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from a development tool and pass configurations of selected system features to a development 
tool.

By defining a common variability data interface that can be implemented by both the develop-
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for variable systems and more flexible use of tools.
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1 Introduction
1.1 Overview
1.1.1 Section Prolog
VEL is an interoperability standard that enables the exchange of variability information among variant 
management tools and systems development tools. The essential tasks of a variants management 
tool are to represent and analyze the variability of a system abstractly and to define system configura-
tions by selecting the desired system features. A system development tool captures information of 
a specific kind, such as requirements, architecture, component design, or tests. In order to support 
the development of variable systems a development tool either has to offer the capability to express 
and deal with variability directly, or an adaptor must be provided that adds this capability to the 
development tool.

To interconnect variants management with systems development the information exchange among 
the corresponding tools must be established. A variants management tool must be able to read or ex-
tract the variability from a development tool and to pass a configuration, i.e. a set of selected system 
features, to the development tool. Up to now the interfaces that support this information exchange 
are built for each development tool anew. With VEL<emphasis>,</emphasis> a common interface 
is defined that can be implemented by both the development tools and the variants management 
tool, thus VEL eliminates the cost of building customized interfaces by defining a standard way for 
information to be exchanged between tools.

1.1.2 Variants Management, System Variability, and Variation 
Points
Variants management is an activity that accompanies the whole system development process and, 
therefore, is orthogonal to the other development tasks. Like safety, security, and other system prop-
erties, variability cannot be built into a system at the end of the process. Rather, the desired variability 
has to be determined, analyzed, designed, implemented and tested continuously, starting at the very 
beginning of the process through to the final delivery of the system or the system variant respectively. 
That means that within each development stage – requirements analysis, design, implementation, 
test, documentation, etc. – variability is an aspect that has to be considered.

We consider as variable system a system that can be tailored by the system producer according 
to individual clients’ needs. All variants of a variable system are developed within one development 
process. In addition to the standard development tasks the process must also provide the means to 
tailor the system, i.e. to derive the client specific variant of the system. This may happen at different 
stages, also known as (variance) binding times.

Variability is embodied in variation points. Consider as example a requirements document. A require-
ment toward a variable system may be optional. In this case, two system variants can be formed by 
either selecting or deselecting the requirement. A set of requirements may be alternatives, then each 
selection of one of these requirements forms one system variant. Finally, a requirement may contain a 
parameter, and then each value that can be selected for this parameter yields a system variant.

The same definition of variation points holds for all other artifacts that are created in the development 
process – be it analysis or design models such as the views defined in the meta model, test specifica-
tions, code, documentation, or whatever. In each artifact there may be optional elements, alternative 
elements, and parameterized elements.

We do not specify here how these variation points are represented in the artifacts. Some artifact 
formats support the definition of variation points, in other cases appropriate means have to be added. 
This obviously also has an impact on the tools that are used to create and manage the artifacts. In 
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some cases they are capable to express variation points. In other cases adaptors have to be built in 
order to incorporate variation points.

1.1.3 Variability View and Variants Management Tools
It is an accepted best practice to define an explicit abstract variability view on a system under 
development to support variants management continuously throughout the process. This abstraction 
contains the bare information on the variability of the system. That means that it describes which var-
iants exist, but does not describe how the variability is realized. The variability information is derived 
from an analysis of the commonalities, differences, and dependencies of the system’s variants and is 
often represented as a feature model.

A variants management tool supports the creation of an artifact – a variability model – that represents 
the abstract variability information. Moreover, it offers operations to select or deselect system features 
and via this feature configuration to specify the system’s variants.

The information of the variability view has to be connected with the system development artifacts 
in order to define how the feature selection (system configuration) determines the resolution of the 
variation points within these artifacts, i.e. the selection of a variation for each variation point. As soon 
as these connections are established a feature configuration can be carried over to a configuration of 
the variation points of the concerned artifact. The technical realization of this connection is addressed 
by the Variability Exchange Language.

At present there is no standard that would define how variation points are expressed in different 
artifacts. That means that a tool supplier who builds a variants management tool has to implement an 
individual interface to each other tool that is used in a development process to create the correspond-
ing artifacts. The purpose of the Variability Exchange Language is to support the standardization of 
these interfaces by a common exchange format that defines which information is exchanged between 
a variants management tool and a tool that is used to manage a specific kind of artifacts in a 
development process. As mentioned above, such a tool may either be a tool that already supports 
the definition of variation points for the concerned artifact type, or it may be an adaptor that adds this 
capability to a base tool.

The Variability Exchange Language defines a requirement on tools or tool adaptors that intend to 
support variants management. Such a tool has to be able to extract the data that is defined in the 
Variability Exchange Language from the artifact that it manages and to incorporate the data that 
is sent from the variants management tool into this artifact. Beyond the exchange format, i.e. the 
contents of the information that is exchanged, also some basic operations are defined here. They 
define in which direction the variability information is intended to flow.
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Figure 1. Use case for the Variability Exchange Language

A use case for the Variability Exchange Language can be defined as follows. Assume an artifact 
with variation points is given, for instance an artifact created with tool A in Figure 1, “Use case for 
the Variability Exchange Language”. First the development tool has to collect the data defined in 
the Variability Exchange Language, essentially given by the variation points contained in the artifact. 
It passes this data to the variants management tool that builds a variability model based on the 
data. The variability model can be used to define a system configuration by selecting the desired 
system features. The corresponding data, i.e. the configuration, formatted according to the Variability 
Exchange Language, is passed back to the development tool or adaptor that uses this data to 
create or derive an artifact variant that corresponds to the system variant defined in the variants 
management tool.

Applying this scenario to all development tools and artifacts yields a consistent set of development ar-
tifacts for any system variant automatically. The variation points that correspond to customer relevant 
system features should coincide in all artifacts, i.e. they always induce the same variability model 
in the variants management tool. In addition to that there may also be internal variation points, for 
instance implementation variants that do not alter the visible properties of the system but are relevant 
for the system construction process. These variation points give rise to a staged variability model in 
which customer features are separated from internal features.

Since the system configuration is built once and for all in the variants management tool an identical 
configuration is passed to all development tools and thereby ensures consistency of the variants 
selection. It might only happen that internal features for instance are not interpreted by some develop-
ment tool because it is not concerned with internal decisions, such as a requirements document or a 
system test.

1.2 Terminology
1.2.1 Key words
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and 
optional are to be interpreted as described in [RFC 2119]. Note that for reasons of style, these words 
are not capitalized in this document.
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1.2.2 Definitions
term

Definition

term

Definition

1.2.3 Key concepts
concept

Definition

concept

Definition

concept

Definition

1.3 Normative References
[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels, March 1997. S. Bradner. 

IETF (Internet Engineering Task Force) RFC 2119, http://www.ietf.org/rfc/rfc2119.txt.

1.4 Non-Normative References
TODO

VEL-v1.0-csprd01 13 November 2020
Standards Track Copyright © OASIS Open 2020. All rights reserved. Page 10 of 63

http://www.ietf.org/rfc/rfc2119.txt


2 Overview of the Variability Exchange Lan-
guage
2.1 Section Prolog
The core of the Variability Exchange Language is given by the definition of variation points and 
their variations – by the classes VariationPoint and Variation (see Figure 2, “An Overview 
of the Variability Exchange Language”). In the following we immediately use the class names from 
the meta-model presented in Chapter Section 3, “Variability Exchange Language Class Reference” to 
discuss the corresponding concepts, such as VariationPoint and Variation. This chapter gives 
a survey on the main classes, in particular the ones shown in Figure 2, “An Overview of the Variability 
Exchange Language”.

A detailed specification of all classes is provided in Chapter Section 3, “Variability Exchange Lan-
guage Class Reference”.

Figure 2. An Overview of the Variability Exchange Language

A Variability Exchange Language document starts with a VariabilityExchangeModels 
element, which contains a number of VariabilityExchangeModel elements. Each 
VariabilityExchangeModel corresponds to one (or possibly several, but this is implementation 
dependent) artefacts with variable elements.

A VariabilityExchangeModel in turn contains a number of VariationPoints. Thus, a 
VariabilityExchangeModel describes the variable aspects of an artifact, but only those. All 
non-variable facets of the artifact are discarded because they are not necessary for our purpose.

