiplicity greater than one, but XML attributes are restricted to an upper multiplicity of 1 (that is, an XML element may not have multiple elements with the same name).

[bookmark: _Capability][bookmark: _Toc367432906][bookmark: _Toc393199856][bookmark: _Toc411856527][bookmark: _Toc194066]VariationDependencyEnum
	<variation-dependency-enum>	Comment by michael: Enum extension possibilities required.
[image:]
[bookmark: _Toc411856567]Figure 33 UML Diagram for class VariationDependenyEnum
<xs:simpleType name="variation-dependency-enum">
	<xs:restriction base="xs:string">
		<xs:enumeration value="requires"/>
		<xs:enumeration value="conflicts"/>
	</xs:restriction>
</xs:simpleType>
[bookmark: _Toc411856611]Listing 39 XML Schema for variation-dependency-enum
[bookmark: _Toc194067]Description
The enumeration VariationDependencyEnum defines which values are allowed for the attribute type of VariationDependency. Currently, this enumeration defines two values:
requires
conflicts
For more information see VariationDependency.

[bookmark: _Toc367432909][bookmark: _Toc393199857][bookmark: _Toc411856528][bookmark: _Toc194068]XorParameterVariationPoint	
	< xor-parameter-variationpoint-type>
[image:]
[bookmark: _Toc411856568]Figure 34 UML Diagram for class XorParameterVariationPoint
<xs:complexType name="xor-parameter-variationpoint-type">
	<xs:complexContent>
		<xs:extension base="variationpoint-type">
			<xs:sequence>
				<xs:element name="variation"
				 type="value-variation-type"
				 maxOccurs="unbounded" />
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856612]Listing 40 XML Schema for xor-parameter-variationpoint-type
<xor-parameter-variationpoint id="vp1">
	<variation id="vp1v1">
		<condition type="single-feature-condition">Feature1</condition>
		<value>1</value>
	</variation>
	<variation id="vp1v2">
		<condition type="single-feature-condition">Feature2</condition>
		<value>2</value>
	</variation>
	<variation id="vp1v3">
		<condition type="single-feature-condition">Feature3</condition>
		<value>3</value>
	</variation>
</xor-parameter-variationpoint>
[bookmark: _Toc411856613]Listing 41 XML Example for xor-parameter-variationpoint-type
[bookmark: _Toc194069]Description
A XorParameterVariationPoint contains a number of ValueVariation objects. During the binding process, the attribute condition of each ValueVariation objects is evaluated. As described in section 3.16.2, it is guaranteed that if all ValueVariation objects have a condition attribute, then there is exactly one ValueVariation whose condition evaluates to . The attribute value of this ValueVariation is then used to set the value of the associated artifact element.	Comment by Damir Nesic: How is this guaranteed? And by which tool (if it’s a tool thing at all)?
[bookmark: _Toc194070]Notes
The class XorParameterVariationPoint inherits from the class ParameterVariationPoint.
The class XorParameterVariationPoint is modelled after the switch statement in the programming languages C or Java; it selects a single value from a list of values. The difference is that a switch in C or Java first evaluates a Boolean expression and then compares the result to a list of constants, while XorParameterVariationPoint evaluates a list of Boolean expressions and selects the one which returns .	Comment by Damir Nesic: I think that it is better to refer to the example and discuss an artifact that has this type of variation then to compare with constructs of C language.

[bookmark: _Toc367432910][bookmark: _Toc393199858][bookmark: _Toc411856529][bookmark: _Toc194071]XorStructuralVariationPoint
	<xor-structural-variationpoint-type>
[image:]
[bookmark: _Toc411856569]Figure 35 UML Diagram for XorStructuralVariationPoint
<xs:complexType name="xor-structural-variationpoint-type">
	<xs:complexContent>
		<xs:extension base="variationpoint-type">
			<xs:sequence maxOccurs="unbounded">
				<xs:element name="variation" type="xor-variation-type"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856614]Listing 42 XML Schema for xor-structural-variationpoint-type
<xor-structural-variationpoint id="vp1">
	<variation id="vp1v1" name="Alternative 1">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
	<variation id="vp1v2" name="Alternative 2">
		<condition type="single-feature-condition">Feature2</condition>
	</variation>
	<variation id="vp1v3" name="Alternative 3">
		<condition type="single-feature-condition">Feature3</condition>
	</variation>
</xor-structural-variationpoint>
[bookmark: _Toc411856615]Listing 43 XML Example for xor-structural-variationpoint-type
[bookmark: _Toc194072]Description
A XorStructuralVariationPoint contains one or more XorVariations. Its purpose is to choose exactly one of several alternative Variations.
During the binding process, the attribute condition is evaluated for each XorVariation. As described in section 3.28.2, it is guaranteed that if all XorVariation objects have a condition attribute, then exactly one of those conditions evaluates to . The artifact element that corresponds to the XorVariation whose attribute condition evaluates to true is then removed or set inactive.	Comment by Damir Nesic: See comment in 3.26.1
[bookmark: _Toc194073]Notes
The class XorStructuralVariationPoint inherits from the class StructuralVariationPoint.

