

 1

Web Services ACID Specification 2

(WS-ACID) 3

Editors draft version 0.2 4
 5

Version created 5 July 2005 6
 7

Editors 8
Mark Little (mark.little@arjuna.com) 9
Eric Newcomer (eric.newcomer@iona.com) 10
Greg Pavlik (greg.pavlik@oracle.com) 11

 12
 13

 14
 15

 16
 17

 18
 19

 20
 21

 22
 23

 24
 25

 26
 27

 28
 29

 30
 31

 32
 33

 34
 35

Copyright © 2005 The Organization for the Advancement of Structured Information 36
Standards [Appendix B] 37

 38

 39

mailto:mark.little@arjuna.com
mailto:eric.newcomer@iona.com
mailto:greg.pavlik@oracle.com

2

Abstract 40

An increasing number of applications are being constructed by combining or coordinating the 41
execution of multiple Web services, each of which may represent an interface to a different 42
underlying technology. The resulting applications can be very complex in structure, with complex 43
relationships between their constituent services. Furthermore, the execution of such an 44
application may take a long time to complete, and may contain long periods of inactivity, often 45
due to the constituent services requiring user interactions. In the loosely coupled environment 46
represented by Web services, long running applications will require support for recovery and 47
compensation, because machines may fail, processes may be cancelled, or services may be 48
moved or withdrawn. Web services transactions also must span multiple transaction models and 49
protocols native to the underlying technologies onto which the Web services are mapped. 50
A common technique for fault-tolerance is through the use of atomic transactions, which have the 51
well know ACID properties, operating on persistent (long-lived) objects. Transactions ensure that 52
only consistent state changes take place despite concurrent access and failures. However, 53
traditional transactions depend upon tightly coupled protocols, and thus are often not well suited 54
to more loosely-coupled Web services based applications, although they are likely to be used in 55
some of the constituent technologies. It is more likely that traditional transactions are used in the 56
minority of cases in which the cooperating Web services can take advantage of them, while new 57
mechanisms, such as compensation, replay, and persisting business process state, more suited 58
to Web services are developed and used for the more typical case. 59
WS-TXM provides a suite of transaction models, each suited to solving a different problem 60
domain. However, because WS-TXN leverages WS-CF, it is intended to allow flexibility in the 61
types of models supported. Therefore, if new models are required for other problem areas, they 62
can be incorporated within this specification. 63

 64

Table of contents 65

1 Note on terminology..4 66
1.1 Namespace...4 67

1.1.1 Prefix Namespace..4 68
1.2 Referencing Specifications ..4 69

2 Introduction.. Error! Bookmark not defined. 70
2.1 Problem statement ... Error! Bookmark not defined. 71

3 Architecture ... Error! Bookmark not defined. 72
3.1 Invocation of Service Operations ...5 73
3.2 Relationship to WSDL ...6 74
3.3 Referencing and addressing conventions ..6 75

4 WS-ACID..8 76
4.1 Interposition ... Error! Bookmark not defined. 77
4.2 Restrictions imposed on using WS-CF...8 78
4.3 Two-phase commit ..8 79

4.3.1 Coordinator state transitions for two-phase commit protocol9 80
4.3.2 Two-phase participant state transitions........................ Error! Bookmark not defined. 81
4.3.3 Two-phase commit message interactions ...10 82
4.3.4 Pre- and post- two-phase commit processing ...13 83
4.3.5 Coordinator state transitions for synchronization protocol ...14 84
4.3.6 Recovery and interposition ...15 85
4.3.7 The context ..15 86
4.3.8 Statuses...15 87

5 References ...17 88

 89

Deleted: 5

Deleted: 5

Deleted: 5

Deleted: 8

Deleted: 10

4

1 Note on terminology 90

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 91
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 92
interpreted as described in RFC2119 [2]. 93
Namespace URIs of the general form http://example.org and http://example.com represents some 94
application-dependent or context-dependent URI as defined in RFC 2396 [3]. 95

