
2.5 Packed Virtqueues

Packed virtqueues is an alternative compact virtqueue layout using read-write memory, that is memory that
is both read and written by both host and guest.

Packed virtqueues support up to 2

1

14queues, with up to 2

1

15
entries each.

Each packed virtqueue consists of three parts:

• Descriptor Ring

• Device Event Suppression

• Driver Event Suppression

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 22 of 113

This layout is enabled by negotiating a VIRTIO_F_PACKED_VIRTQUEUE feature.



Where Descriptor Ring in turn consists of descriptors, and where each descriptor can contain the following
parts:

• Buffer ID

• Buffer Address

• Buffer Length

• Flags

A buffer consists of zero or more device-readable physically-contiguous elements followed by zero or more
physically-contiguous device-writable elements (each buffer has at least one element).

When the driver wants to send such a buffer to the device, it writes at least one available descriptor describing
elements of the buffer into the Descriptor Ring. The descriptor(s) are associated with a buffer by means of
a Buffer ID stored within the descriptor.

Driver then notifies the device. When the device has finished processing the buffer, it writes a used device
descriptor including the Buffer ID into the Descriptor Ring (overwriting a driver descriptor previously made
available), and sends an interrupt.

Descriptor Ring is used in a circular manner: driver writes descriptors into the ring in order. After reaching
end of ring, the next descriptor is placed at head of the ring. Once ring is full of driver descriptors, driver
stops sending new requests and waits for device to start processing descriptors and to write out some used
descriptors before making new driver descriptors available.

Similarly, device reads descriptors from the ring in order and detects that a driver descriptor has been made
available. As processing of descriptors is completed used descriptors are written by the device back into
the ring.

Note: after reading driver descriptors and starting their processing in order, device might complete their pro-
cessing out of order. Used device descriptors are written in the order in which their processing is complete.

Device Event suppression data structure is read-only by the device. It includes information for reducing the
number of device interrupts to driver.

Driver Event suppression data structure is write-only by the device. It includes information for reducing the
number of driver notifications to device.

2.5.1 Available and Used Ring Full Counters

Each of the driver and the device are expected to maintain, internally, a single-bit ring wrap counter initialized
to 1.

The counter maintained by the driver is called the Available Ring Full Counter. Driver changes its value
each time it makes available the last descriptor in the ring (after making the last descriptor available).

The counter maintained by the device is called the Used Ring Wrap Counter. Device changes its value each
time it uses the last descriptor in the ring (after marking the last descriptor used).

It is easy to see that the Availablering Wrap Counter in the driver matches the Used Ring Wrap Counter in
the device when both are processing the same descriptor, or when all available descriptors have been used.

To mark a descriptor as available and used, both driver and device use the following two flags:

#define VIRTQ_DESC_F_AVAIL 7
#define VIRTQ_DESC_F_USED 15

To mark a descriptor as available, driver sets the VIRTQ_DESC_F_AVAIL bit in Flags to match the internal
Available Ring Wrap Counter. It also sets the VIRTQ_DESC_F_USED bit to match the inverse value.

To mark a descriptor as used, device sets the VIRTQ_DESC_F_USED bit in Flags to match the internal
Used Ring Wrap Counter. It also sets the VIRTQ_DESC_F_AVAIL bit to match the same value.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 23 of 113



Thus VIRTQ_DESC_F_AVAIL and VIRTQ_DESC_F_USED bits are different for an available descriptor and
equal for a used descriptor.

2.5.2 Polling of available and used descriptors

Writes of device and driver descriptors can generally be reordered, but each side (driver and device) are only
required to poll a single location in memory: next device descriptor after the one they processed previously,
in circular order.

Sometimes device needs to only write out a single used descriptor after processing a batch of multiple
available descriptors. As described in more detail below, this can happen when using descriptor chaining
or with in-order use of descriptors. In this case, device writes out a used descriptor with buffer id of the last
descriptor in the group. After processing the used descriptor, both device and driver then skip forward in the
ring the number of the remaining descriptors in the group until processing (reading for the driver and writing
for the device) the next used descriptor.

2.5.3 Write Flag

In an available descriptor, VIRTQ_DESC_F_WRITE bit within Flags is used to mark a descriptor as corre-
sponding to a write-only or read-only element of a buffer.

/* This marks a buffer as device write-only (otherwise device read-only). */
#define VIRTQ_DESC_F_WRITE 2

In a used descriptor, this bit it used to specify whether any data has been written by the device into any parts
of the buffer.

