
Web Services Context Specification (WS-Context)

Committee draft version 0.
20 May 2004
Abstract

Web services exchange XML documents with structured payloads. The processing semantics of the endpoint may be influenced by additional information that is defined at layers below the application protocol. This information is typically communicated via SOAP Headers. WS-Context provides structuring mechanisms for organizing context information and a framework for building shared session models for services.

The ability to scope arbitrary units of work is a requirement in a variety of aspects of distributed applications such as workflow and business-to-business interactions. By scoping work, we mean that it is possible for business activity participants to be able to determine unambiguously whether or not they are participating in the same activity.

In order to correlate the work of participants within the same activity, it is necessary to propagate additional information known as the context to each participant. The context contains information (such as a unique identifier) that allows a series of operations to share a common outcome.

Table of contents

61
Architecture

81.1 Invocation of Service Operations

81.2 Relationship to WSDL

91.3 Interaction pattern

 1.4 Referencing and Addressing Conventions…………………………………………………10
112
Contexts

122.1 Context information and SOAP

143
Context Manager

164
Activities

175
Context Service

175.1 Status

175.2 CompletionStatus

185.3 Activity outcomes

185.4 Activity messages

20begin

21complete

21completeWithStatus

22setCompletionStatus

22getCompletionStatus

22getStatus

22getContext

23setTimeout

23getTimeout

235.4.1 State transitions

327
References

Note on terminology

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC2119 [1].

Namespace URIs of the general form "some-URI" represents some application-dependent or context-dependent URI as defined in RFC 2396 [2].

1 Architecture

An activity represents a series of related interactions with a set of Web Services; these operations are related via the context. As such, an activity is a conceptual grouping of services cooperating to perform some work; a context is the concrete manner in which this grouping occurs. The notion of an activity is used to scope application specific work. The definition of precisely what an activity is and what services it will require in order to perform that work, will depend upon the environment and application in which it is used.
Context data flows in addition to application payloads that are typically carried in SOAP bodies. Management of the basic context type is facilitated by services defined in this specification. The WS-Context specification also provides service interfaces for managing session-oriented protocols and representing the corresponding activities with contexts. The overall architecture of WS-Context is hierarchical and decomposable, e.g., it is possible to use the context structure without reference to any activity model.

The first element of the WS-Context specification is the context structure itself. The context structure defines a normal model for organizing context information. It supports nesting structures (parent-child relationships) for related contexts, and mechanisms to pass context information by reference or by value. A single context type is not sufficient for all uses of a Context Service. Hence, it must be extensible in a manner specific to a referencing specification: services must be able to augment the context as they require.

This specification defines a Context Service. The Context Service allows applications to demarcate the start and end of activities. It also maintains a repository of context information and tracks contexts shared between multiple participants in Web services interactions. The Context Service can also be a participant within an activity, creating a tree to further propagate the context.

WS-Context is not aimed specifically at a single service type or application domain: it is a more low-level and fundamental service concerned purely with the management of abstract activity entities through shared context. Given the importance of context propagation in many distributed systems, including Web Services, standardization on a context framework (Context Service) is a logical progression in increasing the usefulness and robustness of the Web Services architecture. This service also supports newly emerging Web Service standards such as coordination, workflow and transactions.

The main components of the WS-Context are therefore:

· A Context Service: defines the scope of an activity and how information about it (the context) can be referenced and propagated in a distributed environment. Activities can be hierarchically structured, such that nesting and concurrent activities are possible. The Context Service may be a Web Service that is physically remote from, or collocated with its users.

· A context: defines basic information about the activity structure that is identified using a URI, associated with application messages. The context contains information necessary for multiple Web services to be associated with the same activity. This information may be augmented when the context is created (essentially by implementations of referencing specifications), or dynamically by application services as they send and receive contexts. Activities are managed by the Context Service, which maintains a repository of shared contexts; whenever messages are exchanged within the scope of an activity, the Context Service can supply the associated context which may then be propagated with those messages.

·
1.1 Invocation of Service Operations

How application services are invoked is outside the scope of this specification: they may use synchronous RPC-style approaches or asynchronous message passing.

Irrespective of how remote invocations occur, context information related to the sender’s activity hierarchy will need to be referenced or propagated and this specification determines how the format of the context, how it is referenced, and how that context is created.