1.1 Namespace 96

The XML namespace URI that MUST be used by implementations of this specification is: 97

http://docs.oasis-open.org/wscaf/2005/03/wsacid 98

1.1.1 Prefix Namespace 99

Prefix Namespace

wscf http://docs.oasis-open.org/wscaf/2005/02/wscf

wsctx http://docs.oasis-open.org/wscaf/2004/09/wsctx

wsacid http://docs.oasis-open.org/wscaf/2005/07/wsacid

ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

tns targetNamespace

1.2 Referencing Specifications 100

One or more other specifications may reference the WS-ACID specification. The usage of 101
optional items in WS-ACID is typically determined by the requirements of such as referencing 102
specification. 103
A referencing specification generally defines the protocol types based on WS-ACID. Any 104
application that uses WS-ACID must also decide what optional features are required. For the 105
purpose of this document, the term referencing specification covers both formal specifications 106
and more general applications that use WS-ACID. 107

 108

Comment: Kevin, can you
check these are right (dates)?

http://example.org/
http://example.com/

 5

2 Architecture 109

Atomic transactions are a well-known technique for guaranteeing consistency in the presence of 110
failures [10]. The ACID properties of atomic transactions (Atomicity, Consistency, Isolation, and 111
Durability) ensure that even in complex business applications consistency of state is preserved, 112
despite concurrent accesses and failures. This is an extremely useful fault-tolerance technique, 113
especially when multiple, possibly remote, resources are involved. 114
WS-ACID leverages the WS-CF and WS-Context specifications. Figure 4 illustrates the layering 115
of WS-ACID onto WS-CF. WS-ACID defines a pluggable transaction protocol that can be used 116
with the coordinator to negotiate a set of actions for all participants to execute based on the 117
outcome of a series of related Web services executions. The executions are related through the 118
use of shared context. Examples of coordinated outcomes include the classic two-phase commit 119
protocol, a three phase commit protocol, open nested transaction protocol, asynchronous 120
messaging protocol, or business process automation protocol. 121

Composite

Web Service

Web Service

Web Service

Web Service

Transaction
Context

Composite

Web Service

Web Service

Web Service

Web Service

Coordinator

Web-Service

Composite

Web-Service

Composite

Coordinator

Web Service

Web Service

Web Service

Web Service

WS-TXM

 122
Figure 1, Relationship of transactions to coordination framework. 123

Coordinators can be participants of other coordinators, as shown above. When a coordinator 124
registers itself with another coordinator, it can represent a series of local activities and map a 125
neutral transaction protocol onto a platform-specific transaction protocol. 126

2.1 Invocation of Service Operations 127

How application services are invoked is outside the scope of this specification: they MAY use 128
synchronous or asynchronous message passing. 129
Irrespective of how remote invocations occur, context information related to the sender’s activity 130
needs to be referenced or propagated. This specification determines the format of the context, 131
how it is referenced, and how a context may be created. 132

6

In order to support both synchronous and asynchronous interactions, the components are 133
described in terms of the behavior and the interactions that occur between them. All interactions 134
are described in terms of correlated messages, which a referencing specification MAY abstract at 135
a higher level into request/response pairs. 136
Faults and errors that may occur when a service is invoked are communicated back to other Web 137
services in the activity via SOAP messages that are part of the standard protocol. To achieve this, 138
the fault mechanism of the underlying SOAP-based transport is used. For example, if an 139
operation fails because no activity is present when one is required, then the callback interface will 140
receive a SOAP fault including type of the fault and additional implementation specific information 141
items supported the SOAP fault definition. WS-Context specific fault types are described for each 142
operation. A fault type is communicated as an XML QName; the prefix consists of the WS-143
Context namespace and the local part is the fault name listed in the operation description. 144

Note, a transientFault message is produced when the implementation finds it 145
cannot successfully execute the requested operation at that time from some 146
temporary reason. This reason may be implementation or referencing 147
specification specific. A receiver of a transientFault is free to retry the operation 148
which originally generated it on the assumption that eventually a different 149
response will be produced. Sub-types of transientFault MAY be further defined 150
using the fault model described which can allow for the communication of more 151
specific information on the type of fault. 152

As long as implementations ensure that the on-the-wire message formats are compliant with 153
those defined in this specification, how the end-points are implemented and how they expose the 154
various operations (e.g., via WSDL [1]) is not mandated by this specification. However, a 155
normative WSDL binding is provided by default in this specification. 156

Note, this specification does not assume that a reliable message delivery 157
mechanism has to be used for message interactions. As such, it MAY be 158
implementation dependant as to what action is taken if a message is not 159
delivered or no response is received. 160

2.2 Relationship to WSDL 161

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the 162
normative style. Other binding styles are possible (perhaps defined by referencing specifications), 163
although they may have different acknowledgment styles and delivery mechanisms. It is beyond 164
the scope of WS-ACID to define these styles. 165

