
Web Service
Composition Application

Framework

Malik SAHEB
Arjuna Technologies Ltd

What is WS-CAF?

• Collection of 3 specifications designed to
be used independently or together
– WS-Context

• Context service

– WS-Coordination Framework
• Framework for pluggable coordination protocols

– WS-Transaction Management
• Three transaction models for Web services

WS-Context

WS-Context

• Allows composite applications to share common
information.

• Defines Notion of An “Activity”
– An execution of a series of related interactions with a

set of cooperating web services.
– Operations correlated by a context associated with

activity
• A Context

– A way of doing correlation of messages
– Context bound to one activity
– Examples

• Single-session sign-on
• Transactions
• Database session identifier

Context Structure

• An XML document containing a unique
identifier and optional data specific to a
related activity.

• Typically included in the SOAP header of
messages to and from web services
participating in an activity.

• Can be passed as a referenceable URI (by
reference) or in its longer form (by value)

Context schema
<xs:complexType name="ContextType">

<xs:sequence>
<xs:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded"/>
<xs:element name="context-identifier" type="tns:contextIdentifierType"/>
<xs:element name="context-service" type="ref:ServiceRefType"

minOccurs="0"/>
<xs:element name="type" type="xs:anyURI"/>
<xs:element name="context-manager" type="ref:ServiceRefType"

minOccurs="0"/>
<xs:element name="parent-context" type="tns:ContextType"

minOccurs="0"/>
</xs:sequence>
<xs:attribute name="timeout" type="xs:int" use="optional"/>
<xs:attribute ref="wsu:Id" use="optional"/>

</xs:complexType>

<xs:complexType name="ContextType">
<xs:sequence>

<xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="context-identifier" type="tns:contextIdentifierType"/>
<xs:element name="context-service" type="ref:ServiceRefType"

minOccurs="0"/>
<xs:element name="type" type="xs:anyURI"/>
<xs:element name="context-manager" type="ref:ServiceRefType"

minOccurs="0"/>
<xs:element name="parent-context" type="tns:ContextType"

minOccurs="0"/>
</xs:sequence>
<xs:attribute name="timeout" type="xs:int" use="optional"/>
<xs:attribute ref="wsu:Id" use="optional"/>

</xs:complexType>

Contains
• Context identifier - URI, MUST be unique

– with optional wsu:Id attribute.
• Context service – ServiceRefType (OPTIONAL)

– locate the authority having generated the context
– ServiceRefType = Generic structure to deal with addressing

• Type – URI
– the type of the protocol supported by the context,

• Context-manager ServiceRefType (OPTIONAL)
– to get data associated with a context-identifier
– if present, the context has been passed by reference

• parent-contexts (OPTIONAL)
• timeout attribute (OPTIONAL)

– indicates for how long the context information is valid;
• wsu:Id attribute (OPTIONAL)

– used to support signing or encrypting the context structure.

WS-Context Services

• Defines web services for maintaining contexts
• Ability to pass contexts by reference or by value.
ØContext Service

– creating - begin
– completing - complete
– getting status of a context – getStatus

• ACTIVE, COMPLETING, COMPLETED, NO_ACTIVITY, UNKOWN

– Setting and getting timeout – setTimeout, getTimeout

Ø Context Manager Service
– Obtaining/setting a content of a context got by

reference – getContents, setContents

Interactions by
Callback

ContextServiceUseContextService

begin, complete, getStatus, getTimeout, setTimeout

begun, completed, status, timeoutSet, timeout,
invalidStateFault, invalidActivityFault, timeoutOutOfRangeFault,

childActivityPendingFault, noActivityFault,
noPermissionFault, validContextExpectedFault.