In order to support both synchronous request/response and message interactions, we shall describe the components in terms of their behavior and the interactions that occur between them. All interactions are described in terms of correlated messages, which a referencing specification may abstract at a higher level into request/response pairs or RPCs, for example. As such, all communicated messages are required to contain response endpoint addresses solely for the purposes of each interaction, and a correlation identifier such that incoming and outgoing invocations can be associated.

One consequence of these interactions is that faults and errors which may occur when an service is invoked are communicated back to interested parties via messages which are themselves part of the standard protocol – and does not use the fault mechanisms of the underlying SOAP-based transport. For example, if an operation might fail because no activity is present when one is required, then it will be valid for the noActivityFault message to be received by the response service. To accommodate other errors or faults, all response service signatures have a generalFault operation.

Note, in the rest of this specification we will use the term “invokes operation X on service Y” when referring to invoking services. This term does not imply a specific implementation for performing such service invocations and is used merely as a short-hand for “sends message X to service Y.” As long as implementations ensure that the on-the-wire message formats are compliant with those defined in this specification, how the end-points are implemented and how they expose the various operations (e.g., via WSDL [3]) is not mandated by this specification.

Services exchange messages based on the AssertionType defined in WS-Context.

<xs:complexType name="AssertionType">
 <xs:sequence>
 <xs:element name="sender-address" type="tns:AddressType" minOccurs="0"/>
 <xs:element name="recipient-address" type="tns:AddressType" minOccurs="0"
 maxOccurs="0"/>
 <xs:element name="correlation-id" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

The type is designed to be extensible, returning a message containing arbitrary valid XML whose form and content is understood by the recipient.

Because message exchanges may not be synchronous request/response, but asynchronous one-way messages, some means of associating responses with requests is necessary. Therefore AssertionType has the correlation-id to assist in this association task.

1.2 Relationship to WSDL

Where WSDL is used in this specification we shall use a synchronous invocation style for sending requests. In order to provide for loose-coupling of entities all responses are sent using synchronous call-backs. However, this is not prescriptive and other binding styles are possible.

For clarity WSDL is shown in an abbreviated form in the main body of the document: only portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [3]. Complete WSDL is available at the end of the specification.

1.3 Interaction pattern

In this section we shall consider the individual components within the Context Service architecture. In order to support both synchronous request/response and message interactions, we shall describe the components in terms of their behavior and the interactions that occur between them. All interactions are described in terms of correlated messages, which a referencing specification may abstract at a higher level into request/response pairs or RPCs, for example. As such, all communicated messages are required to use response addressing headers for the purposes of each interactionThe following section (1.4) explains the addressing conventions used for WS-Context.

One consequence of these interactions is that faults and errors which may occur when an service is invoked are communicated back to interested parties via messages which are themselves part of the standard protocol – and does not use the fault mechanisms of the underlying SOAP-based transport. For example, if an operation might fail because no activity is present when one is required, then it will be valid for the noActivityFault message to be received by the response service. To accommodate other errors or faults, all response service signatures have a generalFault operation.

1.4 Referencing and Addressing Conventions

There are multiple mechanisms for addressing messages and referencing web services currently proposed by the web services community. This specification defers the rules for addressing SOAP messages to existing specifications; the addressing information is assumed to be placed in SOAP headers and respect the normative rules required by existing specifications.

However, the Context message set requires an interoperable mechanism for referencing web services. For example, context structures may reference the service that is used to manage the content of the context. To support this requirement, WS-CAF uses an open content model. The open content model is supported by the ServiceRef element.
<xs:element name="service-ref" type=”tns:ServiceRefType”/>

<xs:complexType name="ServiceRefType">

 <xs:sequence>

 <xs:any namespace="##other" processContents="lax" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

<xs:attribute name="reference-scheme" type="xs:anyURI" use="required"/>

</xs:complexType>
Figure 2, service-ref Element
The reference-scheme is the namespace URI for the referenced addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery specification[4] would be http://www.w3.org/2004/04/ws-messagedelivery.