Note, conformant implementations MUST support the normative WSDL defined 166
in the specification where those respective interfaces are required. WSDL for 167
optional components in the specification is REQUIRED only in the cases where 168
the respective components are supported. 169

For clarity WSDL is shown in an abbreviated form in the main body of the document: only 170
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1]. 171

2.3 Referencing and addressing conventions 172

There are multiple mechanisms for addressing messages and referencing Web services currently 173
proposed by the Web services community. This specification defers the rules for addressing 174
SOAP messages to existing specifications; the addressing information is assumed to be placed in 175
SOAP headers and respect the normative rules required by existing specifications. 176
However, the Coordination Framework message set requires an interoperable mechanism for 177
referencing Web Services. For example, context structures may reference the service that is used 178
to manage the content of the context. To support this requirement, WS-CAF has adopted an open 179
content model for service references as defined by the Web Services Reliable Messaging 180
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 1. 181

 7

<xsd:complexType name="ServiceRefType"> 182
 <xsd:sequence> 183
 <xsd:any namespace="##other" processContents="lax"/> 184
 </xsd:sequence> 185
 <xsd:attribute name="reference-scheme" type="xsd:anyURI" 186
 use="optional"/> 187
 </xsd:complexType> 188

Figure 2, service-ref Element 189
The ServiceRefType is extended by elements of the context structure as shown in Figure 2. 190

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/> 191

Figure 3, ServiceRefType example. 192
Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced 193
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery 194
specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery. The value for WSRef 195
defined in the WS-Addressing specification [8] would be 196
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need 197
only be used if the namespace URI of the QName of the Web service reference cannot be used 198
to unambiguously identify the addressing specification in which it is defined. 199
Messages sent to referenced services MUST use the addressing scheme defined by the 200
specification indicated by the value of the reference-scheme element if present. Otherwise, the 201
namespace URI associated with the Web service reference element MUST be used to determine 202
the required addressing scheme. A service that requires a service reference element MUST use 203
the mustUnderstand attribute for the SOAP header element within which it is enclosed and MUST 204
return a mustUnderstand SOAP fault if the reference element isn’t present and understood. 205

Note, it is assumed that the addressing mechanism used by a given 206
implementation supports a reply-to or sender field on each received message so 207
that any required responses can be sent to a suitable response endpoint. This 208
specification requires such support and does not define how responses are 209
handled. 210

To preserve interoperability in deployments that contain multiple addressing schemes, there are 211
no restrictions on a system, beyond those of the composite services themselves. However, it is 212
RECOMMENDED where possible that composite applications confine themselves to the use of 213
single addressing and reference model. 214
Because the prescriptive interaction pattern used by WS-ACID is based on one-way messages 215
with callbacks, it is possible that an endpoint may receive an unsolicited or unexpected message. 216
The recipient is free to do whatever it wants with such messages. 217

8

3 WS-ACID 218

The ACID transaction model recognizes that Web Services are for interoperability as much as for 219
the Internet. As such, interoperability of existing transaction processing systems will be an 220
important part of Web Services Transaction Management: such systems already form the 221
backbone of enterprise level applications and will continue to do so for the Web Services 222
equivalent. Business-to-business activities will typically involve back-end transaction processing 223
systems either directly or indirectly and being able to tie together these environments will be the 224
key to the successful take-up of Web Services transactions. 225
Although ACID transactions may not be suitable for all Web Services, they are most definitely 226
suitable for some, and particularly high-value interactions such as those involved in finance. As a 227
result, the ACID transaction model has been designed with interoperability in mind. Within this 228
model it is assumed that all services (and associated participants) provide ACID semantics and 229
that any use of atomic transactions occurs in environments and situations where this is 230
appropriate: in a trusted domain, over short durations. 231
In the ACID model, each activity is bound to the scope of a transaction, such that the end of an 232
activity automatically triggers the termination (commit or rollback) of the associated transaction. 233
The coordinator-type URI for the ACID transaction model is 234
http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/2003/03 235

3.1 Restrictions imposed on using WS-CF 236

As a Referencing Specification, the WS-ACID transaction model imposes the following 237
restrictions on using WS-CF: 238