2.5.4 Buffer Address and Length

In an available descriptor, Buffer Address corresponds to the physical address of the buffer. The length of
the buffer assumed to be physically contigious is stored in Buffer Length.

In a used descriptor, Buffer Address is unused. Buffer Length specifies the length of the buffer that has been
initialized (written to) by the device.

Buffer length is reserved for used descriptors without the VIRTQ_DESC_F_WRITE flag, and is ignored by
drivers.

2.5.5 Scatter-Gather Support

Some drivers need an ability to supply a list of multiple buffer elements (also known as a scatter/gather list)
with a request. Two optional features support this: descriptor chaining and indirect descriptors.

If neither feature has been negotiated, each buffer is physically-contigious, either read-only or write-only
and is described completely by a single descriptor.

While unusual (most implementations either create all lists solely using non-indirect descriptors, or always
use a single indirect element), if both features have been negotiated, mixing direct and direct descriptors in
a ring is valid, as long as each list only contains descriptors of a given type.

Scatter/gather lists only apply to available descriptors. A single used descriptor corresponds to the whole
list.

The device limits the number of descriptors in a list through a bus-specific and/or device-specific value. If
not limited, the maximum number of descriptors in a list is the virt queue size.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 24 of 113



2.5.6 Next Flag: Descriptor Chaining

The VIRTIO_F_LIST_DESC feature allows driver to do this by using multiple descriptors, and setting the
VIRTQ_DESC_F_NEXT in Flags for all but the last available descriptor.

/* This marks a buffer as continuing. */
#define VIRTQ_DESC_F_NEXT 1

Buffer ID is included in the last descriptor in the list.

The driver always makes the the first descriptor in the list available after the rest of the list has been written
out into the ring. This guarantees that the device will never observe a partial scatter/gather list in the ring.

Device only writes out a single used descriptor for the whole list. It then skips forward according to the
number of descriptors in the list. Driver needs to keep track of the size of the list corresponding to each
buffer ID, to be able to skip to where the next used descriptor is written by the device.

For example, if descriptors are used in the same order in which they are made available, this will result in
the used descriptor overwriting the first available descriptor in the list, the used descriptor for the next list
overwriting the first available descriptor in the next list, etc.

VIRTQ_DESC_F_NEXT is reserved in used descriptors, and should be ignored by drivers.

2.5.7 Indirect Flag: Scatter-Gather Support

Some devices benefit by concurrently dispatching a large number of large requests. The VIRTIO_F_IN-
DIRECT_DESC feature allows this. To increase ring capacity the driver can store (read-only by the de-
vice) table of indirect descriptors anywhere in memory, and insert a descriptor in main virtqueue (with
Flags&VIRTQ_DESC_F_INDIRECT on) that refers to a memory buffer containing this indirect descriptor
table; addr and len refer to the indirect table address and length in bytes, respectively.

/* This means the buffer contains a table of buffer descriptors. */
#define VIRTQ_DESC_F_INDIRECT 4

The indirect table layout structure looks like this (len is the Buffer Length of the descriptor that refers to this
table, which is a variable, so this code won’t compile):

struct indirect_descriptor_table {
/* The actual descriptor structures (struct Desc each) */
struct Desc desc[len / sizeof(struct Desc)];

};

The first descriptor is located at start of the indirect descriptor table, additional indirect descriptors come
immediately afterwards. Flags &VIRTQ_DESC_F_WRITE is the only valid flag for descriptors in the indirect
table. Others are reserved are ignored by the device. Buffer ID is also reserved and is ignored by the device.

In Descriptors with VIRTQ_DESC_F_INDIRECT set VIRTQ_DESC_F_WRITE is reserved and is ignored
by the device.

2.5.8 In-order use of descriptors

Some devices always use descriptors in the same order in which they have been made available. These
devices can offer the VIRTIO_F_IN_ORDER feature. If negotiated, this knowledge allows devices to notify
the use of a batch of buffers to the driver by only writing out a single used descriptor with the Buffer ID
corresponding to the last descriptor in the batch.

Device then skips forward in the ring according to the size of the the batch. Driver needs to look up the used
Buffer ID and calculate the batch size to be able to advance to where the next used descriptor will be written
by the device.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 25 of 113



This will result in the used descriptor overwriting the first available descriptor in the batch, the used descriptor
for the next batch overwriting the first available descriptor in the next batch, etc.

The skipped buffers (for which no used descriptor was written) are assumed to have been used (read or
written) by the device completely.