2.2 VariationPoint and Variation
As shown in Figure 2, “An Overview of the Variability Exchange Language”, we distinguish between 
two different kinds of VariationPoints:
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1. StructuralVariationPoints are variation points where the structure of a model changes during the 
binding process. StructuralVariationPoints define which elements are contained in a bound artifact. 
There are two kinds of structural variation points:

a. OptionalStructuralVariationPoint – variation points that can be selected or deselected.

b. XorStructuralVariationPoint – i.e. variation points that represent sets of alternatives from which 
exactly one can be selected.

2. ParameterVariationPoints are variation points which select a numerical value for a parameter 
during the binding process. They do not change the structure of an artifact. There are two kinds of 
parameter variation points:

a. CalculatedParameterVariationPoint – variation points where the parameter value is calculated by 
an expression.

b. XorParameterVariationPoint – variation points where the parameter value is selected from a list 
of values.

Each VariationPoint is associated with one or more Variations. The Variations enumerate 
the possible variants for their respective VariationPoints. When an artifact is bound, then one of 
these variations (OptionalStructuralVariationPoints also allow zero variations here) is selected to be 
included in the bound artifact, and all others are discarded.

Both Variations and VariationPoints may refer to artifact elements (variableArtifact), for 
example the Simulink block or the line of code which correspond to the VariationPoint respective-
ly Variation.

VariationPoints can further define dependencies on other variation points 
(VariationDependency), for example one variation point may require another variation points. This 
is useful to express technical dependencies in artifacts.

Furthermore, a VariationPoint may contain other VariationPoints to establish a hierarchy 
(VariationPointHierarchy), similarly to subsystem blocks in Simulink or hierarchies in software 
architectures.

2.3 Variation Point Descriptions versus Variation Point 
Selections
A VariabilityExchangeModel as defined in Figure 2, “An Overview of the Variability Exchange 
Language” can actually serve two different purposes:

• A variation point description lists all variation points and all their variations; that is it describes a 
complete product line.

• A variation point description also lists all variation points, but selects one (or zero for optional 
variation points) Variation for each variation point. The attribute selected of Variation is used for that 
purpose. Any such selection must be consistent with the expression or condition attribute of a 
Variation, as well as with dependencies between variation points.

Both variation point descriptions and variation point selections use the same structure; the attribute 
type of VariabilityExchangeModel determines how a VariabilityExchangeModel should 
be interpreted.
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2.4 Binding
The Variability Exchange Language does not make any assumptions on how the binding process for 
the associated artifact works. We do however provide a way to attach Conditions or Expressions to 
Variations:

• In a StructuralVariationPoint, a Variation comes with a Condition that determines whether 
the associated artifact element is part of a bound artifact.

• In a ParameterVariationPoint, the Variation determines a value for the associated artifact 
element. This is done either by computing it (CalculatedVariation) or selecting from one of several 
values (ParameterVariation).

In a variation point description (see section Section 2.3, “Variation Point Descriptions versus Variation 
Point Selections”) the result of the evaluation of a condition or expression in a Variation must be 
compatible with the attribute selected of a Variation. That is, if the attribute selected of a Variation has 
the value true, then its condition must also evaluate to true.

2.5 Common Concepts
Most classes in the Variability Exchange Language are based on the class Identifiable, which 
provides them with a name and a unique identifier. Identifable also provide a way to attach applica-
tion-specific data (SpecialData) to elements in the Variability Exchange Language.

2.6 API
In addition to the contents of the exchange format basic operations of a Variability Interface are 
defined in the class VariabilityAPI. These operations cover the following operations:

• The import and export of VariabilityExchangeModels

• Getting and setting configurations, which are also VariabilityExchangeModels

• Getting information on the read or write access (Capability) to VariationPoints and 
VariabilityExchangeModels as configurations.

2.7 Example
Figure 3. Example source code with C-preprocessor directives

To demonstrate the applicability of the Variability Exchange Language for the exchange of variability 
information, we show as an example a simple source code section in Figure Figure 3, “Example 
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source code with C-preprocessor directives”, in which the C-preprocessor (cpp) is employed to realize 
variability, and the extract of that variability defined according to Variability Exchange Language (see 
Figure 4, “Example source code with C-preprocessor directives”). We could have used further artifact 
types like requirements, UML models, tests, etc. but for the sake of simplicity and understandability 
we opted for C-source code using the cpp.

Figure 4. Example source code with C-preprocessor directives
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To note, the cpp is a stand-alone tool for text processing, which, although initially invented for C, is 
not limited to a specific language and can be used for arbitrary text and source code transformations 
leading e.g. to conditional code compilation. The cpp tool works on the basis of directives (a.k.a. 
macros) that control syntactic program transformations. The directives supported by the cpp tool 
can be divided into four classes: file inclusion, macro definition, macro substitution, and conditional 
inclusion.

In our example, we only use the macros A and B and conditional inclusion mechanisms. The source 
code comments in Figure Figure 3, “Example source code with C-preprocessor directives” explain 
how the cpp will transform the code depending on the definition of the macros. From an abstract point 
of view, the code contains two variation points and three variations, which is reflected according to 
the Variability Exchange Language in the exchange format definition in Figure 4, “Example source 
code with C-preprocessor directives”. The first variation point spans the source lines 1-9 and contains 
two alternative variations. The variation point's corresponding elements of the artifact – in this case 
exactly the source lines – are represented in the exchange format as well. Regarding the variations, 
the first one (lines 2-6) will be selected if macro A is defined. Otherwise the second variation (line 8) 
gets selected. Assuming that the macro names are identically with features or at least there exists a 
mapping from a feature to a macro name, then the condition in the eighth line in Figure 4, “Example 
source code with C-preprocessor directives” is the equivalent to the first source code line.

The [XMLmind] variation point (lines 3-5) is nested within the first variation of the first variation point, 
constituting a variation point hierarchy. Within the corresponding exchange format, the variation points 
are not nested but the nesting information is covered by the definition in the lines 15-17 in Figure 4, 
“Example source code with C-preprocessor directives”. There, the nested variation point is referenced 
by its id, resulting in a tree-like structure at the end.

VEL-v1.0-csprd01 13 November 2020
Standards Track Copyright © OASIS Open 2020. All rights reserved. Page 15 of 63



3 Variability Exchange Language Class Refer-
ence
3.1 ArtifactElement
3.1.1 Description
An ArtifactElement is a reference to an element in an artifact.

3.1.2 Specification
Figure 5. UML Diagram for class ArtifactElement

Attribute uri

The optional attribute uri is a reference to the artifact. The content of the attribute uri is a 
Uniform Resource Identifier (URI).

The URI of an ArtifactElement should conform to the definition of Uniform Resource Locators 
as specified in ??? [FIXME].

Although the URI of ArtifactElement is optional, it is recommended to supply an URI instead 
of additional attributes whenever possible.

Attribute type

The optional attribute type specifies the type of artifact that is addressed by this 
ArtifactElement.

The attribute type is a string, so any user-defined type identifiers can be used.

Although the attribute type of an ArtifactElement is defined as optional, it is recommended 
to supply a type.

3.1.3 XML Serialization

3.1.3.1 XML Schema

Figure 6. XML Schema for ArtifactElement

<xs:complexType name="ArtifactElement">
    <xs:sequence>
        <xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="type" type="xs:string" use="optional"/>
    <xs:attribute name="uri" type="xs:anyURI" use="optional"/>
</xs:complexType>
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In the XML schema, the type ArtifactElement allows arbitrary XML child elements. This is imple-
mented by using the xs:any element (see Figure 6, “XML Schema for ArtifactElement”), which 
permits the use of any XML element regardless of whether it is defined in the current schema. The 
type of the artifact is documented in the type attribute.

3.1.3.2 Examples

Example 2, “Example for ArtifactElement using artifact-specific XML elements” shows a 
Variation, whose corresponding variable artifact element is a Simulink block with the Identifier 
12.

Example 1. Example for ArtifactElement using URIs

<structural-variationpoint id="vp1" type="optional">
    <variation id="vp1v1">
        <corresponding-variable-artifact-element
            uri="file:///C:/SPES/file1.c"/>
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

Example 2. Example for ArtifactElement using artifact-specific XML elements

<structural-variationpoint id="vp2" type="optional">
    <variation id="vp2v1">
        <corresponding-variable-artifact-element type="simulink">
            <simulink-id>12</simulink-id>
        </corresponding-variable-artifact-element>
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

3.2 BindingTime
3.2.1 Description
The binding time of a variation point describes how the associated variability is resolved1. Common 
ways to resolve a variation point are

• A variation point is removed from its artefact. For example, the #ifdef / #endif idiom commonly 
found in a C preprocessor code removes part of the source code.