• It is illegal to attempt to remove a participant from a transaction at any time. When the 239
transaction terminates, participants are implicitly removed. As such, any attempt to call 240
removeParticipant will result in the wrongState error message being returned. 241

3.2 Two-phase commit 242

The ACID transaction model uses a traditional two-phase commit protocol [2] with the following 243
optimizations: 244

• Presumed rollback: the transaction coordinator need not record information about the 245
participants in stable storage until it decides to commit, i.e., until after the prepare phase 246
has completed successfully. 247

• One-phase: if the coordinator discovers that only a single participant is registered then it 248
SHOULD omit the prepare phase.. 249

• Read-only: a participant that is responsible for a service that did not modify any 250
transactional data during the course of the transaction can indicate to the coordinator 251
during prepare that it is a read-only participant and the coordinator SHOULD omit it from 252
the second phase of the commit protocol. 253

Participants that have successfully passed the prepare phase are allowed to make autonomous 254
decisions as to whether they commit or rollback. A participant that makes such an autonomous 255
choice must record its decision in case it is eventually contacted to complete the original 256
transaction. If the coordinator eventually informs the participant of the fate of the transaction and 257
it is the same as the autonomous choice the participant made, then there is obviously no 258
problem: the participant simply got there before the coordinator did. However, if the decision is 259
contrary, then a non-atomic outcome has happened: a heuristic outcome, with a corresponding 260
heuristic decision. 261
The possible heuristic outcomes are: 262

Comment: Update.

 9

• Heuristic rollback: the commit operation failed because some or all of the participants 263
unilaterally rolled back the transaction. 264

• Heuristic commit: an attempted rollback operation failed because all of the participants 265
unilaterally committed. This may happen if, for example, the coordinator was able to 266
successfully prepare the transaction but then decided to roll it back (e.g., it could not 267
update its log) but in the meanwhile the participants decided to commit. 268

• Heuristic mixed: some updates were committed while others were rolled back. 269
• Heuristic hazard: the disposition of some of the updates is unknown. For those which are 270

known, they have either all been committed or all rolled back. 271

3.2.1 State transitions and relationship to WS-Context 272

WS-ACID is a referencing specification for WS-CF and hence leverages the activity group 273
concept. When an application creates a new activity group (by sending a wsctx:begin message 274
to the relevant Context Service), an associated WS-ACID coordinator MAY be created in the 275
Active state, as shown in Figure 4. 276

Note, participants enlisted with a WS-ACID activity group progress through the 277
same state transitions. 278

The coordinator has the lifetime period associated with the activity: if the activity timeout elapses 279
before the activity has terminated, then the transaction will be terminated in the RolledBack state. 280
A transactional activity can be terminated via the wsctx:complete message in one of two ways: 281

• Committed: the transaction commits. 282
• Rollback: the transaction rolls back. 283

If the transaction is instructed to commit then the application sends an appropriate 284
wsctx:complete message to the Context Service. If there is only a single participant enrolled 285
with the transaction then the coordinator SHOULD use the one-phase commit optimization. As 286
such, the coordinator begins the OnePhaseCommit protocol and either transits to the RolledBack 287
or Committed state, depending upon the result returned by the participant. The activity 288
completion status is either Failure or Success respectively. 289
If there are multiple participants enrolled with the transaction, the coordinator transits to the 290
Preparing state and begins to execute the two-phase commit protocol by sending the 291
wsacid:prepare message to each participant. If all of the participants indicate that the services 292
they represent performed no work (i.e., are read only) then the transaction is complete and the 293
coordinator transits to the Committed state. 294
Any failures from a participant or indication that it cannot prepare cause the coordinator to 295
rollback (move to the RollingBack state) and send wsacid:rollback messages to all of the 296
participants. It then transits to the RolledBack state. 297

Deleted: Figure 45

Comment: We need to decide
what the commit/rollback data
within the complete message
looks like.

Comment: Open issue: how
are errors communicated back
to the application via the
wsctx:completed message?