2.5.9 Multi-buffer requests

Some devices combine multiple buffers as part of processing a single request. These devices always makes
the the first descriptor in the request available after the rest of the request has been written out request the
ring. This guarantees that the driver will never observe a partial request in the ring.

2.5.10 Driver and Device Event Suppression

In many systems driver and device notifications involve significant overhead. To mitigate this overhead,
each virtqueue includes two identical structures used for controlling notifications between device and driver.

Driver Event Suppression structure is read-only by the device and controls the events sent by the device
(e.g. interrupts).

Device Event Suppression structure is read-only by the driver and controls the events sent by the driver
(e.g. IO).

Each of these structures includes the following fields:

Descriptor Event Flags Takes values:

• 00b reserved

• 01b enable events

• 11b disable events

• 10b enable events for a specific descriptor (as specified by Descriptor Event Offset/WrapCounter).

Descriptor Event Offset If Event Flags set to descriptor specific event: offset within the ring (in units of
descriptor size). Event will only trigger when this descriptor is made available/used respectively.

Descriptor Event Wrap Counter If Event Flags set to descriptor specific event: offset within the ring (in
units of descriptor size). Event will only trigger when Ring Wrap Counter matches this value and a
descriptor is made available/used respectively.

After writing out some descriptors, both device and driver are expected to consult the relevant structure to
find out whether interrupt should be sent. As this access to shared memory involves overhead for some
transports, the following additional field is present:

Structure Change Event Flags Enable/disable sending an event notification when the other side changes
its own Event Suppression structure.

when enabled through this field, device and driver send an event notification whenever they change the
driver and device event suppression structure respectively.

2.5.10.1 Driver notifications

Some devices benefit from ability to find out the number of available descriptors in the ring, and whether to
send interrupts to drivers without accessing ring memory: for efficiency or as a debugging aid.

To help with these optimizations, driver notifications to the device include the following information:

• VQ number

• Flags - set to 00b

• Offset (in units of descriptor size) within the ring where the next available descriptor will be written

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 26 of 113



• Available Ring Wrap Counter

Whenever driver notifies device about a Device Event Suppression Structure change (if enabled through
Structure Change Event Flags in Driver Event Suppression Structure), it sends a copy of the up-to-date
Event Suppression Structure:

• VQ number

• Descriptor Event Flags

• Descriptor Event Offset

• Descriptor Event Wrap Counter

2.5.10.2 Structure Size and Alignment

Each part of the virtqueue is physically-contiguous in guest memory, and has different alignment require-
ments.

The memory aligment and size requirements, in bytes, of each part of the virtqueue are summarized in the
following table:

Virtqueue Part Alignment Size

Descriptor Ring 16 16∗(Queue Size)
Device Event Suppression 4 4
Driver Event Suppression 4 4

The Alignment column gives the minimum alignment for each part of the virtqueue.

The Size column gives the total number of bytes for each part of the virtqueue.

Queue Size corresponds to the maximum number of descriptors in the virtqueue3. Queue Size value does
not have to be a power of 2 unless enforced by the transport.

2.5.11 Driver Requirements: Virtqueues

The driver MUST ensure that the physical address of the first byte of each virtqueue part is a multiple of the
specified alignment value in the above table.

2.5.12 Device Requirements: Virtqueues

The device MUST start processing driver descriptors in the order in which they appear in the ring. The
device MUST start writing device descriptors into the ring in the order in which they complete. Device MAY
reorder descriptor writes once they are started.

2.5.13 The Virtqueue Descriptor Format

The available descriptor refers to the buffers the driver is sending to the device. addr is a physical address,
and the descriptor is identified with a buffer using the id field.

struct virtq_desc {
/* Buffer Address. */
le64 addr;
/* Buffer Length. */
le32 len;
/* Buffer ID. */
le16 id;
/* The flags depending on descriptor type. */

3For example, if Queue Size is 4 then at most 4 buffers can be queued at any given time.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 27 of 113



le16 flags;
};

The descriptor ring is zero-initialized.

2.5.14 Event Suppression Structure Format

The following structure is used to reduce the number of notifications sent between driver and device.