• A variation point is set to “inactive”. For example, an if statement may prevent certain code 
sections from being executed. This is typically used if the binding comes too late in the process and 
the code cannot be removed.

• A parameter is assigned a fixed value.

What exactly happens when a variation point is bound is implementation specific, and beyond the 
scope this document.

1Contrary to what the term BindingTime suggests, this is not a point in time, but rather a phase in the build process.
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3.2.2 Specification
Figure 7. UML Diagram for class BindingTime

Attribute selected

A VariationPoint may have more than one BindingTime attributes. This is useful if the 
decision for the binding time of the variation point is delayed. For example, it may not be clear 
from the beginning whether a particular subsystem is removed during code generation (binding 
time CodeGenerationTime, see Section 3.3, “BindingTimeEnum”) or just deactivated during 
startup (binding time PostBuild). This decision is made at some time during the build process.

• The attribute selected of a BindingTime shall be present if the 
VariabilityExchangeModel, which contains the BindingTime, is of type 
VariationPointSelection.

• The attribute selected has no effect if the type of the VariabilityExchangeModel is of 
type VariationPointDescription and thus shall be omitted.

If a VariationPoint has more than one bindingTime attribute, then the attribute 
selected is used to designate exactly one of the binding times as the binding time that is 
actually used for the binding:

• Let v be a VariationPoint and let s1, . . . , sn be the values of the selected attributes of the 
BindingTimes of v . Then the following conditions shall hold:

1. ∃i . i ∈ 1, ...,n ∧ si = true
2. ∀j . j ∈ 1, ...,n ∧ j ≠ i sj = false
3. ∃i . i ∈ 1, ...,n ∧ si = true ∧ ∀j . j ∈ 1, ...,n ∧ j ≠ i sj = false

• If a BindingTime has both an attribute selected s and an attribute condition c, then the 
following condition shall hold:eval c = s (1)

Attribute name

The attribute name of a BindingTime is a textual representation of the binding time. It is of type 
BindingTimeEnum.

Attribute condition

[TODO: Text with formulas missing]

In other words, if a VariationPoint has more than one BindingTime with a condition, 
then only one condition shall evaluate to true. Obviously, a condition is only useful if a 
VariationPoint has more than one BindingTime.

See attribute selected for more information how condition is used to select a binding time.
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3.2.3 XML Serialization

3.2.3.1 XML Schema

Figure 8. XML Schema for BindingTime

<xs:complexType name="BindingTime">
    <xs:sequence>
        <xs:element name="name" type="BindingTimeEnum"/>
        <xs:element name="condition" type="Expression"
            minOccurs="0" maxOccurs="1"/>
    </xs:sequence>
    <xs:attribute name="selected" type="xs:boolean" use="optional"/>
</xs:complexType>

3.2.3.2 Examples

Example 3. XML Example for BindingTime in a variationpoint-description

<variability-exchange-model type="variationpoint-description" id="model">
    <structural-variationpoint id="vp1" type="optional">
        <bindingtime>
            <name>preprocessor-time</name>
        </bindingtime>
        <variation id="vp1v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
    <structural-variationpoint id="vp2" type="optional">
        <bindingtime>
            <name>preprocessor-time</name>
            <condition type="single-feature-condition">
                SmallSoftwareFootprint</condition>
        </bindingtime>
        <bindingtime>
            <name>post-build</name>
            <condition type="single-feature-condition">
                LargeSoftwareFootprint</condition>
        </bindingtime>
        <variation id="vp2v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
</variability-exchange-model>

Example 4. XML Example for BindingTime in a variationpoint-configuration

<variability-exchange-model type="variationpoint-configuration" id="model">
    <structural-variationpoint id="vp1" type="optional">
        <bindingtime>
            <name>preprocessor-time</name>
        </bindingtime>
        <variation id="vp1v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
    <structural-variationpoint id="vp2" type="optional">
        <bindingtime selected="false">
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            <name>preprocessor-time</name>
            <condition type="single-feature-condition">
                SmallSoftwareFootprint</condition>
        </bindingtime>
        <bindingtime selected="true">
            <name>post-build</name>
            <condition type="single-feature-condition">
                LargeSoftwareFootprint</condition>
        </bindingtime>
        <variation id="vp2v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
</variability-exchange-model>

3.3 BindingTimeEnum
3.3.1 Description
The enumeration BindingTimeEnum defines the list of possible binding times to be used in 
BindingTime.

3.3.2 Specification
Figure 9. UML Diagram for enumeration BindingTimeEnum

Following binding times can be used:

RequirementsTime

At RequirementsTime, variants are bound by selecting a subset of the overall requirements for 
a product line.

BluePrintDerivationTime

The binding time BlueprintDerivationTime stems from AUTOSAR. In AUTOSAR, Blueprints 
are predefined templates for partial models. When a blueprint is applied, the variation points in the 
blueprint indicate locations in the template where a template processor or even human developer 
needs to fill in more information.

ModelConstructionTime

At ModelConstructionTime, variants are bound by modifying the artifact. This may involve 
deleting part of the model, but may also be achieved by adding new elements to a model or 
changing parts of the existing model, or a combination of all three.
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ModelSimulationTime

At ModelSimulationTime, variants are bound by excluding parts of the model during simula-
tion. This is typically done by constructing the model in such a way that some parts are not used 
during the simulation.

CodeGenerationTime

At CodeGenerationTime, variants are bound by generating code that is tailored for one or more 
variants.

PreprocessorTime

At PreProcessorTime, variants are bound by using a preprocessor that emits code only for 
specific variants. To do that, the code must contain appropriate preprocessor directives, for exam-
ple #ifdef statements.

CompileTime

At CompileTime, variation points are resolved by the compiler, for example by not generating 
code for certain variants (dead code elimination) or by using specific compiler switches.

LinkTime

At Linktime, variants are bound by using only those files that are necessary for a particular variant 
are used to build a library or application.

FlashTime

At FlashTime, variants are bound by (pre)loading variant specific data sets into the flash memo-
ry embedded device.

PostBuild

At PostBuild, variants are bound by activating only certain parts of an application.

PostBuildLoadable

At PostBuildLoadable, variants are bound by selecting a parameter set (typically stored in 
flash memory) at the launch of an application. PostBuildLoadable is often used as a synonym 
for PostBuild.

PostBuildSelectable

At PostBuildSelectable, variants are bound by selecting one of several parameter sets 
(typically stored in flash memory) at the launch of an application. PostBuildSelectable is 
often used as a synonym for PostBuild.

RunTime

At RunTime, variants are bound by switching between different program states or executing 
different parts of an application. Runtime is usually not regarded as a binding time, but is included 
for completeness here.

User-defined binding times

If none of the binding times defined above are suitable, the user can define own binding times. 
For that, the user-defined binding-time identifier has to be prefixed with x:.
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3.3.3 XML Serialization
3.3.3.1 XML Schema

Figure 10. XML Schema for bindingtime-enum

<xs:simpleType name="EnumerationExtension">
    <xs:restriction base="xs:string">
        <xs:pattern value="x:\S+"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="BindingTimeBaseEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="requirements-time"/>
        <xs:enumeration value="blueprint-derivation-time"/>
        <xs:enumeration value="model-construction-time"/>
        <xs:enumeration value="model-simulation-time"/>
        <xs:enumeration value="code-generation-time"/>
        <xs:enumeration value="preprocessor-time"/>
        <xs:enumeration value="compile-time"/>
        <xs:enumeration value="link-time"/>
        <xs:enumeration value="flash-time"/>
        <xs:enumeration value="post-build"/>
        <xs:enumeration value="post-build-loadable-time"/>
        <xs:enumeration value="post-build-selectable-time"/>
        <xs:enumeration value="run-time"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="BindingTimeEnum">
    <xs:union memberTypes="BindingTimeBaseEnum EnumerationExtension"/>
</xs:simpleType>

[TODO: describe how extended enumeration is realized in schema]

3.4 Expression
3.4.1 Description
An Expression is similar to an expression in a programming language. In the case of VEL, expres-
sions fall into two categories:

• “Genuine” expressions which may return any kind of value. These are represented by the type 
PVSCLExpression [FIXME].

• Constraints, which may only return Boolean values. These are represented by the SingleFeatur-
eExpression, AndFeatureExpression and OrFeatureExpression. A constraint may also be of type 
PVSCLExpression [FIXME]; in this case the return value must be of type Boolean.