10

 298
Figure 4, Transaction coordinator two-phase status transition. 299

Assuming all participants have prepared successfully, the transaction coordinator makes the 300
decision as to whether to commit or rollback and must record sufficient information on stable 301
storage to ensure this decision can be completed in the event of a failure. It is then in the 302
Prepared state. When the coordinator starts the second phase of the commit protocol it is in the 303
Committing state and ultimately moves to the Committed state. 304

3.2.2 Two-phase commit message interactions 305

In this section we shall describe the message exchanged between the coordinator and the 306
participants. Although the text refers to the coordinator soliciting responses from participants, in 307
some cases participants MAY send unsolicited responses to the coordinator;.where this is the 308
case it will be explicitly stated. 309
The ACID transaction model supports two styles of participant service implementation: the 310
singleton approach, whereby one participant service (end-point) is implicitly associated with only 311
one transaction, and the factory approach, whereby a single participant service may manage 312
participants on behalf of many different transactions. Therefore, all operations on the participant 313
service are associated with the current context, i.e., it is propagated to the participants in order to 314
identify which transaction is to be operated on. The unique participant identification is also 315
present on each message. 316
The two-phase commit sub-protocol URI is 317
http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/2pc/2003/03 and this is used in the 318
addParticipant message. An enlisted Participant Service should expect to receive the following 319
messages (illustrated in Figure 5): 320

• prepare: The coordinator is preparing. The participant can respond with a voteReadonly, 321
voteCommit or voteRollback messages indicating whether or not it is willing to commit. If 322
voteCommit is used then optional Qualifiers may be sent back to augment the 323
protocol. The voteReadonly and voteRollback messages MAY be sent autonomously by 324
the participant, i.e., before any wsacid:prepare message is received. However, the 325
participant SHOULD be able to deal with a subsequent wsacid:prepare message. If an 326
unreliable transport mechanism is used, then there may be an arbitrary number of these 327
messages. If the participant is a subordinate coordinator and finds that it cannot 328
determine the status of some of its enlisted participants then an error message with the 329
wsacid:HeuristicHazardFault error code will be returned. Alternatively, if a subordinate 330

Comment: Need to update.

Deleted: Figure 58

Comment: Issue 275

 11

coordinator finds that some of the participants have committed and some have rolled 331
back then it must return the wsacid:HeuristicMixedFault error message. 332

• rollback: The coordinator is rolling back. If the participant is receiving this message after a 333
wsacid:prepare message, then any error at this point will cause a heuristic outcome. If 334
the participant is a subordinate coordinator and cannot determine how all of its enlisted 335
participants terminated then it must return an error message with the 336
wsacid:HeuristicHazardFault fault code. If the participant is a subordinate coordinator 337
and some of its enlisted participants committed then it must return the 338
wsacid:HeuristicMixedFault fault code. If the participant commits rather than rolls back 339
then it must return the wsacid:HeuristicCommitFault message. Otherwise the 340
participant sends the rolledback message. The wsacid:rolledback message MAY be 341
sent autonomously by the participant, i.e., before any wsacid:rollback message is 342
received. However, the participant SHOULD be able to deal with a subsequent 343
wsacid:rollback message. If an unreliable transport mechanism is used, then there may 344
be an arbitrary number of these messages. 345

• commit: The coordinator is top-level and is committing. Any error at this point will cause a 346
heuristic outcome. If the participant is a subordinate coordinator and cannot determine 347
how all of its enlisted participants terminated then it must return an error message with 348
the wsacid:HeuristicHazardFault fault code. If the participant is a subordinate 349
coordinator and some of its enlisted participants committed then it must return the 350
wsacid:HeuristicMixedFault fault code. If the participant rolls back rather than commits 351
then it must return the wsacid:HeuristicRollbackFault fault code. Otherwise the 352
participant returns a committed message. 353

• onePhaseCommit: If only a single participant is registered with a two-phase coordinator 354
then the coordinator SHOULD optimize the commit stage by not executing the prepare 355
phase. If the participant is a subordinate coordinator and cannot determine how all of its 356
enlisted participants terminated then it must return an error message with the 357
wsacid:HeuristicHazardFault fault code. If the participant is a subordinate coordinator 358
and some of its enlisted participants committed then it must return the 359
wsacid:HeuristicMixedFault fault code. If the participant rolls back rather than commits 360
then it must return the wsacid:HeuristicRollbackFault fault code. Otherwise the 361
participant returns either the committed or rolledback message. 362

• forgetHeuristic: The participant made a post-prepare choice that was contrary to the 363
coordinator’s outcome. Hence it may have caused a non-atomic (heuristic) outcome. If 364
this happens, the participant must remember the decision it took (persistently) until the 365
coordinator tells it via this message that it is safe to forget. Success is indicated by 366
sending the heuristicForgotten message. Any other response is assumed to indicate a 367
failure. 368