__le16 desc_event_off : 15; /* Descriptor Event Offset */
int desc_event_wrap : 1; /* Descriptor Event Wrap Counter */
__le16 desc_event_flags : 2; /* Descriptor Event Flags */
__le16 structure_change_flags : 1; /* Structure Change Event Flags */

2.5.15 Driver Notification Format

The following structure is used to notify device of available descriptors and of event suppression structure
changes:

__le16 vqn : 14;
__le16 desc_event_flags : 2;
__le16 desc_event_off : 15;
int desc_event_wrap : 1;

2.5.15.1 Device Requirements: The Virtqueue Descriptor Table

A device MUST NOT write to a device-readable buffer, and a device SHOULD NOT read a device-writable
buffer. A device MUST NOT use a descriptor unless it observes VIRTQ_DESC_F_AVAIL bit in its flags
being changed. A device MUST NOT change a descriptor after changing it’s VIRTQ_DESC_F_USED bit in
its flags.

2.5.15.2 Driver Requirements: The Virtqueue Descriptor Table

A driver MUST NOT change a descriptor unless it observes VIRTQ_DESC_F_USED bit in its flags being
changed. A driver MUST NOT change a descriptor after changing VIRTQ_DESC_F_USED bit in its flags.

2.5.15.2.1 Driver Requirements: Scatter-Gather Support

The driver MUST NOT set the DESC_F_LIST_NEXT flag unless the VIRTIO_F_LIST_DESC feature was
negotiated.

A driver MUST NOT create a descriptor list longer than allowed by the device.

A driver MUST NOT create a descriptor list longer than the Queue Size.

This implies that loops in the descriptor list are forbidden!

The driver MUST place any device-writable descriptor elements after any device-readable descriptor ele-
ments.

A driver MUST NOT depend on the device to use more descriptors to be able to write out all descriptors in
a list. A driver MUST make sure there’s enough space in the ring for the whole list before making any of the
descriptors available to the device.

A driver MUST NOT make the first descriptor in the list available before initializing the rest of the descriptors.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 28 of 113



2.5.15.2.2 Device Requirements: Scatter-Gather Support

The device MUST use descriptors in a list chained by the VIRTQ_DESC_F_NEXT flag in the same order
that they were made available by the driver.

The device MAY limit the number of buffers it will allow in a list.

2.5.15.2.3 Driver Requirements: Indirect Descriptors

The driver MUST NOT set the DESC_F_INDIRECT flag unless the VIRTIO_F_INDIRECT_DESC feature
was negotiated. The driver MUST NOT set any flags except DESC_F_WRITE within an indirect descriptor.

A driver MUST NOT create a descriptor chain longer than allowed by the device.

A driver MUST NOT write direct descriptors with DESC_F_INDIRECT set in a scatter-gather list linked by
VIRTQ_DESC_F_NEXT. flags.

virtio-v1.0-cs04
Standards Track Work Product Copyright © OASIS Open 2015. All Rights Reserved.

03 March 2016
Page 29 of 113


	Introduction
	Normative References
	Non-Normative References
	Terminology
	Legacy Interface: Terminology
	Transition from earlier specification drafts

	Structure Specifications

	Basic Facilities of a Virtio Device
	Device Status Field
	Driver Requirements: Device Status Field
	Device Requirements: Device Status Field

	Feature Bits
	Driver Requirements: Feature Bits
	Device Requirements: Feature Bits
	Legacy Interface: A Note on Feature Bits

	Device Configuration Space
	Driver Requirements: Device Configuration Space
	Device Requirements: Device Configuration Space
	Legacy Interface: A Note on Device Configuration Space endian-ness
	Legacy Interface: Device Configuration Space

	Virtqueues
	Driver Requirements: Virtqueues
	Legacy Interfaces: A Note on Virtqueue Layout
	Legacy Interfaces: A Note on Virtqueue Endianness
	Message Framing
	Device Requirements: Message Framing
	Driver Requirements: Message Framing
	Legacy Interface: Message Framing

	The Virtqueue Descriptor Table
	Device Requirements: The Virtqueue Descriptor Table
	Driver Requirements: The Virtqueue Descriptor Table
	Indirect Descriptors
	Driver Requirements: Indirect Descriptors
	Device Requirements: Indirect Descriptors


	The Virtqueue Available Ring
	Virtqueue Interrupt Suppression
	Driver Requirements: Virtqueue Interrupt Suppression
	Device Requirements: Virtqueue Interrupt Suppression

	The Virtqueue Used Ring
	Legacy Interface: The Virtqueue Used Ring
	Device Requirements: The Virtqueue Used Ring
	Driver Requirements: The Virtqueue Used Ring

	Virtqueue Notification Suppression
	Driver Requirements: Virtqueue Notification Suppression
	Device Requirements: Virtqueue Notification Suppression