3.4.2 Specification
Figure 11. UML Diagram for class Expression

Technically, an Expression is a string whose syntax is determined by the attribute type.
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An expression shall not be an empty string.

Attribute type

The attribute type defines the kind of expression. There are following predefined kinds of expres-
sions:

• SingleFeatureCondition

• AndFeatureCondition

• OrFeatureCondition

Additionally, user-defined types can be used by prefixing the user-specific expression type identifi-
er by x:.

The individual expression types are explained in detail in Section 3.5, “ExpressionTypeEnum”.

Attribute datatype

The attribute datatype constrains the return type of the expression. Since the possible values 
for datatype depend on the artifact(s) involved, they are not further standardized here.

If the attribute datatype of an Expression exists, then the return type of the Expression 
should be compatible with the data type given by datatype.

3.4.3 XML Serialization
3.4.3.1 XML Schema

Figure 12. XML Schema for Expression

<xs:complexType name="Expression">
    <xs:simpleContent>
        <xs:extension base="xs:string">
            <xs:attribute name="type" type="ExpressionLanguageEnum"
                use="required"/>
            <xs:attribute name="datatype" type="xs:string" use="optional"/>
        </xs:extension>
    </xs:simpleContent>
</xs:complexType>

In the XML representation, the actual expression is contained in the inner text of the expression or 
condition element2.

3.4.3.2 Examples

Example 5. XML Example for Expression

<structural-variationpoint id="vp1" type="xor">
    <variation id="vp1v1">
        <condition type="single-feature-condition" datatype="bool">
            Feature1
        </condition>
    </variation>
    <variation id="vp1v2">
        <condition type="and-feature-condition" datatype="bool">
            Feature2,Feature3
2For simplicity and consistency, XML elements of type Expression are always named expression or condition.
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        </condition>
    </variation>
    <variation id="vp1v3">
        <condition type="or-feature-condition" datatype="bool">
            Feature4, Feature5, Feature6
        </condition>
    </variation>
    <variation id="vp1v4">
        <condition type="x:pvscl" datatype="ps:boolean">
            Feaure7 AND Feature8
        </condition>
    </variation>
</structural-variationpoint>

3.5 ExpressionTypeEnum
3.5.1 Description
The enumeration ExpressionTypeEnum defines the possible values for the attribute type of the 
class Expression.

3.5.2 Specification
Figure 13. UML Diagram for class ExpressionTypeEnum

Following the semantics of the predefined kinds of expressions are described:

SingleFeatureCondition

A SingleFeatureCondition is a type of expression that models a Boolean condition whose 
literal is a single Feature.

The example in Example 5, “XML Example for Expression” translates to the Boolean expres-
sion

Feature1 (2)

Formally, if a SingleFeatureCondition references the feature fi then this translates into the 
Boolean expression

eval fi (3)

where eval fi  is true if feature fi is selected, and eval fi  is false if fi is not selected.

The datatype for an Expression of type SingleFeatureCondition should be Boolean.

See also Section 3.5.3.2.2, “Syntax for SingleFeatureCondition” on how single features are repre-
sented in XML.
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AndFeatureCondition

An AndFeatureCondition is a type of expression that models a Boolean condition whose 
literals are features, and which are connected by a Boolean AND. The example in Example 5, 
“XML Example for Expression” translates to the Boolean expression

Feature2 ∧ Feature3 ∧ Feature4 (4)

The datatype for an Expression of type AndFeatureCondition should be Boolean.

In the XML representation, an AndFeatureCondition is comma-separated list of features. 
See also Section 3.5.3.2.3, “Syntax for AndFeatureCondition and OrFeatureCondition” on how 
features are represented in XML.

OrFeatureCondition

An OrFeatureCondition is a type of expression that models a Boolean condition whose 
literals are features, and which are connected by a Boolean OR. The example in Example 5, 
“XML Example for Expression” translates to the Boolean expression

Feature5 ∧ Feature6 (5)

The datatype for an Expression of type OrFeatureCondition should be Boolean.

In the XML representation, an OrFeatureCondition is comma-separated list of features. See 
also Section 3.5.3.2.3, “Syntax for AndFeatureCondition and OrFeatureCondition” on how fea-
tures are represented in XML.

User-defined expression types

Additionally, user-defined expression types can be used by prefixing the user-specific expression 
type identifier by x:.

[TODO]

3.5.3 XML Serialization

3.5.3.1 XML Schema

Figure 14. XML Schema for ExpressionTypeEnum

<xs:simpleType name="EnumerationExtension">
    <xs:restriction base="xs:string">
        <xs:pattern value="x:\S+"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="ExpressionLanguageBaseEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="single-feature-condition"/>
        <xs:enumeration value="and-feature-condition"/>
        <xs:enumeration value="or-feature-condition"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="ExpressionLanguageEnum">
    <xs:union
        memberTypes="ExpressionLanguageBaseEnum EnumerationExtension"/>
</xs:simpleType>
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3.5.3.2 Representation of expressions and features in XML

3.5.3.2.1 Features

A Feature is a reference to an element in a model that describes the variability of an artifact, typically 
a feature model. The exact nature of a feature model is beyond the scope of this document.

In the XML representation, a feature is just a name. How exactly a feature is mapped to its corre-
sponding element in the feature model is implementation dependent and beyond the scope of this 
document.

3.5.3.2.2 Syntax for SingleFeatureCondition

In the XML representation, a feature is a string that matches the following pattern:

\s*[a-zA-Z_]([a-zA-Z0-9_]*\s*

That is, a feature is a sequence of characters which starts with a letter or an underscore followed by 
letters, digits and underscores.

An XML element of type Expression whose attribute type has the value single-feature–
condition must match to the above pattern.

3.5.3.2.3 Syntax for AndFeatureCondition and OrFeatureCondition

In the XML representation, a comma-separated list of features is a string that matches the following 
pattern3:

\s*[a-zA-Z_]([a-zA-Z0-9_]*(\s*,\s*[a-zA-Z_]([a-zA-Z0-9_]*)*\s*

An XML element of type expression-type whose attribute type has the value and-feature–
condition or or-feature-condition must match to the above pattern.

3.6 Identifiable
3.6.1 Description
Identifiable is an abstract class that defines means to provide unique identifiers for elements 
of the variability exchange language. It is used as a base class for many classes of the Variability 
Exchange Language.

3In this pattern, \s donates a white space, typically a space or tab character,or a newline.
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3.6.2 Specification
Figure 15. UML Diagram for class Identifiable

Attribute id

The attribute id of an Identifiable provides a unique identifier for an element.

The value of the attribute id of an Identifiable shall be unique within a single Variability 
Exchange Language document. That is, the following condition holds:

Let i1 and i2 be the values of the id XML attributes of XML elements e1 and e2 with i1 equals i2. 
Then e1 and e2 are the same elements.

The value of the attribute id of an Identifiable shall not change over the lifetime of the 
element which the Identifiable represents.

[FIXME] The reason for introducing the latter constraint is as follows. Imagine the following 
situation: the operations importVariabilityExchangeModels and getConfiguration return variability 
language exchange documents that contain information about the same variation point (in this 
context, “same” usually means that they refer to the same artifact elements).

[FIXME] Then, the attribute id should have an identical value in both the documents returned 
from importVariabilityExchangeModels and getConfiguration; otherwise there would be no way to 
match the variation points.

Attribute name

The attribute name of an Identifiable provides a human readable name for an element. It 
is recommended that all the name attributes of the Identifiable elements in a Variability 
Exchange Language document have unique values.

The value of the attribute name of an Identifiable is not guaranteed to be unique within 
a single variability exchange language document. It is however strongly recommended to use 
unique values for name attributes as well.

The value of attribute name shall not be an empty string.
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Attribute specialData

Each Identifiable may aggregate one or more SpecialData objects. This makes sure that 
most elements in the Variability Exchange Language can be augmented with application specific 
data.

3.6.3 XML Serialization
3.6.3.1 XML Schema

Figure 16. XML Schema for Identifiable

<xs:complexType name="Identifiable" abstract="true">
    <xs:sequence>
        <xs:element name="special-data" type="SpecialData"
            minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="name" use="optional">
        <xs:simpleType>
            <xs:restriction base="xs:string">
                <xs:minLength value="1"/>
            </xs:restriction>
        </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="id" type="xs:ID" use="required"/>
</xs:complexType>

Figure 17. Example use of Identifiable in the XML Schema

<xs:complexType name="VariationPoint" abstract="true">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            ...
        </xs:extension>
    </xs:complexContent>
</xs:complexType>
            

In the XML Schema, Identifiable does not define an XML element of its own, but adds two new 
attributes id and name to any type that is an extension of Identifiable.