The contents of the any element contain a service reference as defined by the referenced specfication. For example, a WSRef to a Context Manager service would appear as follows:

<wsdl11:service name="MyContextService" wsmd:portType="ctx:ContextManager"> <wsdl11:port name="myCtxPort" binding="ex:ctxServiceBinding"> <soapbind:address location="http://example.com/wsdl-example1/impl"/> </wsdl11:port> </wsdl11:service>. Figure 3 shows a representative service-ref element based on these examples.
<ctx:service-ref reference-scheme="ttp://www.w3.org/2004/04/ws-messagedelivery">
 <wsdl:service name="MyContextService" wsmd:portType="ctx:ContextManager">
 <wsdl:port name="myCtxPort" binding="ex:ctxServiceBinding">
 <soapbind:address location="http://example.com/wsdl-example1/impl"/>
 </wsdl:port>
 </wsdl:service>
</ctx:service-ref>
Figure 3, example of a service-ref element

Messages sent to referenced services must use the addressing scheme defined by the specification indicated by the value of the reference-scheme element.

To preserve interoperability in deployments that contain multiple addressing schemes, there are no restrictions on a system, beyond those of the composite services themselves. However, it is recommended where possible that composite applications confine themselves to the use of single addressing and reference model.
2 Contexts

Contexts are used to include protocol specific data for transmission in SOAP headers. The basic context structure is shown in Figure 2.

<xs:complexType name="ContextType">

 <xs:sequence>

 <xs:element name="context-identifier" type="xs:anyURI"/>

 <xs:element name="activity-service" type="xs:anyURI" minOccurs="0"/>

 <xs:element name="type" type="xs:anyURI" minOccurs="0"/>

 <xs:choice minOccurs=”0” maxOccurs=”1”>
 <xs:element name=”context-manager” type=”tns:ServiceRefType”/>
 <xs:element name=”context-url” type=”xs:anyURI”/>

 </xs:choice>

 <xs:element name="participating-services" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="service-ref" minOccurs="0"
 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="mustUnderstand" type="xs:boolean" use="optional"
 default="false"/>

 <xs:attribute name="mustPropagate" type="xs:boolean" use="optional"
 default="false"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="child-contexts" minOccurs="0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="child-context" type="tns:ContextType"
 maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="timeout" type="xs:int" use="optional"/>

</xs:complexType>

Figure 2, Context Service Context.

The context consists of the following items:

· A mandatory URI identifier called context-identifier. This identifier can be thought of as a “correlation” identifier or a value that is used to indicate that a task is part of the same work activity. Because contexts may be passed by reference or passed by value, the context-identifier may also refer to a Web service (the Context Manager) where the context resides, if it is passed by reference. In which case, the URI may be used as a Web service identifier to obtain the context and none of the other context elements will appear in the initial SOAP header.

· An optional URI element, activity-service, which identifies the Context Service responsible for generating the context. This element may not be dereferenced and is only for unique identification.

· An optional identifier that indicates the type of the protocol type. This element may not be dereferenced and is only for unique identification.

· An optional choice that allows a service to get data associated with a context-identifier. The choice may resolve to a reference to a Context Manager web service or a URL that may be dereferenced to resolve the data directly.
· An optional list of the Application Web services currently participating in the activity, called participating-services.

· An optional list of child-contexts element.

· A timeout value, which indicates for how long the context information is valid; the after this period has elapses, the context is considered to be invalid. A context is determined to be valid by its issuing authority. For example, the WS-Context specification defines an issuing authority called the Context Service. The timeout allows a Context Service implementation, in the event of no external stimulus, to terminate activities automatically rather than have them potentially run forever.

· The context may contain information from an arbitrary number of augmenter services. The context structure is extended via the extensibility element of type xsd:Any present in the schema for the ContextType.

Context propagation is possible using different protocols than those used by the application, as shown in Figure 3. The WS-Context specification does not assume a specific means by which contexts are associated with application messages, leaving this up to the referencing specification.

[image: image2.wmf]

Application

Service

Message

+

Context

Compose

Decompose

Message

Message

Context

Context

Service

Server

Inteceptor

Inteceptor

Figure 3, Services and context flow.

Contexts may be passed by reference or by value within a system. Contexts that are passed by value are considered to be snapshot copies of the context at the point in time at which the context was created or augmented. Contexts that are passed by reference may always be de-referenced to retrieve the equivalent “by value” copy of the context.
Contexts that are passed by reference must include either the context-manager element or the context-url element. Dereferencing may be performed by familiar protocol URL handlers and/or by reference to a ContextManager web service identified by a web service reference contained in the context, as indicated by the context instance. Implementations or deployments may prefer to use a particular approach for reasons of efficiency (e.g., by-reference contexts that contain particularly large data blocks, by-reference copies of sensitive data with access control for dereferencing, or by-value copies of contexts with smaller blocks of protocol processing elements).

