
Web Services Coordination
Framework Specification (WS-CF)
CommitteeEditors draft version 0.20.3

22 June 2004

4 April 2005

Abstract

WS-CF defines interfaces that drive the coordination of multiple Web service executions related
in an activity, according to the requirements of a WS-TXM protocol type such as ACID, long
running actions, or business process, or of a protocol type defined in another specification.

WS-CF defines an open, pluggable coordination framework that supports multiple protocol types.
The coordination framework ensures the set of Web service participants in an activity is notified of
actions required of them, and that any protocol actions initiated by the participants are
communicated to the other participants, to ensure a common outcome.

Coordination in general refers to the ability of multiple Web services to act in combination through
a software agent such as a broker, even though they were not designed to do so, and conform to
a common, predefined outcome such as commit, rollback, or compensate, based upon conditions
recognized and acted upon by the protocol.

Coordination is a requirement presentrequired in a variety of different aspects of distributed
applications. For instance,applications, such as orchestration, workflow, atomic transactions,
caching and replication, security, auctioning, and business-to-business activities all require some
level of what may be collectively referred to as “coordination.” For example, coordination of
multiple Web services in activities.

choreography may be required to ensure the correct result of a series of operations comprising a
single business transaction.

Whenever coordination occurs, the propagation of additional information (the coordination
context) to coordinated participants is required. The coordination context contains information
such as a unique ID that allows a series of operations to share a common outcome. The outcome
is typically defined in terms of coordinated state persistence operations. For example, in a Web
services-based architecture, a SOAP header block might contain context information that is
propagated when interacting with a coordinator, or when multiple participants exchange SOAP
messages in order to create a larger interaction such as a process flow or other aggregation of
services.

A Web services coordinator maintains a repository of participants and ensures that each
participant receives a result of the coordinated interaction. A coordinator can also be a
participant, creating a tree of sub-coordinators or peer-coordinators that cooperate to further
propagate the result. When one of the participants generates a fault, for example, the coordinator
ensures that all other participants are notified. A Web services coordinator sends and receives
SOAP encoded messages for interoperability with any type of participant, regardless of operating
system, programming language, or platform.

Context information flows as SOAP header blocks with application messages sent to
participants/endpoints. The important point is that this information is specific to the type of
coordination being performed, e.g., to identify the coordinator(s), the other participants, recovery
information in the event of a failure, etc.

Coordination is a fundamental requirement of many distributed systems, including Web Services.
However, the type of coordination protocol that is used may vary depending upon the

30

circumstances (e.g., two-phase versus three-phase). Therefore, what is needed is a
standardization on a coordination framework (coordination service) that allows users and services
to register with it, and customize it on a per service or per application basis. Such a coordination
service would also support newly emerging Web service standards such as workflow and
transactions and builds on the Web services CTX Context Service.

The fundamental capability offered by the WS-CF specification is the ability to register a web 1
service as a participant in an activity. 2

WS-CF extends the WS-Context late binding session model SOAP messages processed within 3
the scope of an activity contain context headers that uniquely identify a single activity. WS-CF 4
extends the session model using a registration context. Registration in the context of an activity 5
adds the registered service to an activity group. Membership in the group drives a group specific 6
protocol (e.g. data replication) over the lifetime of the activity group or may be used to coordinate 7
signals associated with a termination protocol (e.g., two phase commit). The purpose and 8
semantics of activity group membership are protocol specific. 9

Table of contents 10

1 Note on terminology ..64 11
1.1 Namespace .. 6 12

1.1.1 Prefix Namespace ... 6 13
1.2 Referencing Specifications.. 6 14

2 Introduction .. 7 15

3 WS-CF architecture...97 16
3.1 Overview .. 9 17

3.2 Invocation of Service Operations ...138 18
3.3 Relationship to WSDL..148 19

3.4 Referencing and addressing conventions...148 20
4 WS-CF components ..1610 21

4.1 Participant Service...1710 22

4.2 Registration Service...2111 23
4.2.1 Service-to-Registration interactions...2111 24

addParticipant ...2211 25
removeParticipant ...2212 26
recoverParticipant ...2412 27

recoverRegistration ...2513 28
getStatus...2513 29

4.2.2 Registration Context ...2715 30
4.3 Interposition.. Error! Bookmark not defined.16 31

5 References..3917 32

 33

 34

6

1 Note on terminology 35

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 36
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 37
interpreted as described in RFC2119 [2]. 38

Namespace URIs of the general form "some-URI" represents some application-dependent or 39
context-dependent URI as defined in RFC 2396 [3]. 40