[bookmark: _Toc393199859][bookmark: _Toc411856530][bookmark: _Toc194074]XorVariation	<xor-variation-type>
[image:]
[bookmark: _Toc411856570]Figure 36 UML Diagram for XorVariation
<xs:complexType name="xor-variation-type">
	<xs:complexContent>
		<xs:extension base="variation-type">
			<xs:sequence>
				<xs:element name="condition"
				 type="expression-type"
				 minOccurs="0"
				 maxOccurs="1"/>
			</xs:sequence>
		</xs:extension>
	</xs:complexContent>
</xs:complexType>
[bookmark: _Toc411856616]Listing 44 XML Schema for xor-variation-type
<xor-structural-variationpoint id="vp1">
	<variation id="vp1v1" name="Alternative 1">
		<condition type="single-feature-condition">Feature1</condition>
	</variation>
	<variation id="vp1v2" name="Alternative 2">
		<condition type="single-feature-condition">Feature2</condition>
	</variation>
	<variation id="vp1v3" name="Alternative 3">
		<condition type="single-feature-condition">Feature3</condition>
	</variation>
</xor-structural-variationpoint>
[bookmark: _Toc411856617]Listing 45 XML Example for xor-variation-type
[bookmark: _Ref396825883][bookmark: _Toc194075]Description
A XorVariation is a kind of variation that choses Variation out of several alternative Variations.	Comment by Damir Nesic: Unclear word in this context. Who chooses?
Let be a XorStructuralVariationPoint which and let be the values of the selected attributes of the XorVariations which are aggregated by . Then the following conditions shall hold:
1. 	Comment by Damir Nesic: Same comments as before
2.
[bookmark: _Ref396825921][bookmark: _Toc194076]Attribute condition
When evaluated, the attribute condition of a XorVariation shall return a Boolean value. That is, its datatype attribute (if present) should be a Boolean or a data type which can be converted into a Boolean.
Let be the conditions of all the XorVariations that are contained in a given XorStructuralVariationPoint. Then the following conditions must hold
1. 	Comment by Damir Nesic: Same as before
2.
If a XorVariation has an attribute condition and an attribute selected (inherited from Variation), then the following condition shall hold:

[bookmark: _Toc194077]Binding
Each XorStructuralVariationPoint contains one or more XorVariations. When a XorStructuralVariationPoint gets bound, the attribute condition of each XorVariation is evaluated. For only one XorVariation the condition shall evaluate to . For all other XorVariations, the artifact elements that are referenced by its attribute correspondingVariableArtifactElement (see section 3.21.3) get deleted or set to inactive.
A XorStructuralVariationPoint can only be bound when all its ValueVariations have a condition.
[bookmark: _Toc194078]Notes
The class XorVariation inherits from the class Variation.

2 [bookmark: _Toc388881068][bookmark: _Toc391634662][bookmark: _Toc194079]Security Considerations
(Note: OASIS strongly recommends that Technical Committees consider issues that could affect security when implementing their specification and document them for implementers and adopters. For some purposes, you may find it required, e.g. if you apply for IANA registration.
While it may not be immediately obvious how your specification might make systems vulnerable to attack, most specifications, because they involve communications between systems, message formats, or system settings, open potential channels for exploit. For example, IETF [RFC3552] lists “eavesdropping, replay, message insertion, deletion, modification, and man-in-the-middle” as well as potential denial of service attacks as threats that must be considered and, if appropriate, addressed in IETF RFCs.
In addition to considering and describing foreseeable risks, this section should include guidance on how implementers and adopters can protect against these risks
We encourage editors and TC members concerned with this subject to read Guidelines for Writing RFC Text on Security Considerations, IETF [RFC3552], for more information.)
[bookmark: _Toc287332011][bookmark: _Toc194080]Conformance
(Note: The OASIS TC Process requires that a specification approved by the TC at the Committee Specification Public Review Draft, Committee Specification or OASIS Standard level must include a separate section, listing a set of numbered conformance clauses, to which any implementation of the specification must adhere in order to claim conformance to the specification (or any optional portion thereof). This is done by listing the conformance clauses here.
For the definition of "conformance clause," see OASIS Defined Terms.
See "Guidelines to Writing Conformance Clauses":
http://docs.oasis-open.org/templates/TCHandbook/ConformanceGuidelines.html.
Remove this note before submitting for publication.)