	Helpers for Operating Virtqueues

	Packed Virtqueues
	Available and Used Ring Full Counters
	Polling of available and used descriptors
	Write Flag
	Buffer Address and Length
	Scatter-Gather Support
	Next Flag: Descriptor Chaining
	Indirect Flag: Scatter-Gather Support
	In-order use of descriptors
	Multi-buffer requests
	Driver and Device Event Suppression
	Driver notifications
	Structure Size and Alignment

	Driver Requirements: Virtqueues
	Device Requirements: Virtqueues
	The Virtqueue Descriptor Format
	Event Suppression Structure Format
	Driver Notification Format
	Device Requirements: The Virtqueue Descriptor Table
	Driver Requirements: The Virtqueue Descriptor Table
	Driver Requirements: Scatter-Gather Support
	Device Requirements: Scatter-Gather Support
	Driver Requirements: Indirect Descriptors




	General Initialization And Device Operation
	Device Initialization
	Driver Requirements: Device Initialization
	Legacy Interface: Device Initialization

	Device Operation
	Supplying Buffers to The Device
	Placing Buffers Into The Descriptor Table
	Updating The Available Ring
	Updating idx
	Driver Requirements: Updating idx

	Notifying The Device
	Driver Requirements: Notifying The Device


	Receiving Used Buffers From The Device
	Notification of Device Configuration Changes

	Device Cleanup
	Driver Requirements: Device Cleanup


	Virtio Transport Options
	Virtio Over PCI Bus
	Device Requirements: Virtio Over PCI Bus
	PCI Device Discovery
	Device Requirements: PCI Device Discovery
	Driver Requirements: PCI Device Discovery
	Legacy Interfaces: A Note on PCI Device Discovery

	PCI Device Layout
	Driver Requirements: PCI Device Layout
	Device Requirements: PCI Device Layout

	Virtio Structure PCI Capabilities
	Driver Requirements: Virtio Structure PCI Capabilities
	Device Requirements: Virtio Structure PCI Capabilities
	Common configuration structure layout
	Device Requirements: Common configuration structure layout
	Driver Requirements: Common configuration structure layout

	Notification structure layout
	Device Requirements: Notification capability

	ISR status capability
	Device Requirements: ISR status capability
	Driver Requirements: ISR status capability

	Device-specific configuration
	Device Requirements: Device-specific configuration

	PCI configuration access capability
	Device Requirements: PCI configuration access capability
	Driver Requirements: PCI configuration access capability

	Legacy Interfaces: A Note on PCI Device Layout
	Non-transitional Device With Legacy Driver: A Note on PCI Device Layout

	PCI-specific Initialization And Device Operation
	Device Initialization
	Virtio Device Configuration Layout Detection
	MSI-X Vector Configuration
	Virtqueue Configuration

	Notifying The Device
	Virtqueue Interrupts From The Device
	Device Requirements: Virtqueue Interrupts From The Device

	Notification of Device Configuration Changes
	Device Requirements: Notification of Device Configuration Changes
	Driver Requirements: Notification of Device Configuration Changes

	Driver Handling Interrupts


	Virtio Over MMIO
	MMIO Device Discovery
	MMIO Device Register Layout
	Device Requirements: MMIO Device Register Layout
	Driver Requirements: MMIO Device Register Layout

	MMIO-specific Initialization And Device Operation
	Device Initialization
	Driver Requirements: Device Initialization

	Virtqueue Configuration
	Notifying The Device
	Notifications From The Device
	Driver Requirements: Notifications From The Device


	Legacy interface

	Virtio Over Channel I/O
	Basic Concepts
	Device Requirements: Basic Concepts
	Driver Requirements: Basic Concepts

	Device Initialization
	Setting the Virtio Revision
	Device Requirements: Setting the Virtio Revision
	Driver Requirements: Setting the Virtio Revision
	Legacy Interfaces: A Note on Setting the Virtio Revision

	Configuring a Virtqueue
	Device Requirements: Configuring a Virtqueue
	Legacy Interface: A Note on Configuring a Virtqueue

	Communicating Status Information
	Driver Requirements: Communicating Status Information
	Device Requirements: Communicating Status Information

	Handling Device Features
	Device Configuration
	Setting Up Indicators
	Setting Up Classic Queue Indicators
	Setting Up Configuration Change Indicators
	Setting Up Two-Stage Queue Indicators
	Legacy Interfaces: A Note on Setting Up Indicators