The choice of whether to transmit a full or abbreviated context is left to the the sender of the context. It is however expected that when dealing with large context elements (those which subsume a large number of activities) that the URI-only form will be used for efficiency. A sender who wishes to switch between full and abbreviated has the responsibility for ensuring that the dereferencing capability is available.

2.1 Context information and SOAP

Where messages (either business-level application messages, or WS-Context protocol messages themselves) require contextualization, the context is transported in a SOAP header block. While it is implicit that WS-Context actors understand contexts that arrive in SOAP header blocks, the context propagated with application messages must also be understood by their recipients. Hence in this case each SOAP header block carrying a context has the “mustUnderstand” attribute set to “true” and the recipient must understand the header block encoding according to its identifying URI. This is shown in Figure 4.

<?xml version="1.0" encoding="UTF-8"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2002/06/soap-envelope">

 <soap:Header encodingStyle="http://www.webservicestransactions.org/schemas/wsctx/2003/03"

 mustUnderstand="true">

 <context xmlns="http://www.webservicestransactions.org/schemas/wsctx/2003/03"
 timeout="100">

 <context-identifier>
 http://www.webservicestransactions.org/wsctx/abcdef:012345
 </context-identifier>

 <activity-service>
 http://www.webservicestransactions.org/wsctx/service
 </activity-service>

 <type>
 http://www.webservicestransactions.org/wsctx/context/type1
 </type>

 <participating-services>

 <ctx:service-ref reference-scheme="ttp://www.w3.org/2004/04/ws-messagedelivery">
 <wsdl:service name="MyParticipantService" wsmd:portType="foo:ParticipantService">
 <wsdl:port name="myParticipantPort" binding="ex:participantServiceBinding">
 <soapbind:address location="http://example.com/wsdl-example2/impl"/>
 </wsdl:port>
 </wsdl:service>
 </ctx:service-ref>

 </participating-services>

 <child-contexts>

 <child-context timeout="200">

 <context-identifier>
 http://www.webservicestransactions.org/wsctx/5e4f2218b
 </context-identifier>

 <activity-service>
 http://www.webservicestransactions.org/wsctx/service
 </activity-service>

 <type>http://www.webservicestransactions.org/wsctx/context/type1</type>

 <participating-services mustUnderstand="true" mustPropagate="true">

 <service>http://www.webservicestransactions.org/service3</service>

 <service>http://www.webservicestransactions.org/service4</service>

 </participating-services>

 </child-context>

 </child-contexts>

</context>

 </soap:Header>

 <soap:Body>

 <!-- Application Payload -->

 </soap:Body>

</soap:Envelope>
Figure 4, CTX Context Transported in a SOAP Header Block By Value.

3 Context Manager

If the context is passed by reference, then a receiver may require the information it contains. Figure 5 shows the message interactions for the context using the dereferencing call-back style mentioned earlier: solid lines represent the initial request invocations and dashed lines represent the response invocations.

[image: image3.emf]

Figure 5, Context interactions.

The ContextManager has the following operations, all of which contain the call-back address for the ContextResponseHandler:

· getContents: this message is used to request the entire contents of a specific context.

· setContents: the contents of the context are replaced with the context information provided. Note that concurrency control of a context passed by a reference is an implementation issue.
The ContextResponseHandler has the following operations:

· contents: this message returns the entire contents of a specific context.

· contentsSet: this message is sent to indicate that contents of the context have been updated.

· unknownContextFault: this message is sent to indicate that the specified context cannot be located.

· generalFault: this message is sent to indicate that some other error has occurred during the enlistment.

The WSDL interfaces that elucidate these roles are shown in Figure 6.

<wsdl:portType name="ContextManagerPortType">

 <wsdl:operation name="getContents">

 <wsdl:input message="tns:GetContentsMessage"/>

 </wsdl:operation>

 <wsdl:operation name="setContents">

 <wsdl:input message="tns:SetContentsMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="ContextResponseHandlerPortType">

 <wsdl:operation name="contents">

 <wsdl:input message="tns:ContentsMessage"/>

 </wsdl:operation>

 <wsdl:operation name="contentsSet">

 <wsdl:input message="tns:ContentsSetMessage"/>

 </wsdl:operation>

 <wsdl:operation name="unknownContextFault">

 <wsdl:input message="tns:UnknownContextFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="generalFault">

 <wsdl:input message="tns:GeneralFaultMessage"/>

 </wsdl:operation>

</wsdl:portType>

Figure 6, WSDL Interfaces for ContextManager and ContextResponseHandler Roles.