In XML representation, id is an attribute of type xs:ID, which means that id is guaranteed to be 
unique within a Variability Exchange Language document. Other XML elements may use an attribute 
of type xs:IDREF to refer to an XML element that is Identifiable. This is consistent with the 
semantics defined for id in Section 3.6.2, “Specification”.

3.6.3.2 Examples

Example 6. XML Example for Identifiable

<structural-variationpoint id="vp1" name="optional variationpoint"
        type="optional">
    <special-data name="CreatorInfo">
        <data>
            <key>Created</key>
            <value type="xs:date">1998-11-17</value>
        </data>
    </special-data>
    <variation id="vp1v1" name="optional variation">
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        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

3.7 KeyValuePair
3.7.1 Description
Application specific data for VariationPoint and Variation objects is implemented by the class 
SpecialData, which aggregates a number of KeyValuePair elements. As the name already 
suggests, a KeyValuePair consists of a key and a value.

KeyValuePair is restricted to data that can be represented as strings. How key and value are 
interpreted is up to the application. It is strongly recommended to use the attribute key as some kind 
of (unique) identifier, and store the data associated with key in the attribute value.

An object of class Value is a container for the value of a KeyValuePair.

3.7.2 Specification
Figure 18. UML Diagram for class KeyValuePair

Attribute key of class KeyValuePair

The attribute key of class KeyValuePair provides a way to identify a KeyValuePair.

A SpecialData object shall not contain two or more KeyValueData objects whose attribute key 
have the same value.

Attribute value of class Value

The attribute value of an object of class Value contains the application specific data that is 
associated with the key of the KeyValuePair object which aggregates this object.

Attribute type of class Value

The attribute type of class Value can be used to indicate the data type of the value of a Value 
object. The contents of type are not standardized, but using XML data types such as xs:string or 
xs:date is recommended. [FIXME]
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3.7.3 XML Serialization
3.7.3.1 XML Schema

Figure 19. XML Schema for KeyValuePair

<xs:complexType name="KeyValuePair">
    <xs:sequence>
        <xs:element name="key">
            <xs:simpleType>
                <xs:restriction base="xs:string">
                    <xs:minLength value="1"/>
                </xs:restriction>
            </xs:simpleType>
        </xs:element>
        <xs:element name="value">
            <xs:complexType>
                <xs:simpleContent>
                    <xs:extension base="xs:string">
                        <xs:attribute name="type" type="xs:string"
                            use="optional"/>
                    </xs:extension>
                </xs:simpleContent>
            </xs:complexType>
        </xs:element>
    </xs:sequence>
</xs:complexType>

As shown in Example 7, “XML Example for KeyValuePair”, a key-value pair is implemented by 
the XML elements key and value, which are enclosed by a data element4. The elements key and 
value are XML strings.

The XML representation of a Value object is an XML element named value which contains an 
arbitrary string. Its definition is based on the XML type xs:string and defines an additional attribute 
type, which indicates the data type of the content.

3.7.3.2 Examples

Example 7. XML Example for KeyValuePair

<structural-variationpoint id="vp1" name="optional variationpoint"
        type="optional">
    <special-data name="CreatorInfo">
        <data>
            <key>Created</key>
            <value type="xs:date">1998-11-17</value>
        </data>
    </special-data>
    <variation id="vp1v1" name="optional variation">
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

4The XML element data is not strictly necessary, but makes it easier to extend the key-value pair implementation in the future, 
if necessary.
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3.8 ParameterVariation
3.8.1 Description
A ParameterVariation defines a value for the corresponding artifact element of a 
ParameterVariationPoint. The artifact element in question is referenced by its attribute 
variableArtifact (see Attribute variableArtifact).

The value is defined either using a constant or a calculation Expression.

The class ParameterVariation inherits from the abstract class Variation.

3.8.2 Specification
Figure 20. UML Diagram for class ParameterVariation

Attribute expression

The optional attribute expression of a ParameterVariation specifies the expression that is 
used to compute the value of a ParameterVariation.

The attribute expression of a ParameterVariation may evaluate to an arbitrary value. 
Which values are allowed, depends on the artifact elements which are referenced by the attribute 
variableArtifact (see Attribute variableArtifact).

[TODO: Roles of expression in description, configuration, partial config]

Attribute value

The attribute value of a ParameterVariation is a constant, not an expression.
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The data type (e.g. Boolean, Integer, Floating Point, or an enumeration) and range (e.g. 1…10) 
that is allowed for the attribute value of a ParameterVariation is defined by the artifact 
element that is associated with ParameterVariation (see variableArtifact, Attribute 
variableArtifact).

[TODO: Roles of value in description, configuration, partial config]

3.8.3 XML Serialization
3.8.3.1 XML Schema

Figure 21. XML Schema for ParameterVariation

<xs:complexType name="ParameterVariation">
    <xs:complexContent>
        <xs:extension base="Variation">
            <xs:sequence>
                <xs:element name="expression" type="Expression"
                    minOccurs="0" maxOccurs="1"/>
                <xs:element name="value" type="xs:string"
                    minOccurs="0" maxOccurs="1"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.8.3.2 Examples

Example 8. XML example for ParameterVariation with alternative constant values

<parameter-variationpoint id="vp1" type="xor">
    <variation id="vp1v1">
        <condition type="single-feature-condition">Feature1</condition>
        <value>1</value>
    </variation>
    <variation id="vp1v2">
        <condition type="single-feature-condition">Feature2</condition>
        <value>2</value>
    </variation>
    <variation id="vp1v3">
        <condition type="single-feature-condition">Feature3</condition>
        <value>3</value>
    </variation>
</parameter-variationpoint>

Example 9. XML example for ParameterVariation with a calculation expression

<parameter-variationpoint id="vp1" type="optional">
    <variation id="vp1v1">
        <expression type="x:pvscl">6*9</expression>
    </variation>
</parameter-variationpoint>

3.9 ParameterVariationPoint
3.9.1 Description
A ParameterVariationPoint defines a value for a variable element in an artifact, for example
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• A value or a C-preprocessor symbol (#define)

• A initialization value for a variable or a constant in a programing language

• A value for a variable in a Matlab workspace

The class ParameterVariationPoint inherits from the class VariationPoint.

3.9.2 Specification
Figure 22. UML Diagram for class ParameterVariationPoint

The artifact elements are referenced by the attribute variableArtifact of the VariationPoint 
and the attribute variableArtifact of its Variation objects (see the classes VariationPoint 
and Variation in Figure 22, “UML Diagram for class ParameterVariationPoint”)

Each ParameterVariationPoint object contains one or more ParameterVariation objects, 
representing possible values. During the binding process, the attribute condition of each 
ParameterVariation object is evaluated. The condition may evaluate to true for only one 
ParameterVariation:

[TODO: Is only xor allowed here?]

Let v be an ParameterVariationPoint and let s1, . . . , sn be the values of the selected attrib-
utes of the ParameterVariation objects of v. Then the following conditions shall hold:

1. ∃i . i ∈ 1, ...,n ∧ si = true
2. ∀j . j ∈ 1, ...,n ∧ j ≠ i sj = false
VEL-v1.0-csprd01 13 November 2020
Standards Track Copyright © OASIS Open 2020. All rights reserved. Page 33 of 63



3. ∃i . i ∈ 1, ...,n ∧ si = true ∧ ∀j . j ∈ 1, ...,n ∧ j ≠ i sj = false
[TODO: Do we need this?] The class ParameterVariationPoint is modelled after the switch 
statement in the programming languages C or Java; it selects a single value from a list of values. 
The difference is that a switch in C or Java first evaluates a Boolean expression and then compares 
the result to a list of constants, while ParameterVariationPoint evaluates a list of Boolean 
expressions and selects the one which returns true.