	Device Operation
	Host->Guest Notification
	Notification via Classic I/O Interrupts
	Notification via Adapter I/O Interrupts
	Legacy Interfaces: A Note on Host->Guest Notification

	Guest->Host Notification
	Device Requirements: Guest->Host Notification
	Driver Requirements: Guest->Host Notification

	Resetting Devices



	Device Types
	Network Device
	Device ID
	Virtqueues
	Feature bits
	Feature bit requirements
	Legacy Interface: Feature bits

	Device configuration layout
	Device Requirements: Device configuration layout
	Driver Requirements: Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Device Operation
	Legacy Interface: Device Operation
	Packet Transmission
	Driver Requirements: Packet Transmission
	Device Requirements: Packet Transmission
	Packet Transmission Interrupt

	Setting Up Receive Buffers
	Driver Requirements: Setting Up Receive Buffers
	Device Requirements: Setting Up Receive Buffers

	Processing of Incoming Packets
	Device Requirements: Processing of Incoming Packets
	Driver Requirements: Processing of Incoming Packets

	Control Virtqueue
	Packet Receive Filtering
	Setting MAC Address Filtering
	VLAN Filtering
	Gratuitous Packet Sending
	Automatic receive steering in multiqueue mode
	Offloads State Configuration

	Legacy Interface: Framing Requirements


	Block Device
	Device ID
	Virtqueues
	Feature bits
	Legacy Interface: Feature bits

	Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Driver Requirements: Device Initialization
	Device Requirements: Device Initialization
	Legacy Interface: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation
	Legacy Interface: Device Operation
	Legacy Interface: Framing Requirements


	Console Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Legacy Interface: Device configuration layout

	Device Initialization
	Device Requirements: Device Initialization

	Device Operation
	Driver Requirements: Device Operation
	Multiport Device Operation
	Device Requirements: Multiport Device Operation
	Driver Requirements: Multiport Device Operation

	Legacy Interface: Device Operation
	Legacy Interface: Framing Requirements


	Entropy Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Device Initialization
	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation


	Traditional Memory Balloon Device
	Device ID
	Virtqueues
	Feature bits
	Driver Requirements: Feature bits
	Device Requirements: Feature bits

	Device configuration layout
	Device Initialization
	Device Operation
	Driver Requirements: Device Operation
	Device Requirements: Device Operation
	Legacy Interface: Device Operation

	Memory Statistics
	Driver Requirements: Memory Statistics
	Device Requirements: Memory Statistics
	Legacy Interface: Memory Statistics

	Memory Statistics Tags


	SCSI Host Device
	Device ID
	Virtqueues
	Feature bits
	Device configuration layout
	Driver Requirements: Device configuration layout
	Device Requirements: Device configuration layout
	Legacy Interface: Device configuration layout

	Device Requirements: Device Initialization
	Device Operation
	Legacy Interface: Device Operation
	Device Operation: Request Queues
	Device Requirements: Device Operation: Request Queues
	Driver Requirements: Device Operation: Request Queues
	Legacy Interface: Device Operation: Request Queues

	Device Operation: controlq
	Legacy Interface: Device Operation: controlq

	Device Operation: eventq
	Driver Requirements: Device Operation: eventq
	Device Requirements: Device Operation: eventq
	Legacy Interface: Device Operation: eventq

	Legacy Interface: Framing Requirements



	Reserved Feature Bits
	Driver Requirements: Reserved Feature Bits
	Device Requirements: Reserved Feature Bits
	Legacy Interface: Reserved Feature Bits

	Conformance
	Conformance Targets
	Driver Conformance
	PCI Driver Conformance
	MMIO Driver Conformance
	Channel I/O Driver Conformance
	Network Driver Conformance
	Block Driver Conformance
	Console Driver Conformance
	Entropy Driver Conformance
	Traditional Memory Balloon Driver Conformance
	SCSI Host Driver Conformance

	Device Conformance
	PCI Device Conformance
	MMIO Device Conformance
	Channel I/O Device Conformance
	Network Device Conformance
	Block Device Conformance
	Console Device Conformance
	Entropy Device Conformance
	Traditional Memory Balloon Device Conformance
	SCSI Host Device Conformance

	Legacy Interface: Transitional Device and Transitional Driver Conformance

	virtio_queue.h
	Creating New Device Types
	How Many Virtqueues?
	What Device Configuration Space Layout?
	What Device Number?
	How many MSI-X vectors? (for PCI)
	Device Improvements

	Acknowledgements
	Revision History