4 Activities

As mentioned earlier, an activity is defined as a collection of web service operation invocations performed within a valid context. An activity is created, runs, and then completes. An outcome is the result of a completed activity. The expected semantics of a web service within an activity are defined by specifications derived from WS-Context. These semantics are indicated in a context by a protocol identifier representing the protocol type of the activity. The activity itself is uniquely identified by a context-identifier element.

In a system, there may be a set of contexts C associated with an activity. There will typically be multiple contexts because context data structures are copied by value from service to service and may be augmented to include data that is valid to the local execution environment. The contexts in C are not equivalent: each may reflect one service's view of the activity at a point in time. The initial context created for a specific activity is the base from which all other contexts may be derived.

A context is associated with one and only one activity; "compound" activity contexts do not exist. The set of operations represented by A may be used to define more than one activity; for example, the operations in A may include a context for a security protocol and a context for a transaction protocol, each representing a separate activity.

A web service that performs an operation within an invalid context creates an invalid activity. It is up to the specifications using WS-Context to determine the implications of invalid activities (which may be insignificant or severe) and provide structuring mechanisms that avoid invalid activities if necessary.

Activities may be nested. If an activity is nested, then the global context may be a hierarchy representing the activity structure. Each element in the context hierarchy may also possess a different activity-identifier.

5 Context Service

The WS-Context specification defines an activity framework (the Context Service) that supports the abstract notion of an activity and allows referencing specifications and services to scope work within these activities by sharing context. The basic infrastructure simply supports the lifecycle of activities and ensures that each is uniquely identified. This section specifies how activities and contexts are modeled, managed, and represented by the Context Service.

5.1 Status

During the existence of the activity its status will either be running, completing, or completed. An activity should report its current status when asked; there is no notion of automatically informing services when a specific state is entered:

<xs:simpleType name="StatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="activity.status.ACTIVE"/>

 <xs:enumeration value="activity.status.COMPLETING"/>

 <xs:enumeration value="activity.status.COMPLETED"/>

 <xs:enumeration value="activity.status.NO_ACTIVITY"/>

 <xs:enumeration value="activity.status.UNKNOWN"/>

 </xs:restriction>

</xs:simpleType>

The meaning of each of the above values is given below:

· activity.status.ACTIVE: The activity is in the active state. An implementation returns this status after an Activity has been started and prior to its beginning completion.

· activity.status.COMPLETING: The activity is in the process of completing. An implementation returns this status if it has started to complete, but has not yet finished the process. This value indicates that the activity may be performing activity specific work required to determine its final completion status, such as notifying participants of a failure. An activity must enter this state prior to completion.

· activity.status.COMPLETED: The activity has completed.

· activity.status.NO_ACTIVITY: There is no such activity.

· activity.status.UNKNOWN: The Context Service cannot determine the current status of the activity. This is a transient condition, and a subsequent invocation should ultimately return a different status. An implementation may attempt to retry the appropriate invocation transparently if such a value is returned initially.

The diagram below indicates the transitions that an Activity can undergo.

[image: image4.wmf]Active

Completing

Completed

Figure 7, Activity UML state diagram.

5.2 CompletionStatus

<xs:simpleType name="CompletionStatusType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="activity.complete.SUCCESS"/>

 <xs:enumeration value="activity.complete.FAIL"/>

 <xs:enumeration value="activity.complete.FAIL_ONLY"/>

 <xs:enumeration value="activity.complete.UNKNOWN"/>

 </xs:restriction>

</xs:simpleType>

When an Activity completes, it does so in one of two states, either success or failure (the meaning of which can only be defined by the referencing specification or services that use the activity). During its lifetime, the completion state of the Activity (i.e., the state it would have if it completed at that point) may change from success to failure, and back again many times. This is represented by the CompletionStatusType type, whose values are:

· activity.complete.SUCCESS: the Activity has successfully performed its work and can complete accordingly. When in this state, the Activity completion status can be changed.

· activity.complete.FAIL: some (referencing specification specific) error occurred which has meant that the Activity has not performed all of its work, and should be driven during completion accordingly. When in this state, the Activity completion status can be changed.

· activity.complete.FAIL_ONLY: some (referencing specification specific) error occurred which has meant that the Activity has not performed all of its work, and should be driven during completion accordingly. Once in this state, the completion status of the Activity cannot be changed, i.e., the only possible outcome for the Activity is for it to fail.