Comment: SOAP faults

12

CoordinatorP
articipant 2PC Participant

prepare

v oteReadOnly

v oteCommit

v oteRollback

commit

heuristicHazardFault

heuristicMixedFault

heuristicCommitFault

heuristicRollbackFault

committed or rolledback

onePhaseCommit

rollback

f orgetHeuristic

Coordinator generated

Participant generated

heuristicForgotten

 369
Figure 5, AT coordinator-to-participant message exchanges. 370

The WSDL portType declarations for the CoordinatorParticipant and twoPCParticipant roles are 371
shown in Figure 6. 372

<wsdl:portType name="twoPCParticipantPortType"> 373
 <wsdl:operation name="prepare"> 374
 <wsdl:input message="tns:PrepareMessage"/> 375
 </wsdl:operation> 376
 <wsdl:operation name="onePhaseCommit"> 377
 <wsdl:input message="tns:OnePhaseCommitMessage"/> 378
 </wsdl:operation> 379
 <wsdl:operation name="rollback"> 380
 <wsdl:input message="tns:RollbackMessage"/> 381
 </wsdl:operation> 382
 <wsdl:operation name="commit"> 383
 <wsdl:input message="tns:CommitMessage"/> 384
 </wsdl:operation> 385
 <wsdl:operation name="forgetHeuristic"> 386
 <wsdl:input message="tns:ForgetHeuristicMessage"/> 387
 </wsdl:operation> 388
</wsdl:portType> 389
<wsdl:portType name="CoordinatorParticipantPortType"> 390
 <wsdl:operation name="committed"> 391
 <wsdl:input message="tns:CommittedMessage"/> 392
 </wsdl:operation> 393
 <wsdl:operation name="rolledBack"> 394
 <wsdl:input message="tns:RolledBackMessage"/> 395
 </wsdl:operation> 396
 <wsdl:operation name="vote"> 397

Comment: Need to change
the names.

Deleted: Figure 69

 13

 <wsdl:input message="tns:VoteMessage"/> 398
 </wsdl:operation> 399
 <wsdl:operation name="heuristicForgotten"> 400
 <wsdl:input message="tns:HeuristicForgottenMessage"/> 401
 </wsdl:operation> 402
 <wsdl:operation name="heuristicFault"> 403
 <wsdl:input message="tns:HeuristicFaultMessage"/> 404
 </wsdl:operation> 405
</wsdl:portType> 406

Figure 6, WSDL portType Declarations for Coordinator and 2PCParticipant Roles 407

Note, although an application Web Service may play the role of a participant, it is 408
not required to. 409

3.3 Pre- and post- two-phase commit processing 410

Most modern transaction processing systems allow the creation of participants that do not take 411
part in the two-phase commit protocol, but are informed before it begins and after it has 412
completed. They are called Synchronizations, and are typically employed to flush volatile 413
(cached) state, which may be being used to improve performance of an application, to a 414
recoverable object or database prior to the transaction committing; once flushed, the data will the 415
be controlled by a two-phase aware participant. 416
The sub-protocol URI for the synchronization protocol is 417
http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/sync/2003/03 and this is used in the 418
addParticipant invocation. 419
The message exchanges (ignoring the normal WS-CF coordinator-to-participant message 420
exchanges, including failures) are illustrated in Figure 7: 421

• beforeCompletion: A Synchronization participant is informed that the coordinator it is 422
registered with is about to complete the two-phase protocol and in what state, i.e., 423
committing or rolling back. The failure of the participant at this stage will cause the 424
coordinator to cancel if it is not already doing so. 425

• afterCompletion: A Synchronization participant is informed that the coordinator it is 426
registered with has completed the two-phase protocol and in what state, i.e., committed 427
or rolled back (via the associated Status). Any failures by the participant at this stage 428
have no affect on the transaction. 429

CoordinatorP
articipant

Sy nchronizatio
n

bef oreCompletion

af terCompletion

success

Coordinator generated

Sy nchronization generated

 430
Figure 7, AT coordinator-to-synchronization message exchanges. 431

The WSDL portType declarations for the CoordinatorParticipant and Synchronization roles are 432
shown in Figure 8. 433

<wsdl:portType name="SynchronizationPortType"> 434
 <wsdl:operation name="beforeCompletion"> 435

Comment: Needs updating.