[bookmark: _Toc85472897][bookmark: _Toc287332012][bookmark: _Toc194081]Acknowledgments
The following individuals have participated in the creation of this specification and are gratefully acknowledged:
Participants:	Comment by michael: Add your name here!
Schulze, Dr. Michael, pure-systems GmbH
Ryssel, Dr. Uwe, pure-systems GmbH
Nešić, Damir, PhD candidate, KTH Royal Institute of Technology

[bookmark: _Toc85472898][bookmark: _Toc287332014][bookmark: _Toc194082]Revision History
	Revision
	Date
	Editor
	Changes Made

	01
	04. Febr. 2019
	Michael Schulze
	Initial specification

image1.png
Variants Management

Variability
Exchange
Language

variation
points

Systems Development

create artifact

| variant

select features |

variants
management
tool

configuration

development

> tool A

variation
points

create artifact

| variant

configuration

development

> tool B

image2.emf
Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

OptionalVariation

+ condition :Expression [0..1]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

StructuralVariationPoint ParameterVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

Identifiable

VariationPointHierarchy

+variation1..*

+variation1..*

+variation1..*

+variationPoint

1..*

+hierarchy0..1

+variationPoint0..*

+models0..*

+variation1

+variation 1..*

+depencency0..*

image3.emf
ArtifactElement

+ type :String [0..1] {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

image4.emf
BindingTime

+ selected :Boolean [0..1]

+ name :BindingTimeEnum

+ condition :Expression [0..1]

image5.emf
«enumeration»

BindingTimeEnum

 RequirementsTime

 BluePrintDerivationTime

 ModelConstructionTime

 ModelSimulationTime

 CodeGenerationTime

 PreprocessorTime

 CompileTime

 LinkTime

 FlashTime

 PostBuild

 PostBuildLoadable

 PostBuildSelectable

 RunTime

image6.emf
ParameterVariationPoint

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation

1

+variation

1..*

image7.emf
Capability

+ importVariabilityExchangeModels :Boolean {readOnly}

+ exportVariabilityExchangeModels :Boolean {readOnly}

+ getConfiguration :Boolean {readOnly}

+ setConfiguration :Boolean {readOnly}

image8.emf
String

Expression

+ type :ExpressionTypeEnum

+ datatype :String [0..1]

image9.emf
«enumeration»

ExpressionTypeEnum

 SingleFeatureCondition

 AndFeatureCondition

 OrFeatureCondition

 PVSCLExpression

 OCLExpression

 AUTOSARExpression

image10.emf
SpecialData

+ name :String

KeyValuePair

+ key :String

Identifiable

+ name :string [0..1] {readOnly}

+ id :Identifier {readOnly}

Value

+ type :String [0..1]

+ value :String

+data

0..*

+value

+specialData0..*

image11.emf
OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint

OptionalStructuralVariationPoint

XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

+variation

1..*

+variation

1..*

image12.emf
SpecialData

+ name :String [0..1]

KeyValuePair

+ key :String

Identifiable

+ name :string [0..1] {readOnly}

+ id :Identifier {readOnly}

Value

+ type :String [0..1]

+ value :String

+data

0..*

+value

+specialData0..*

image13.emf
VariabilityAPI

- version :int {readOnly}

- capability :Capability {readOnly}

+ importVariabilityExchangeModels(VariabilityExchangeModels) :void

+ exportVariabilityExchangeModels() :VariabilityExchangeModels

+ setConfiguration(VariabilityExchangeModels) :void

+ getConfiguration(Identifiable) :VariabilityExchangeModels

+ getVersion() :int

+ getCapability() :Capability

image14.emf
Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

+variationPoint0..*

+models0..*

image15.emf
«enumeration»

VariabilityAPITypeEnum

 VariationPointDescription

 VariationPointConfiguration

image16.emf
Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariabilityExchangeModel

+ type :VariabilityAPITypeEnum {readOnly}

+ uri :UniformResourceIdentifier [0..1] {readOnly}

Identifiable

VariabilityExchangeModels

+ version :Unsigned Integer {readOnly}

+ capability :Cabability {readOnly}

+variationPoint0..*

+models0..*

image17.emf
Identifiable

VariationPoint

+ bindingTime :BindingTime [0..*]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

OptionalVariation

+ condition :Expression [0..1]

StructuralVariationPoint ParameterVariationPoint

OptionalStructuralVariationPoint XorStructuralVariationPoint

XorVariation

+ condition :Expression [0..1]

CalculatedParameterVariationPoint XorParameterVariationPoint

ValueVariation

+ condition :Expression [0..1]

+ value :String

CalculatedVariation

+ expression :Expression [0..1]

Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPointHierarchy

+variation1..*

+variation1..*

+variation1..*

+variationPoint

1..*

+hierarchy0..1

+variation1

+variation 1..*

+depencency0..*

image18.emf
Identifiable

VariationDependency

+ type :VariationDependencyEnum

+ condition :Expression [0..1]

Identifiable

Variation

+ selected :Boolean [0..1]

+ correspondingVariableArtifactElement :ArtifactElement [0..*]

Identifiable

VariationPointHierarchy

+hierarchy0..1

+variation 1..*

+depencency0..*

image19.emf
«enumeration»

VariationDependencyEnum

 Requires

 Conflicts