3.9.3 XML Serialization
3.9.3.1 XML Schema

Figure 23. XML Schema for ParameterVariationPoint

<xs:complexType name="ParameterVariationPoint">
    <xs:complexContent>
        <xs:extension base="VariationPoint">
            <xs:sequence>
                <xs:element name="variation" type="ParameterVariation"
                    minOccurs="1" maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.9.3.2 Examples

Example 10. XML Example for ParameterVariationPoint with mutual exclusiv constant values

<parameter-variationpoint id="vp1" type="xor">
    <variation id="vp1v1">
        <condition type="single-feature-condition">Feature1</condition>
        <value>1</value>
    </variation>
    <variation id="vp1v2">
        <condition type="single-feature-condition">Feature2</condition>
        <value>2</value>
    </variation>
    <variation id="vp1v3">
        <condition type="single-feature-condition">Feature3</condition>
        <value>3</value>
    </variation>
</parameter-variationpoint>

Example 11. XML Example for ParameterVariationPoint with a calculation

<parameter-variationpoint id="vp1" type="optional">
    <variation id="vp1v1">
        <expression type="x:pvscl">6*9</expression>
    </variation>
</parameter-variationpoint>
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3.10 SpecialData
3.10.1 Description
The class SpecialData allows adding application specific information to VariationPoint and 
Variation objects. SpecialData aggregates a number of KeyValuePair elements which contain 
the actual information.

3.10.2 Specification
Figure 24. UML Diagram for class SpecialData

Attribute name

The attribute name of a SpecialData indicates which kind of data is contained in the 
SpecialData structure. The values of name are not standardized; it is highly recommended 
to use a descriptive name that has a high probability of being unique.

The attribute name of a SpecialData is optional.

[TOREMOVE?] Any application that deals with variability information read from an artifact via 
methods exportVariabilityExchangeModels or getConfiguration shall not read or write the informa-
tion contained in SpecialData if its name is unknown to the application.

[TOREMOVE?] If an application reads variability information from an artifact via methods export-
VariabilityExchangeModels or getConfiguration, then changes this information, and later uses the 
methods importVariabilityExchangeModels or setConfiguration to write the information to an arti-
fact, then any SpecialData whose type is not known to the application may be in an undefined 
state. This is because the information contained in SpecialData may depend on the overall 
structure.
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3.10.3 XML Serialization
3.10.3.1 XML Schema

Figure 25. XML Schema for SpecialData

<xs:complexType name="SpecialData">
    <xs:sequence>
        <xs:element name="data" type="KeyValuePair"
            minOccurs="0" maxOccurs="unbounded"/>
    </xs:sequence>
    <xs:attribute name="name" type="xs:string" use="optional"/>
</xs:complexType>

3.10.3.2 Examples

Example 12. XML Example for SpecialData

<structural-variationpoint id="vp1" name="optional variationpoint"
        type="optional">
    <special-data name="CreatorInfo">
        <data>
            <key>Created</key>
            <value type="xs:date">1998-11-17</value>
        </data>
    </special-data>
    <variation id="vp1v1" name="optional variation">
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

3.11 StructuralVariation
3.11.1 Description
Each StructuralVariationPoint aggregates one or more StructuralVariation 
objects. An StructuralVariation is a Variation that determines whether an 
StructuralVariationPoint gets deleted or set inactive during the binding process.

The class StructuralVariation inherits from the class Variation.
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3.11.2 Specification
Figure 26. UML Diagram for class StructuralVariation

Attribute variableArtifact

The attribute variableArtifact of a Variation v implements a reference to the artifact 
elements which correspond to v.

The attribute variableArtifact is optional.

If a Variation v has more than one variableArtifacts c1, . . . , cn the the URIs of c1, . . . , cn
do not need to point to the same artifacts. That is, the URI attributes of c1, . . . , cn may have 
different values for each ci.
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3.11.3 XML Serialization
3.11.3.1 XML Schema

Figure 27. XML Schema for StructuralVariationPoint

<xs:complexType name="StructuralVariation">
    <xs:complexContent>
        <xs:extension base="Variation">
            <xs:sequence>
                <xs:element name="variable-artifact"
                    type="ArtifactElement"
                        minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.11.3.2 Examples

TODO

3.12 StructuralVariationPoint
3.12.1 Description
A StructuralVariationPoint determines whether one or more elements in an artifact gets 
deleted or set inactive during the binding process.

The class StructuralVariationPoint inherits from the class VariationPoint.
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3.12.2 Specification
Figure 28. UML Diagram for class StructuralVariationPoint

The artifact elements are referenced by the attribute variableArtifact of the VariationPoint 
and the attribute variableArtifact of its Variation objects (see the classes VariationPoint 
and Variation in Figure 28, “UML Diagram for class StructuralVariationPoint”)

Each StructuralVariationPoint object contains one or more StructuralVariation objects. 
During the binding process, the attribute condition is evaluated for each StructuralVariation. 
As described in Section 3.16, “Variation”, it is guaranteed that if all StructuralVariation objects 
have a condition attribute, then, depending on the type of the VariationPoint, a) any number, 
b) at least one, or c) exactly one of those conditions evaluates to true. The artifact elements that 
correspond to the StructuralVariation, whose attribute condition evaluates to false, is then 
removed or set inactive.
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3.12.3 XML Serialization
3.12.3.1 XML Schema

Figure 29. XML Schema for StructuralVariationPoint

<xs:complexType name="StructuralVariationPoint">
    <xs:complexContent>
        <xs:extension base="VariationPoint">
            <xs:sequence>
                <xs:element name="variation" type="StructuralVariation"
                    minOccurs="1" maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.12.3.2 Examples

Example 13. XML Example for StructuralVariationPoint with one optional variation

<structural-variationpoint id="vp1" type="optional">
    <variation id="vp1v1">
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
</structural-variationpoint>

Example 14. XML Example for StructuralVariationPoint with multiple optional variations

<structural-variationpoint id="vp2" type="optional">
    <variation id="vp2v1">
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
    <variation id="vp2v2">
        <condition type="single-feature-condition">Feature2</condition>
    </variation>
    <variation id="vp2v3">
        <condition type="single-feature-condition">Feature3</condition>
    </variation>
</structural-variationpoint>

Example 15. XML Example for StructuralVariationPoint with mutual exclusive variations

<structural-variationpoint id="vp1" type="xor">
    <variation id="vp1v1" name="Alternative 1">
        <condition type="single-feature-condition">Feature1</condition>
    </variation>
    <variation id="vp1v2" name="Alternative 2">
        <condition type="single-feature-condition">Feature2</condition>
    </variation>
    <variation id="vp1v3" name="Alternative 3">
        <condition type="single-feature-condition">Feature3</condition>
    </variation>
</structural-variationpoint>
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3.13 VariabilityExchangeModel
3.13.1 Description
A VariabilityExchangeModel is an artifact which may contain variation points. Examples for 
artifacts are

• C/C++ files

• Matlab/Simulink Models

• DOORS databases

3.13.2 Specification
Figure 30. UML Diagram for class VariabilityExchangeModel

Attribute type

The attribute type of a VariabilityExchangeModel determines whether this model is a 
description of the variation points in the artifacts or defines a full or partial variant configuration:

• If the value of type is VariationPointDescription, then the attribute selected of all 
Variations (see Attribute selected) and BindingTimes (see Section 3.2, “BindingTime”) 
has no effect and shall be omitted.

• If the value of type is VariationPointConfiguration, then the attribute selected of all 
Variations (see Attribute selected) and BindingTimes (see Section 3.2, “BindingTime”) 
is not optional, and the attribute expression of [FIXME] CalculatedVariation must contain a 
constant.

• If the value of type is VariationPointPartialConfiguration, then [TODO]

See also Attribute selected.

Attribute uri

The attribute uri of a VariabilityExchangeModel defines the Uniform Resource Locator 
(URI, see (???)) of the artifact that is associated with the VariabilityExchangeModel.
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3.13.3 XML Serialization
3.13.3.1 XML Schema

Figure 31. XML Schema for VariabilityExchangeModel

<xs:complexType name="VariabilityExchangeModel">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:group ref="variationpoint-group"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="type"
                type="VariabilityExchangeModelTypeEnum" use="required"/>
            <xs:attribute name="uri" type="xs:anyURI" use="optional"/>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.13.3.2 Examples

TODO

3.14 VariabilityExchangeModels
3.14.1 Description
VariabilityExchangeModels is the top level object of a Variability Exchange Language docu-
ment.

3.14.2 Specification
Figure 32. UML Diagram for class VariabilityExchangeModels

Attribute version

The attribute version of VariabilityExchangeModels defines the version of the Variability 
Exchange Language to which the Variability Exchange Language document conforms.