Deleted: Figure 710

Deleted: Figure 811

14

 <wsdl:input message="tns:BeforeCompletionMessage"/> 436
 </wsdl:operation> 437
 <wsdl:operation name="afterCompletion"> 438
 <wsdl:input message="tns:AfterCompletionMessage"/> 439
 </wsdl:operation> 440
</wsdl:portType> 441
<wsdl:portType name="CoordinatorParticipantPortType"> 442
 <wsdl:operation name="beforeCompletionParticipantRegistered"> 443
 <wsdl:input 444
message="tns:BeforeCompletionParticipantRegisteredMessage"/> 445
 </wsdl:operation> 446
 <wsdl:operation name="afterCompletionParticipantRegistered"> 447
 <wsdl:input 448
message="tns:AfterCompletionParticipantRegisteredMessage"/> 449
 </wsdl:operation> 450
</wsdl:portType> 451

Figure 8, WSDL portType Declarations for Coordinator and 2PCParticipant Roles. 452

Note, the participant is registered for both beforeCompletion and 453
afterCompletion. 454

3.3.1 State transitions for synchronization protocol 455

The state transitions for the transaction coordinator which has enrolled Synchronizations is shown 456
in Figure 12. In this scenario we assume the transaction is committing: if it were to rollback, then 457
only the AfterCompletion message will be sent from the coordinator to the Synchronization 458
participants. 459

 460
Figure 9, Transaction coordinator Synchronization state transitions. 461

The coordinator moves into the BeforeCompletion state and sends each enrolled Synchronization 462
the beforeCompletion message. Any error received by the coordinator from a Synchronization at 463
this stage will force the transaction to rollback. Assuming no errors occur, the two-phase commit 464
protocol is executed, as detailed previously. Once the protocol has completed, the coordinator 465

 15

transits to the AfterCompletion status and sends the afterCompletion message to all 466
Synchronizations; any errors at this stage do not affect the transaction outcome and how they are 467
dealt with is implementation dependant. 468

3.4 Recovery and interposition 469

Because WS-ACID is a Referencing Specification of WS-CF, interposition is allowed though not 470
required. Individual participants may be subordinate coordinators to improve performance or to 471
federate a distributed environment into separate domains (possibly managed by different 472
organizations or transaction management systems). 473
Each participant or subordinate coordinator is responsible for ensuring that sufficient data is 474
made durable in order to complete the transaction in the event of failures. Recovering participants 475
or coordinators use the recovery mechanisms defined in WS-CF to determine the current status 476
of a transaction/participant and act accordingly. Interposition and check pointing of state allow the 477
system to drive a consistent view of the outcome and recovery actions taken, but allowing always 478
the possibility that recovery isn’t possible and must be logged or flagged for the administrator. 479
Although enterprise transaction systems address the aspects of distributed recovery, in a large 480
scale environment or in the presence of long term failures, recovery may not be automatic. As 481
such, manual intervention may be necessary to restore an application’s consistency. 482

3.5 The context 483

<xs:complexType name="ContextType"> 484
 <xs:complexContent> 485
 <xs:extension base="wstxm:ContextType"/> 486
 </xs:complexContent> 487
</xs:complexType> 488
<xs:element name="context" type="tns:ContextType"/> 489

Figure 10, Transaction Context. 490

3.6 Statuses 491

The following extensions to the WS-Context Status type MAY be returned by participants and the 492
Context Service to indicate the outcome of executing relevant parts of the protocol and are also 493
used to indicate the current status of the transaction: 494

• RollbackOnly: the status of the coordinator or participant is that it will rollback eventually. 495
• RollingBack: the coordinator or participant is in the process of rolling back. 496
• RolledBack: the coordinator/participant has rolled back. This may be a transient and in 497

fact, because the protocol uses a presumed-abort optimisation, the NoActivity status can 498
be used to infer that the coordinator cancelled. 499

• Committing: the coordinator/participant is in the process of committing. This does not 500
mean that the final outcome will be Committed. 501

• Committed: the coordinator/participant has confirmed. 502
• HeuristicRollback: all of the participants rolled back when they were asked to commit. 503
• HeuristicCommit: all of the participants committed when they were asked to rollback. 504
• HeuristicHazard: some of the participants rolled back, some committed and the outcome 505

of others is indeterminate. 506
• HeuristicMixed: some of the participants rolled back whereas the remainder committed. 507
• Preparing: the coordinator/participant is preparing. 508
• Prepared: the coordinator/participant has prepared. 509

Comment: Issue – need to
add a getStatus to the
Participant Service WSDL?