ContextManagerContextResponseHandler

getContents, setContents

contents, contentSet,
unknownContextFault, generalFault

Architectural
Overview

Application

High level Service (API)

WS-Context Infrastructure

Context
ManagerContext

Service

Web Service

High level Service (API)

WS-Context Infrastructure

message

Context

message

Context

interceptor interceptor

Context Message

Soap Message
Context in header

Interactions
Overview

Application Context Service Web Service
begin

begun
Business request (message+context)

complete

completed

Business response (message+context modified)

Modify
context

Application Context Service Web Service
begin

begun
Business request (message+reference2context)

complete

completed

Business response (message+reference2context)

Context Manager

setContent

contentSet

Context propagated
by value

Context propagated
by reference

WS-Coordination Framework

WS-CF

• Coordination is more fundamental than
transactions
– Security
– Replication
– Transactions
– …

• Coordination could be seen as “disseminating
information by a coordinator to a number of
participants to guarantee that all participants
obtain a specific message”.

Goals

• Provide a general framework for coordination
protocols
– Existing implementations to be plugged in
– New implementations can be supported

• Defines coordinator and participant relationships

• Work with WS-Context
– Augment context
ØCoordination Context

• Scope of activity becomes scope of coordination
boundary

Context type

<xs:complexType name="ContextType">
<xs:complexContent>

<xs:extension base="wsctx:ContextType">
<xs:sequence>
<xs:element name="protocol-reference" type="tns:ProtocolReferenceType"/>
<xs:element name="coordinator-reference" type="tns:CoordinatorReferenceType"
maxOccurs="unbounded"/>

<xs:any namespace="##any" processContents="lax" maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="ContextType">
<xs:complexContent>

<xs:extension base="wsctx:ContextType">
<xs:sequence>
<xs:element name="protocol-reference" type="tns:ProtocolReferenceType"/>
<xs:element name="coordinator-reference" type="tns:CoordinatorReferenceType"
maxOccurs="unbounded"/>

<xs:any namespace="##any" processContents="lax" maxOccurs="unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

WS-CF
Main components
• Coordinator:

– enable registration of participants triggered at coordination
points.

• Participant:
– The operation or operations that are performed as part of

coordination sequence processing
– A Coordination Service: Defines the behavior for a specific

coordination model.
• Coordination Service:

– provides a processing pattern that is used for outcome
processing.

– For example
• ACID (prepare, commit, rollback)
• Sagas
• Real-time transactions
• …

Coordination
protocol
• Defined by message interactions between

Coordinator and participants
– Coordinator-to-participant

• coordinator sends a protocol message to the participant and
will eventually get a response.

• Coordination status and identity

– Participant-to-coordinator
• a participant may autonomously communicate protocol

messages to the coordinator.
– Works in terms of AssertionTypes

• WS-CF protocol neutral
• Protocols Identified by URI

Coordinator-to-
participant

Participant Coordinator
Participant

AssertionType message

wrongState

AssertionType message

identity

Coordinator generated

Participant generated

generalFault

getIdentity

getStatus

status

Participant-to-
coordinator

AssertionType

• “Base class” for all coordinator-to-
participant message interactions
– Requests and responses

• All protocol specific messages enhance
this type

• One service (participant or coordinator)
can accept multiple protocols

Qualifiers

• Runtime protocol extensibility option
• Typically in enlist/delist

– For coordinator/participant information
– E.g., will cancel in 24 hours

Service-to-coordinator
interactions
• define how a service may enlist or delist a

participant with the coordinator

ServiceCoordinatorServiceRespondant
addParticipant

participantAdded, invalidProtocol, wrongState,
dupicateParticipant, invalidParticipant

removeParticipant

participantRemoved, participantNotFound, invalidCoordinator, wrongState

getParentCoordinator

invalidCoordinator

getQualifiers

invalidCoordinator

Client-to-coordinator
interactions
• Define how a client can obtain the status of the

coordinator or ask it to perform coordination.