The attribute version of VariabilityExchangeModels should be a positive non-zero Inte-
ger.

If a specific implementation of the Variability Exchange Language supports version i and a Varia-
bility Exchange Language document is in version j, then the following conditions should hold:

1. The implementation shall reject the document if i < j.
2. The implementation shall accept the document if i = j.
3. The implementation may accept the document if i > j.
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In other words, an implementation of the Variability Exchange Language should never accept 
a document where the attribute version of the element VariabilityExchangeModels is a 
greater than the one that is supported by the implementation. It may, however accept a document 
with a smaller version number (backwards compatibility). If both version numbers are equal, the 
document should be accepted5.

The attribute version of VariabilityExchangeModels is read-only.

3.14.3 XML Serialization
3.14.3.1 XML Schema

Figure 33. XML Schema for VariabilityExchangeModels

<xs:complexType name="VariabilityExchangeModels">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:element name="version" type="xs:unsignedInt"/>
                <xs:element name="variability-exchange-model"
                    type="VariabilityExchangeModel"
                    minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

In the XML representation, VariabilityExchangeModels is the root element of the XML docu-
ment object.

3.14.3.2 Examples

TODO

3.15 VariabilityExchangeModelTypeEnum
3.15.1 Description
The enumeration VariabilityExchangeModelTypeEnum differentiates between the three flavors 
of VariabilityExchangeModel objects:

1. VariationPointDescription

2. VariationPointConfiguration

3. VariationPointPartialConfiguration

See the class VariabilityExchangeModel for more details.

5Of course, the document might still be rejected later for another reason, for example a data type mismatch.
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3.15.2 Specification
Figure 34. UML Diagram for class VariabilityExchangeModelTypeEnum

3.15.3 XML Serialization

3.15.3.1 XML Schema

Figure 35. XML Schema for VariabilityExchangeModelTypeEnum

<xs:simpleType name="VariabilityExchangeModelTypeEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="variationpoint-description"/>
        <xs:enumeration value="variationpoint-configuration"/>
        <xs:enumeration value="variationpoint-partial-configuration"/>
    </xs:restriction>
</xs:simpleType>

3.15.3.2 Examples

TODO

3.16 Variation
3.16.1 Description
The abstract class Variation implements a variation of a variation point. Each instance of the class 
VariationPoint contains one or more instances of the class Variation.

There are two classes that derive from Variation, namely StructuralVariation and 
ParameterVariation.

The class Variation inherits from the class Identifiable.

3.16.2 Specification
Figure 36. UML Diagram for class Variation

Attribute selected

If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointDescription, then no Variation v in M shall have an attribute selected.
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If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointConfiguration, then every Variation v in M shall have an attribute 
selected.

If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointPartialConfiguration, then every Variation v in M may have an attrib-
ute selected.

If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointConfiguration or VariationPointPartialConfiguration, and the 
attribute selected of a Variation v contained by M has the value true, then v is a member of 
the variation point configuration defined by M.

If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointConfiguration or VariationPointPartialConfiguration, and the 
attribute selected of a Variation v contained by M has the value false, then v is not a 
member of the variation point configuration defined by M.

If the attribute type of a VariabilityExchangeModel M has the value 
VariationPointPartialConfiguration, and the attribute selected of a Variation v
contained by M is not set, then v is potentially a member of the variation point configuration 
defined by M.

Attribute condition

The optional attribute condition of a Variation defines the expression that is used to com-
pute the condition of an Variation.

When evaluated, the attribute condition of a Variation shall return a Boolean value. That is, 
its datatype attribute (if present) should be a Boolean or a data type which can be converted into 
a Boolean.

If a Variation has an attribute condition c and an attribute selected s, then the following 
condition shall hold:eval c = s (6)

[TODO: formulas missing, see 4.16.2] Let ??? be the conditions of all the Variation objects that 
are contained in a given VariationPoint. Then the following conditions must hold

1. ???

2. ???

If a Variation has an attribute condition ??? and an attribute selected ???, then the 
following condition shall hold:

[TODO eval(c) = s]
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3.16.3 XML Serialization

3.16.3.1 XML Schema

Figure 37. XML Schema for Variation

<xs:complexType name="Variation" abstract="true">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:element name="hierarchy" type="VariationPointHierarchy"
                    minOccurs="0" maxOccurs="1"/>
                <xs:element name="dependency" type="VariationDependency"
                    minOccurs="0" maxOccurs="unbounded"/>
                <xs:element name="condition" type="Expression"
                    minOccurs="0" maxOccurs="1"/>
            </xs:sequence>
            <xs:attribute name="selected" type="xs:boolean"
                use="optional"/>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.17 VariationDependency
3.17.1 Description
A VariationDependency defines a dependency between Variation objects. Each Variation 
may have an arbitrary number of dependencies to other Variations. There are two predefined 
types of variations: requires and conflicts. Additionally, user-defined types can be used.

If a Variation aggregates more than one VariationDependency, then all those dependencies 
must be fulfilled.

The class VariationDependency inherits from Identifiable.

3.17.2 Specification
Figure 38. UML Diagram for class VariationDependency

Attribute type

The attribute type of VariationDependency defines the type of a dependency. There are two 
predefined types of dependencies:
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• requires

• conflicts

Additionally, used-defined dependency types can be used, by prefixing any user-defined identifier 
with x:.

The enumeration VariationDependencyEnum defines the values that are allowed for the attrib-
ute type.

Attribute variation

The attribute variation of a VariationDependency defines the target of a dependency.

Attribute condition

The optional attribute condition of a VariationDependency defines a condition under which 
the relation that is defined by the VariationDependency is effective.

Formally, the semantics of a variation dependency is defined as follows:

Let v be a Variation, which contains a VariationDependency d, and let v1, . . . , vk be the 
Variation to which the attribute variation of d refers, and let t be the value of the attribute type 
of d. Furthermore, let c be the content of the attribute condition of v.

Then, the condition of the VariationDependency d, condition d , is defined as follows:

• If the attribute type of d is required, then condition d = v c ∧ v1 ∨ ,..., ∨ vk
• If the attribute type of d is conflicts, then condition d = v c ∧ ¬v1 ∧ ,..., ∧ ¬vk
Let d1, . . . ,dn be the VariationDependency objects contained by a Variation d. Then the 
condition of v, condition d , is defined as follows:condition d = condition d1 ∧ ,..., ∧ condition dn (7)

Let c1, . . . , cn be the conditions of all Variation objects in a Variability Exchange Language. Then 
the following condition shall hold:c1 ∧ ,..., ∧ cn (8)
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3.17.3 XML Serialization

3.17.3.1 XML Schema

Figure 39. XML Schema for VariationDependency

<xs:complexType name="VariationDependency">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:element name="variation"
                        minOccurs="1" maxOccurs="unbounded">
                    <xs:complexType>
                        <xs:attribute name="ref" type="xs:IDREF"
                            use="required"/>
                    </xs:complexType>
                </xs:element>
                <xs:element name="condition" type="Expression"
                    minOccurs="0" maxOccurs="1"/>
            </xs:sequence>
            <xs:attribute name="type" type="VariationDependencyEnum"
                use="required"/>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

In the XML Schema, the attribute variation is not implemented as an XML attribute but as a 
separate XML element named variation with an XML attribute ref that implements the actual 
reference. This is because variation has an upper multiplicity greater than one, but XML attributes are 
restricted to an upper multiplicity of 1 (that is, an XML element may not have multiple elements with 
the same name).

3.17.3.2 Examples

Example 16. XML Example for VariationDependency

<variability-exchange-model type="variationpoint-description" id="model">
    <structural-variationpoint id="vp1" type="optional">
        <variation id="vp1v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
    <structural-variationpoint id="vp2" type="optional">
        <variation id="vp2v1">
            <dependency type="conflicts" id="vp2d1">
                <variation ref="vp1v1"/>
            </dependency>
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
        <variation id="vp2v2">
            <condition type="single-feature-condition">Feature2</condition>
        </variation>
        <variation id="vp2v3">
            <condition type="single-feature-condition">Feature3</condition>
        </variation>
    </structural-variationpoint>
</variability-exchange-model>
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3.18 VariationDependencyEnum
3.18.1 Description
The enumeration VariationDependencyEnum defines which values are allowed for the attribute 
type of VariationDependency. Currently, this enumeration defines two values:

• requires

• conflicts

• x:* [TODO]

For more information see VariationDependency.