· activity.complete.UNKNOWN: The Context Service cannot determine its current completion status. This is a transient condition, and a subsequent invocation should ultimately return a different completion status. An implementation may attempt to retry the appropriate invocation transparently if such a value is returned initially.

5.3 Activity outcomes

When an Activity completes, an outcome may be returned to the initial application in order for it to determine the final status of the Activity. Both success and failure state types may be encoded within an outcome; the format of the outcome will be defined by the referencing specification. This outcome is returned from the Context Service.

5.4 Activity messages

In order to be able to scope work within activities it is necessary for a component of the Context Service to provide an interface for activity demarcation. The implementation of this service may be collocated with users. Since the Context Service maintains information on multiple activities, an activity context may be present on some operation invocations to determine the appropriate activity on which to operate. This context will be passed by reference, since it is only required for identification purposes.

Interactions with the Context Service occur between users (services) and the Context Service via the UserCTXService and CTXService interfaces respectively. The WSDL for these services is shown below and we shall describe the interactions in the following section.

<wsdl:portType name="CTXServicePortType">

 <wsdl:operation name="begin">

 <wsdl:input message="tns:BeginMessage"/>

 </wsdl:operation>

 <wsdl:operation name="complete">

 <wsdl:input message="tns:CompleteMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completeWithStatus">

 <wsdl:input message="tns:CompleteWithStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="setCompletionStatus">

 <wsdl:input message="tns:SetCompletionStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getCompletionStatus">

 <wsdl:input message="tns:GetCompletionStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getStatus">

 <wsdl:input message="tns:GetStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getContext">

 <wsdl:input message="tns:GetContextMessage"/>

 </wsdl:operation>

 <wsdl:operation name="setTimeout">

 <wsdl:input message="tns:SetTimeoutMessage"/>

 </wsdl:operation>

 <wsdl:operation name="getTimeout">

 <wsdl:input message="tns:GetTimeoutMessage"/>

 </wsdl:operation>

</wsdl:portType>

<wsdl:portType name="UserCTXServicePortType">

 <wsdl:operation name="begun">

 <wsdl:input message="tns:BegunMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completed">

 <wsdl:input message="tns:CompletedMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completedWithStatus">

 <wsdl:input message="tns:CompletedWithStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completionStatusSet">

 <wsdl:input message="tns:CompletionStatusSetMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completionStatus">

 <wsdl:input message="tns:CompletedWithStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="completionStatus">

 <wsdl:input message="tns:CompletedWithStatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="status">

 <wsdl:input message="tns:StatusMessage"/>

 </wsdl:operation>

 <wsdl:operation name="requestedContext">

 <wsdl:input message="tns:RequestedContextMessage"/>

 </wsdl:operation>

 <wsdl:operation name="timeoutSet">

 <wsdl:input message="tns:TimeoutSetMessage"/>

 </wsdl:operation>

 <wsdl:operation name="timeout">

 <wsdl:input message="tns:TimeoutMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidStateFault">

 <wsdl:input message="tns:InvalidStateFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="invalidActivityFault">

 <wsdl:input message="tns:InvalidActivityFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="timeoutOutOfRange">

 <wsdl:input message="tns:TimeoutOutOfRangeFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="childActivityPendingFault">

 <wsdl:input message="tns:ChildActivityPendingFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="noActivityFault">

 <wsdl:input message="tns:NoActivityFaultMessage"/>

 </wsdl:operation>

 <wsdl:operation name="noPermissionFault">

 <wsdl:input message="tns:NoPermissionFaultMessage"/>

 </wsdl:operation>

 </wsdl:portType>

Figure 8, CTXService WSDL.

In order to drive the Context Service, the following two roles (and associated services) are defined for the interactions:

· CTXService: this has operations begin, complete, completeWithStatus, setCompletionStatus, getCompletionStatus, getStatus, getContext, setTimeout and getTimeout;

· UserCTXService: this is the user/service callback endpoint address for the various CTXService operations. As such, it has operations begun, completed, completionStatusSet, completionStatus, status, context, timeoutSet, timeout, invalidStateFault, invalidActivityFault, timeoutOutOfRangeFault, childActivityPendingFault, noActivityFault, noPermissionFault, validContextExpectedFault.

