WS-CF proposal

WS-CF proposal

Alastair Green, Peter Furniss, Tony Fletcher 31 January 2005

WS-Link

(or WS-Registration or WS-Relationship or WS-Linkage, perhaps)

Reworking of current draft:

Functionality is essentially the same

Primary role of WS-CF is link-making – establishing and controlling two-party relationships

Once established, the relationship is used for the exchanges of some other protocol (the “referencing specification”)

Coordinate function is dropped (assumed to be concern and responsibility of some, but not all ref. specs)

Two paired interfaces and three functions:

create_link

break_link

redirect_link

create_link is used in all cases (i.e. a referencing spec will always define use of create_link); the others may or may not be needed.

In general, there are four entities involved – things that can have distinct identifiers and service-references:
The registrar – the entity that receives create_link

The registering-agent – the entity that issues create_link
The registrand – the entity that is registered – the “bottom end” of the new link

The registration – the entity at the “top end” of the new link

[image: image1.wmf]registrar

registering

-

agent

registrand

registration

Referencing specification

protocol

ß

create_link

link_created

à

ß

break_link

link_broken

à

break_link

à

ß

link_broken

ß

redirect_link

link_redirected

à

redirect_link

à

ß

link_redirected

WS-Link Architecture diagram

In some cases, either chosen by implementation or constrained by the referencing specification, the registrar and registration will be the same entity. Similarly, the registering-agent and the registrand can be the same entity.

For any entity, an “identifier” is a protocol field that unambiguously and uniquely (within the protocol) identifies the entity. As a protocol field, its unambiguity and uniqueness can be relied on by other parties; if two identifiers are the same, the same entity is referenced; if two identifiers are different, they MUST be treated as identifying different entities. The service-reference of an entity is used by carrier mechanisms to direct a message to the entity; there is no general requirement of unambiguity or uniqueness and other parties MUST NOT rely on apparent equivalence or non-equivalence of service-reference in establishing whether the same entity is referred to.
It is out of WS-Link scope as to how the registering-agent knows the registrar identifier and service-reference (but see WS-ContextTree)

Messages and their parameters

The destination service-reference of any message is not shown as a parameter – it is assumed to be represented in the carrier mechanisms. Where a message is the request of a request/reply pair, and no further messages are required to follow the reply, the reply service-reference is also assumed to be represented in the carrier mechanisms.

Many of the parameters are optional. Their absence implies either some other value, known to the receiver, will be used as the default, or that the referencing specification and its use of this protocol makes no use of the information. In the latter case, a sending implementation MAY include such information but a receiving implementation MUST NOT fault its absence.

create_link (sent to registrar-service-reference, reply to registering-agent-service-reference)
	registrar-id
	if absent, the registrar service-reference unambiguously defines the registrar

	registrand-id
	Always present (this will be the effective identification of the link)

	registrand-service-reference
	Always present

	registering-agent-service-reference
	Present if break_link or redirect_link are possible in the “down” direction

link_created (sent in reply)

	registrand-id
	Always present

	registration-id
	Optional?

	registration-service-reference
	If absent, defaults to the registrar-service-reference (not needed if the registrand will not be sending messages)

	registering-agent-service-reference
	Must be present if break_link or redirect_link are possible in the “down” direction

break_link (sent to registrar-service-reference (“upwards”) OR to registering-agent-service-reference(“downwards”, reply reference provided by carrier).

	registrand-id
	Always present

	registrar-id
	Can be absent if registration-id present

	registration-id
	If present on link_created

Note that the protocol message on the link may include messages with similar effect (e.g. Readonly). These are not considered messages of this protocol – break_link is exchanged between the supervisors of the link, not on the link (and will is likely to be prohibited by a referencing specification that has its own messages that end the link)

link_broken (sent in reply)

	registrand-id
	Always present

	registration-id
	If present on link_created

redirect_link (sent to registrar-service-reference (“upwards”) OR to registering-agent-service-reference(“downwards”, reply reference provided by carrier).

	registrand-id
	Always present

	registrar-id
	Can be absent if registration-id present

	registration-id
	If present on link_created

	new registrand-service-reference
	Present if “upwards”

	new registration-service-reference
	Present if “downwards”

link_redirected (sent in reply)

	registrand-id
	Always present

	registrar-id
	Can be absent if registration-id present

	registration-id
	If present on link_created

The redirect capability is, in general, symmetric – either side can move to a new service reference. A referencing specification may constrain this.

[image: image2.wmf]break_link

(in)

Idle

Creating

link

create_link

(in)

Link

created

link_created

(out)

Redirecting

Link (forced)

redirect_link

(out)

link_redirected

(in)

Redirecting

Link (requested)

redirect_link

(in)

link_redirected

Breaking

Link

(R)

Link

broken

(R)

link_broken

(out)

Breaking

Link

(F)

Link

broken

(F)

link_broken

(in)

break_link

(out)

Registration state chart (Registrar is multiple instances of this chart)
WS-ContextTree

Tree-building and WS-Context

WS-ContextTree combines WS-Context and WS-Link to define a means of building trees of relationships.

WS-Context used for WS-ContextTree extends a context by adding a WS-Link registrar identifier and registrar service-reference to it. The contextManager service-reference shall be absent (WS-ContextTree contexts are always propagated by value)
If a ContextService Begin has no associated WS-Context and a type parameter that identifies WS-ContextTree or a specification that references WS-ContextTree, the ContextService is responsible for creating a new registrar entity and the returned context shall be a WS-ContextTree context with the registrar identifier and service-reference of this new registrar. The parentContext field shall be empty.

If a ContextService Begin does have an associated WS-ContextTree context and a type parameter that identifies WS-ContextTree or a specification that references WS-ContextTree, the ContextService is responsible for creating a new entity that is both registrar and registrand. The ContextService will register this entity as registrand with the registrar identified by the received context. The returned context shall be a WS-ContextTree context with the registrar identifier and service-reference of this new entity as a registrar, and with the parentContext field the received context.

© Choreology Ltd, 2005
4 of 4
31/01/2005