3.18.2 Specification
Figure 40. UML Diagram for class VariationDependencyEnum

3.18.3 XML Serialization

3.18.3.1 XML Schema

Figure 41. XML Schema for VariationDependencyEnum

<xs:simpleType name="EnumerationExtension">
    <xs:restriction base="xs:string">
        <xs:pattern value="x:\S+"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="VariationDependencyBaseEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="requires"/>
        <xs:enumeration value="conflicts"/>
    </xs:restriction>
</xs:simpleType>
<xs:simpleType name="VariationDependencyEnum">
    <xs:union
        memberTypes="VariationDependencyBaseEnum EnumerationExtension"/>
</xs:simpleType>

3.19 VariationPoint
3.19.1 Description
The abstract class VariationPoint describes a variation point in an artifact.

The class VariationPoint inherits from the class Identifiable.
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The classes StructuralVariationPoint and ParameterVariationPoint inherit from the 
class VariationPoint.

3.19.2 Specification
Figure 42. UML Diagram for class VariationPoint

Attribute type

The attribute type restricts the number of Variation objects, which may be set during the 
binding process. Currently, three types are defined:

Optional

Any number of Variation objects may be set to this VariationPoint.

Or

At least one Variation object shall be set to this VariationPoint.

Xor

Exactly one Variation object shall be set to this VariationPoint.

Attribute bindingTime

The attribute bindingTime defines the binding time of a VariationPoint. For more informa-
tion on the concept of binding times, see Section 3.2, “BindingTime”.

If a VariationPoint does not declare a BindingTime, then it is up to the binding process to 
define which binding time to use. For example, a process that uses a single binding time may not 
state an explicit binding time for its variation points.

A VariationPoint may define more than one binding time. In this case, the attribute 
selected of the BindingTime elements decides which binding time is used in the actual 
binding process.
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If the VariabilityExchangeModel M which contains a VariationPoint v has the type 
VariationPointConfiguration, then let s1, . . . , sn be the values of the attribute selected 
of the BindingTime attributes of v. Then the following conditions must hold:

1. ∃i . i ∈ 1, ...,n ∧ eval si = true
2. ∀j . j ∈ 1, ...,n ∧ j ≠ i eval sj = false
A consequence of the above condition is that if a VariationPoint in a 
VariationPointConfiguration has only a single BindingTime attribute b, then the attrib-
ute selected of b shall have the value true.

How and when a value for the attribute selected is determined is beyond the scope of this 
document.

Attribute variableArtifact

The attribute variableArtifact of a VariationPoint v implements a reference to the 
artifact elements which correspond to v.

Not all VariationPoints have a variableArtifact.

If a VariationPoint v has more than one variableArtifacts c1, . . . , cn, then the URIs of 
the c1, . . . , cn do not need to point to the same artifacts. That is, the URI attributes of c1, . . . , cn
may have different values for each ci

3.19.3 XML Serialization
3.19.3.1 XML Schema

Figure 43. XML Schema for VariationPoint

<xs:complexType name="VariationPoint" abstract="true">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:element name="bindingtime" type="BindingTime"
                    minOccurs="0" maxOccurs="unbounded"/>
                <xs:element name="variable-artifact"
                    type="ArtifactElement"
                        minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="type" type="VariationPointTypeEnum"
                use="required"/>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

3.20 VariationPointHierarchy
3.20.1 Description
Each Variation may contain a VariationPointHierarchy object. 
VariationPointHierarchy establishes a hierarchy among VariationPoints and 
Variations.

The hierarchy is a graph G = V,E  defined as follows:
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• V = v1, ,...,, vn  where vi is a VariationPoint in a Variability Exchange Language document6.

• Let vi be a VariationPoint which contains a Variation which contains a 
VariationPointHierarchy whose attribute ref refers to a VariationPoint vj. Then vi, vj ∈ E.

• No two VariationPointHierarchy elements may refer to the same VariationPoints. For-
mally, the following condition shall hold: vi, vj ∈ E ∀k . k ≠ i vk, vj ∉ E

• E must not contain cycles, that is, there cannot be a sequence. Formally, the following condition 
shall hold: vi1, vi2 , vi3, vi4 , . . . , vik−2, vik−1 , vik−1, vik ∈ E with i1 = ik

These conditions make sure that G is a tree or a set of trees.

The class VariationPointHierarchy inherits from Identifiable.

6Strictly speaking, V would be a set of nodes and there is a bijective mapping between V and the set of elements of type 
VariationPoint in the [FIXME] DOM of the Variability Exchange Language document. We use a simplified language for the 
sake of clarity here.
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3.20.2 Specification
Figure 44. UML Diagram for class VariationPointHierarchy

Attribute variationPoint

The attribute variationPoint of a VariationPointHierarchy identifies the endpoint of a 
variation-point hierarchy relation.

VEL-v1.0-csprd01 13 November 2020
Standards Track Copyright © OASIS Open 2020. All rights reserved. Page 53 of 63



3.20.3 XML Serialization

3.20.3.1 XML Schema

Figure 45. XML Schema for VariationPointHierarchy

<xs:complexType name="VariationPointHierarchy">
    <xs:complexContent>
        <xs:extension base="Identifiable">
            <xs:sequence>
                <xs:element name="variationpoint"
                        minOccurs="1" maxOccurs="unbounded">
                    <xs:complexType>
                        <xs:attribute name="ref" type="xs:IDREF"
                            use="required"/>
                    </xs:complexType>
                </xs:element>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>

In the XML Schema, the attribute variationPoint of VariationPointHierarchy is not imple-
mented as a XML attribute but as a separate XML element named variationpoint with an XML 
attribute ref that implements the actual reference. This is because variationpoint has an upper 
multiplicity greater than one, but XML attributes are restricted to an upper multiplicity of 1.

3.20.3.2 Examples

Example 17. XML Example for VariationPointHierarchy

<variability-exchange-model type="variationpoint-description" id="model">
    <structural-variationpoint id="vp1" type="optional">
        <variation id="vp1v1">
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
    <structural-variationpoint id="vp2" type="optional">
        <variation id="vp2v1">
            <hierarchy id="vp2h1">
                <variationpoint ref="vp1"/>
            </hierarchy>
            <condition type="single-feature-condition">Feature1</condition>
        </variation>
    </structural-variationpoint>
</variability-exchange-model>

3.21 VariationPointTypeEnum
3.21.1 Description
The enumeration VariationPointTypeEnum defines which values are allowed for the attribute 
type of VariationPoint. Currently, this enumeration defines three values:

• optional

• or
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• xor

For more information see VariationPoint.

3.21.2 Specification
Figure 46. UML Diagram for class VariationPointTypeEnum

3.21.3 XML Serialization
3.21.3.1 XML Schema

Figure 47. XML Schema for VariationDependencyEnum

<xs:simpleType name="VariationPointTypeEnum">
    <xs:restriction base="xs:string">
        <xs:enumeration value="optional"/>
        <xs:enumeration value="or"/>
        <xs:enumeration value="xor"/>
    </xs:restriction>
</xs:simpleType>
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Appendix A An Annex
Appendices are distinguished from sections.
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Appendix B A Normative Annex (Normative)
An annex or section with role="normative".
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Appendix C A Non-normative Annex (Non-
Normative)
An annex or section with role="non-normative".
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Appendix D An Informative Annex (Informa-
tive)
An annex or section with role="informative".
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Appendix E (normative) An ISO-normative 
Annex
An annex or section with role="iso-normative".

VEL-v1.0-csprd01 13 November 2020
Standards Track Copyright © OASIS Open 2020. All rights reserved. Page 60 of 63



Appendix F (informative) An ISO-informative 
Annex
An annex or section with role="iso-informative".
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Appendix G Acknowledgments (Non-Norma-
tive)
In a typical OASIS work product one might wish to list committee participants in a non-normative 
annex (markup shown above in the normative annex example) using wording along the line of “The 
following individuals have participated in the creation of this specification and are gratefully acknowl-
edged:”

• Mary Baker, Associate Member
• Jane Doe, Example Corporation Member
• John Able, Other Example Corporation Member

Note that the itemized list uses spacing="compact" to remove the space between list items in the 
printed result, not the HTML result.
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Appendix H Revision History
Typically the revision history is removed from a finalized specification or note.

Revision X.Y DD Mmmmmm YYYY abc
Details of the revision
Revision X.Y DD Mmmmmm YYYY abc
Details of the revision
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