The CTXService has the following operations, all of which are associated with the current context (if any). The UserCTXService endpoint address is exchanged during each operation in order to allow the Context Service to return the result of the invocation.

begin

The begin operation creates a new activity (based on the type parameter) and initializes the context. A begin can be modeled as the first Web service in the Activity to register itself, in the case where there is no formal Context Service executing as a separate Web service; an unique activity identifier is created for the activity such that any context information that is subsequently obtained will reference this identifier. If an activity context is present on the begin request then the newly created Activity will be nested within it. Otherwise, the Activity exists at the top level. If the parent Activity has been marked as activity.complete.FAIL_ONLY then the invalidStateFault operation will be invoked on the received UserCTXService endpoint. If the activity is completing, or has completed, the invalidActivityFault operation will be invoked on the received UserCTXService endpoint.

The timeout parameter is used to control the lifetime of the Activity. If the Activity has not completed by the time timeout seconds elapses then it is subject to being completed automatically by the Context Service with the activity.complete.FAIL status. The timeout can have the following possible values:

· any positive value: the Activity must complete within this number of seconds.

· -1: the Activity will never be completed automatically by the Context Service implementation, i.e., it will never be considered to have timed out.

· 0: the last value specified using the set_timeout method is used. If no prior call to the setTimeout operation has occurred for this thread, or the value returned is 0, then it is implementation dependant as to the timeout value associated with this Activity.

Any other value results in the Context Service calling the timeoutOutOfRangeFault operation on the UserCTXService endpoint.

Upon success, the new activity will be placed in the activity.status.ACTIVE state and the Context Service will invoke the begun operation of the UserCTXService.

If an invalid context is propagated on the begin request then the validContextExpectedFault operation is invoked on the UserCTXService. It is up to the referencing specification to define what an invalid context is, but could be a malformed context, for example, or a context that does not refer to an active activity.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

The invalidProtocolTypeFault operation is invoked on the UserCTXService is the service cannot create a context of the required type.

complete

A valid activity context is associated with this invocation. The complete operation causes the associated Activity to complete with its current CompletionStatus, or activity.complete.FAIL if none has been specified using setCompletionStatus. If there are any encompassed active Activities and the completion status is activity.complete.SUCCESS, then the childActivityPendingFault operation is invoked on the associated UserCTXService; the application must then either complete the outstanding nested contexts or force the Activity to end by setting the CompletionStatus to either activity.complete.FAIL or activity.complete.FAIL_ONLY and then call complete again.
If the completion status of the activity has been marked as activity.complete.FAIL, or activity.complete.FAIL_ONLY, any encompassed active Activities will they have their completion status set to activity.complete.FAIL_ONLY. If there is no Activity associated with the sent context, the noActivityFault operation is invoked on the UserCTXService and no other action is taken. A Context Service implementation may impose restrictions on which users can terminate an activity, and in which case the noPermissionFault operation may be invoked on the UserCTXService.

Once complete, the Context Service invokes the completed method on the UserCTXService, passing it the resultant AssertionType (which may be an empty message) and the state in which it completed; this AssertionType, which is determined by the Context Service, may be used to further interpret the final outcome of the Activity If the Activity has begun completion, or has completed, then the invalidActivityFault UserCTXService operation is called.

If an invalid context is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

Additional fault or success messages are expected to be encoded within the resultant AssertionType.

completeWithStatus

A valid activity context should be associated with this invocation. The completeWithStatus operation causes the Activity associated with the context to complete and use the CompletionStatus provided if this does not conflict with any that has previously been set using the setCompletionStatus operation; this is logically equivalent to calling the setCompletionStatus operation followed by the complete operation. The UserCTXService completed operation is called upon success.

If the Activity is not allowed to complete in the status required (e.g., it has been marked as activity.complete.FAIL_ONLY and is being asked to complete in activity.complete.SUCCESS state) then the Context Service will invoke the associated UserCTXServices invalidStateFault operation.

If an invalid context is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

Additional fault or success messages are expected to be encoded within the resultant AssertionType.

setCompletionStatus

A valid activity context is associated with this invocation. This operation can be used to set the CompletionStatus that will be used when the Activity completes. This operation may be called many times during the lifetime of an Activity in order to reflect changes in its completion status as it executes. If this operation is not called during the Activity’s lifetime, the default status is activity.complete.FAIL. When the Activity completes, the CompletionStatus is given to the Context Service. It may also appear in the activity context. If the CompletionStatus is activity.complete.FAIL_ONLY and an attempt is made to change the status to anything other than activity.complete.FAIL_ONLY, the invalidStateFault operation will be invoked on the UserCTXService. If the Activity has begun completion, or has completed, then the UserCTXService invalidActivityFault operation will be called. Otherwise, the completionStatusSet operation is invoked.