ClientCoordinatorClientRespondant
coordinate

coordinated, invalidCoordinator, invalidActivity,
protocolViolation/wrongState, notCoordinated

getStatus

status

Architectural
Overview

Application

High level Service (API)

Coordination Framework

Context
Service

Web Service

High level Service (API)

WS-CF Infrastructure

message

Coordination
Context

message

interceptor interceptor

Coordination
Messages

Soap Message
Context/Coordination

in header

Coordinator
Service

Participants

Coordination
Messages

protocol URI1

Coordination
Messages

protocol URI2

Participants

Coordination
Context

Interactions
Overview

Application Web Service

begin (protocolURI)

begun

Business request (message + coordination context)

coordinate(SUCCESS, protocolURI)

coordinated (AssertionType)

Business response (message+context modified)

Coordination Service

Coordinator Service

Participant P1

addParticipant (protocol URI, P1)

participantAdded

AssertionType (message1)

AssertionType (message2)

Interposition

• Important for security and performance
reasons
– Part of most distributed transaction protocols

• Subordinate coordinator
– Participant as far as coordinator is concerned
– Coordinator as far as participant is concerned

• Supported by WS-CF
– Not mandated

Example

Participant/
proxy-coordinator

Coordinator

Participant

Recovery

• Distributed application federated into
natural recovery (admin) domains
– Can’t mandate one specific recovery

mechanism
• Very application specific anyway

– Have to allow administrative domains
autonomy

• Therefore, support but not mandate

Recovery support

• RecoveryCoordinator
– Drives recovery on behalf of participant
– Participants may not be able to recover at

same URI
• Machine crash, domain migration, …

• Coordinator can replace one endpoint with
another to continue protocol

WS-Transaction Management

WS-TXM

• Goals
– Support range of use cases
– “One-size does not fit all”
– Therefore a single protocol cannot cope with

all requirements
– All requirements aren’t “two-phase”

• Builds on WS-CF and WS-Context
– Define specific coordinators and participants
– Augment context

Defines

• Three transaction models
– ACID transaction

• For interoperability and high-cost services where ACID
transactions are a requirement

– Long running action
• Loosely coupled, long duration work that uses

compensations

– Business process
• For treating all steps in an automated business process as

part of a single logical transaction

Architectural
Overview

Application

High level Service (API)

Coordination Framework

Context
Service

Web Service

High level Service (API)

WS-TXM Infrastructure

message

Coordination
Context

message

interceptor interceptor

Coordination
Messages

Soap Message
Context/Coordination

in header

Coordinator
Service

2PC/sync Participants

AT Model

LRA compensators

Coordination
Context

prepare
commit

rollback

…

compensate

BP

confirmComplete

cancelComplete

. . .

WS-TXM Infrastructure

BP Participants

ACID Transaction (AT)
• Coordination-type URI

– http://www.webservicestransactions.org/wsdl/wstxm/tx-acid/2003/03

• Traditional ACID transaction with two sub-protocols
(different URIs)
– Two-phase commit

• http://www.webservicestransactions.org/wsdl/wsTXM/tx-acid/2pc/2003/03

– Synchronizations
• http://www.webservicestransactions.org/wsdl/wsTXM/tx-acid/sync/2003/03

• Interoperability across different vendor implementations
– removeParticipant illegal

• wrongState returned by coordinator
– coordinate cannot be used

• Bind the scope of activity to the scope of transaction

Model (AT)

• ACID semantics explicitly required
• Presumed rollback
• One-phase optimization
• Read-only optimization
• Heuristics

Example (AT)
Coordinator

begin

method

addParticipant

completeWithStatus

prepare

Application Service Participant

commit

Implementation
(2PC)

“prepare”

“rollback”
“commit”
“prepare”

“rollback”

“prepare”

“rollback”
“commit”

prepared ok

committed
committed

2PC protocol
messages (AT)
• Usual for two-phase commit

– prepare
• voteReadonly, voteCommit, voteRollback
• And heuristics

– commit
• Heuristics

– rollback
• Heuristics

Synchronization
messages (AT)
• beforeCompletion

– Runs before two-phase commit begins

• afterCompletion
– Runs after two-phase protocol

Long running
action model (LRA)
• Protocol URI

– http://www.webservicestransactions.org /wstxm/tx-lra/2003/03

• Specifically for long duration interactions
• ACID transactions are not appropriate

– Can’t lock resources for the duration
– No assumed trust relationships

• Compensation actions used
– Forward work to return the business state to

consistency
• E.g., credit your credit card and give you back interest

payments

Relationship to
context and coordination
• Activity becomes the scope of business

interactions
– Travel agent, computer construction, etc.