16

These are specified in the schema, as per Figure 11. 510

<xs:simpleType name="StatusType"> 511
 <xs:restriction base="wstxm:StatusType"> 512
 <xs:enumeration value="activity.status.tx-acid.ROLLBACK_ONLY"/> 513
 <xs:enumeration value="activity.status.tx-acid.ROLLING_BACK"/> 514
 <xs:enumeration value="activity.status.tx-acid.ROLLED_BACK"/> 515
 <xs:enumeration value="activity.status.tx-acid.COMMITTING"/> 516
 <xs:enumeration value="activity.status.tx-acid.COMMITTED"/> 517
 <xs:enumeration value="activity.status.tx-518
acid.HEURISTIC_ROLLBACK"/> 519
 <xs:enumeration value="activity.status.tx-acid.HEURISTIC_HAZARD"/> 520
 <xs:enumeration value="activity.status.tx-acid.HEURISTIC_MIXED"/> 521
 <xs:enumeration value="activity.status.tx-acid.PREPARING"/> 522
 <xs:enumeration value="activity.status.tx-acid.PREPARED"/> 523
 </xs:restriction> 524
</xs:simpleType> 525

Figure 11, StatusType. 526

Deleted: Figure 1114

 17

4 References 527

[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl 528
[2] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard 529
University, March 1997. 530
[3] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, 531
L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 532
[4] WS-Message Delivery Version 1.0, http://www.w3.org/Submission/2004/SUBM-ws-533
messagedelivery-20040426/ 534
[5] WS-Reliability latest specification, http://www.oasis-535
open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf. See Section 4.2.3.2 536
(and its subsection), 4.3.1 (and its subsections). Please note that WS-R defines BareURI as the 537
default. 538
[6] Addressing wrapper schema, http://www.oasis-539
open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd 540
[7] WS-R schema that uses the serviceRefType, http://www.oasis-541
open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd 542
[8] Web Services Addressing, see http://www.w3.org/Submission/ws-addressing/ 543
[9] Web Services Security: SOAP Message Security V1.0, http://docs.oasis-544
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf 545
[10] J. N. Gray, “The transaction concept: virtues and limitations”, Proceedings of the 7th VLDB 546
Conference, September 1981, pp. 144-154. 547

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.w3.org/Submission/ws-addressing/

18

Appendix A. Acknowledgements 548

The following individuals were members of the committee during the development of this 549
specification: 550

 19

Appendix B. Notices 551

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 552
that might be claimed to pertain to the implementation or use of the technology described in this 553
document or the extent to which any license under such rights might or might not be available; 554
neither does it represent that it has made any effort to identify any such rights. Information on 555
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 556
website. Copies of claims of rights made available for publication and any assurances of licenses 557
to be made available, or the result of an attempt made to obtain a general license or permission 558
for the use of such proprietary rights by implementors or users of this specification, can be 559
obtained from the OASIS Executive Director. 560
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 561
applications, or other proprietary rights which may cover technology that may be required to 562
implement this specification. Please address the information to the OASIS Executive Director. 563

 564
Copyright © OASIS Open 2005. All Rights Reserved. 565
This document and translations of it may be copied and furnished to others, and derivative works 566
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 567
published and distributed, in whole or in part, without restriction of any kind, provided that the 568
above copyright notice and this paragraph are included on all such copies and derivative works. 569
However, this document itself does not be modified in any way, such as by removing the 570
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 571
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 572
Property Rights document must be followed, or as required to translate it into languages other 573
than English. 574
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 575
successors or assigns. 576
This document and the information contained herein is provided on an “AS IS” basis and OASIS 577
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 578
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE 579
ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 580
PARTICULAR PURPOSE. 581
 582
 583

 584

	Note on terminology
	Namespace
	Prefix Namespace

	Referencing Specifications

	Architecture
	Invocation of Service Operations
	Relationship to WSDL
	Referencing and addressing conventions

	WS-ACID
	Restrictions imposed on using WS-CF
	Two-phase commit
	State transitions and relationship to WS-Context
	Two-phase commit message interactions

	Pre- and post- two-phase commit processing
	State transitions for synchronization protocol

	Recovery and interposition
	The context
	Statuses

	References