If an invalid context is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

getCompletionStatus

This operation is used to obtain the current CompletionStatus associated with the activity referenced in the propagated context (if any). The Context Service will invoke the completionStatus on the UserCTXService associated with this invocation, passing the CompletionStatus currently associated with the Activity, or activity.complete.FAIL if setCompletionStatus has not previously been called. If there is no activity associated with the propagated context then the noActivityFault operation will be called.

If an invalid context is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

getStatus

This operation is used to obtain the current Status of the activity referenced in the propagated context. The Context Service will invoke the status operation on the associated UserCTXService to return the current status of the Activity. If there is no Activity associated with the context, the noActivityFault operation is invoked on the UserCTXService.

If an invalid context is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

getContext

Causes the Context Service to invoke the context operation on the associated UserCTXService to returns the context value represented by the URI. If there is no activity associated with the URI then the noActivityFault operation is used. No context is associated with this invocation.

If an invalid URI is propagated on the request then the validContextExpectedFault operation is invoked on the UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

setTimeout

No context is associated with this invocation. This operation modifies a state variable associated with the Context Service that affects the time-out period associated with the activities created by subsequent invocations of the begin operation when no timeout is specified (i.e., the begin timeout value is 0): this is a default timeout value associate with the service. If the parameter has a non-zero value n, then activities created by subsequent invocations of begin will be subject to being completed if they do not complete before n seconds after their creation. The timeout can have the following possible values:

· any positive value: the Activity must complete within this number of seconds.

· -1: the Activity will never be completed automatically by the Context Service implementation, i.e., it will never be considered to have timed out.

· 0: it is implementation dependant as to the meaning of passing 0 as the value.

A valid timeout value results in the Context Service calling the UserCTXService’s timeoutSet operation. Any other value results in the timeoutOutOfRangeFault operation being invoked on the associated UserCTXService.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

getTimeout

No context is associated with this invocation. Upon successful execution, this operation causes the Context Service to return the default timeout value associated with the service, i.e., the timeout that is associated with activities created by calls to begin when no timeout value is passed via begin. This need not be the value associated with the current Activity, however.

The generalFault operation is invoked on the UserCTXService if an unexpected error or fault occurs.

5.4.1 State transitions

Figure 9 shows the state transitions for an activity and how they relate to the various messages exchanges between the client/user of the Context Service and the Context Service. As mentioned above, in order to participate in these message interactions the client/user supplies a UserCTXService endpoint.

[image: image5.emf]Client/service generated

Context Service

generated

Active

begin

begun

Complet

ing

complete

UserCTXService

completeWithStatus

Complet

ed

completed

Figure 9, Activity state transitions and messages.

6

·

·
·
·

·

·
·
·

6.1.1

·
·

·
·
·
·

·
·
·
·
·
·
·

7 References

[1] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard University, March 1997.

[2] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.
[3] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl
[4] WS-MessageDelivery specification, see http://www.w3.org/Submission/2004/SUBM-ws-messagedelivery-20040426

�We should remove this in favor of the ContextManager.

_1120464625.doc
[image: image1.png]Glusuioneley [0AU0T

CTX Profocal Maszages

Context Service

Activity
Lifecycle
Service

dusuoReleY 03000

_1131886810.vsd

_1144052421.vsd
�

�

ALSRegistrar�

ALSResponseHandler�

�

enlistALS�

�

enlisted�

�

invalidALSFault�

�

generalFault�

�

ActivityManager generated�

ALS enlister generated�

_1144052464.vsd
�

�

ALSRegistrar�

ALSResponseHandler�

�

delistALS�

�

delisted�

�

invalidALSFault�

�

generalFault�

�

ActivityManager generated�

ALS delister generated�

_1120564151.doc
[image: image1.png]CortextRe
spondant

GeneraFault

unknonnCantextf ault

getContents
—_—
Cantaxt
Manager
e
ettontants o

comerisset

Context ganerated

Semice genersted

_1073598625.doc

Application

Service

Message

+

Context

Compose

Decompose

Message

Message

Context

Context

Service

Server

Inteceptor

Inteceptor

_1013416714.doc

Active

Completing

Completed