• How services do work is not important
– Back-end implementation choice

• If work can be compensated then
compensation is bound to the activity
– Non-atomic behaviour

• Activities can be nested

Activities and
compensators
• Each activity is a unit of compensatable

work
• Work performed must remain

compensatable for duration of activity
– TimeLimit qualifier

• Nested activities imply nested
compensators
– Could be different compensator from child to

parent

Travel agent
example

Context
<xs:element name="context">

<xs:complexType>
<xs:complexContent>

<xs:extension base="wstxm:ContextType">
<xs:sequence>

<xs:element name="lra-id" type="xs:anyURI"/>
<xs:element name="coordinator-hierarchy">

<xs:complexType>
<xs:sequence>

<xs:element name="coordinator-location" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

To compensate or
not?
• Some services may not be able to

compensate
• The user defines whether or not this is

important
– MustUnderstand

• Must be an explicit choice
– Adverse consequences otherwise

Compensators

Example
LRAApplication Compensator

begin

Service Service

operation

operation

addParticipant

addParticipant

compensate

complete (FAIL)

Compensator

compensate

Concurrent LRAs

• Activities can be concurrent
– Therefore, LRAs can be too

• Allows selection of work within overall
activity
– E.g., choosing the cheapest flight

Selection of work

Business process
model
• Aimed at long running interactions that

span different domains and models
– Workflow
– Messaging
– Traditional ACID transactions

• Federated systems that can’t/won’t expose
back-end implementations

Domains

• All parties reside within business domains
– Recursive structure is allowed
– May represent a different transaction model

• Business process is split into business
tasks
– Execute within domains
– Compensatable units of work

• Forward compensation during activity is allowed
– Keep business process making forward progress

Travel agent

Book taxi
task

Book theatre
task

Book restaurant
task

Flight
task

Insurance
task

Flight reservation
task

Business Process
interposition

Taxi Domain
(JTA – J2EE)

Restaurant Domain
(BTP, WS)

Root Coordinator

Theatre Domain
(Model foo, middleware bar)

Flight Reservation Domain
(Saga, …)

Insurance DomainFlight Domain

Model

• Supports synchronous and asynchronous
interactions
– Users can submit work and call back later
– Or interact synchronously (traditionally)

• Business Process manager
• Optimistic rather than pessimistic

– Assumes failures are rare and can be handled
offline if necessary

How does it work?

• Each domain is exposed as a subordinate
coordinator
– Responsible for mapping incoming BP

requests to domain specific protocol

• Protocol messages
– checkpoint, confirm, cancel, restart,

workStatus

checkpoint/restart

• Application driven
– E.g., via coordinate message

• Checkpoints are created across the
domains
– Uniquely identified

• Domains can then roll back to specific
checkpoint

workstatus

• Domain calls back to coordinator to inform
it of final status

• Or application can enquire
– WorkCancelled
– WorkCompleted
– WorkProcessing

confirm/cancel

• BP termination protocol messages
• Map to success/failure of activity
• Because long-running, heuristics may

occur
– Mixed responses from domains
– Sufficient information to allow administrative

handling

Business Process
Entities

Terminator
Participant

Terminator
Participant

BusinessProcess
Participant

BusinessProcess
Participant

Root
Coordinator

BusinessTask
Coordinator

BusinessTask
Coordinator

BusinessProcess
Participant

BusinessTask
Coordinator

Client Domain

Root business domain

sub domain

sub domain

sub domain

confirmComplete,
cancelComplete

failure, failureHazardCheckpoint, restart, workStatus,
completion(cancel/confirm)

createCheckpoint,
tryRestart, getWorkStatus,