1.1 Namespace 41

The XML namespace URI that MUST be used by implementations of this specification is: 42

http://docs.oasis-open.org/wscaf/2005/02/wscf 43

1.1.1 Prefix Namespace 44

Prefix Namespace

Wscf http://docs.oasis-open.org/wscaf/2005/02/wscf

wsctx http://docs.oasis-open.org/wscaf/2004/09/wsctx

Ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

Wsdl http://schemas.xmlsoap.org/wsdl/

Xsd http://www.w3.org/2001/XMLSchema

Wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

Tns targetNamespace

1.2 Referencing Specifications 45

One or more other specifications, such as (but not limited to) WS-TXM may use the interfaces 46
defined in the WS-CF specification by reference. The usage of optional items in WS-CF is 47
typically determined by the requirements of such a referencing specification. 48

A referencing specification generally defines the protocol types based on WS-CF. Any protocol 49
type that uses WS-CF must specify what optional features are required. 50

WS-CF uses WS-CTX as a referenced specification, and WS-TXM uses WS-CF as a referenced 51
specification. 52

 53

 7

2 Introduction 54

Coordination is the act of one agent (the coordinator) disseminating information to a number of 55
participants to guarantee that all participants obtain a specific message. A coordinator can accept 56
the responsibility, for example, of notifying all participants in an Activity of a common outcome. 57

Coordination is a fundamental requirement in distributed systems that many applications use 58
either explicitly or implicitly, e.g., workflow, atomic transactions, caching and replication, security, 59
auctioning, and business-to-business activities. Coordination propagates additional information 60
(the coordination context) to the participants. 61

Context information can flow implicitly (transparently to the application) within normal messages 62
sent to the participants, or it may be an explicit action on behalf of the client/service. This 63
information is specific to the type of coordination being performed, e.g., to identify the 64
coordinator(s), the other participants in an Activity, recovery information in the event of a failure, 65
etc. Furthermore, it may be required that additional application specific context information (e.g.. 66
extra SOAP header information) flow to these participants or the services which use them. 67

Coordination is an integral part of any distributed system, but there is no single type of 68
coordination protocol that can suffice for all problem domains. Therefore, what is needed is a 69
common Web Services Coordination Framework (WS-CF) that allows users and services to tie 70
into it and customize it on a per service or application basis. A suitably designed coordination 71
service should provide enough flexibility and extensibility to its users that allow it to be tailored, 72
statically or dynamically, to fit any requirement. 73

This service builds upon WS-CTXContext and supports WS-TXM, as well as other Web Service 74
standards in the area of choreography, workflow and transactions. In the case of transactions, for 75
example, unlike other attempts which are solutions to one specific problem area and are therefore 76
not applicable to others, different extended transaction models can be relatively easily developed 77
to suit specific domains, and interoperability across transaction protocols supported. 78

This specification presents the outline of such a service. 79

2.1Problem statement 80

Define a specification for a generic coordination service for a Web Services, to be known as the 81
WS-CF, utilizing the Web Services CTXContext Service specification for the definition of basic 82
activities (i.e., determining the scope of shared context). Outline the necessary infrastructure and 83
protocol requirements to support a coordination service for interacting with the participants in one 84
or more Activities. A coordinator can also be a participant to another coordinator, extending the 85
ability to interoperate across application domains. 86

Coordinators are themselves modeled as Web services and can be combined into multiple-87
coordinator patterns to extend and optimize the supported interaction patterns. 88

The WS-CF is designed to be used together with and to compliment other Web services 89
technologies such as reliable messaging, routing, inspection, security, and process flow. 90

The goals of the specification are to: 91

• Provide a basic definition of a core infrastructure service consisting of a Coordinator 92
Service for the Web Service environment. WS-CF that builds on the Web Services CTXContext 93
Service. 94

• Define the mappings onto the Web Service environment (SOAP message and header 95
definitions, context definition, endpoint address requirements, etc.). 96

• Define the required infrastructure to support such as an event mechanisms, etc. 97

• Define the roles and responsibilities of WS-CF subcomponents (e.g., Coordination 98
Service Participants).Many protocols in distributed systems require software agents to perform a 99

8

registration function to participate in the protocol. Examples of protocols that require explicit 100
registration functions include notifications, transactions, virtual synchronous replica models based 101
on group membership paradigms, and security. The WS-Coordination Framework provides a 102
WSDL interface for registering Web services as participants in various protocols types, as defined 103
using referencing specifications. 104

Context information in support of a registration action can flow implicitly (transparently to the 105
application) within normal messages sent to the participants, or it may be an explicit action on 106
behalf of the client/service. This context is specific to the type of activity being performed, e.g., it 107
may identify registration endpoints, the other participants in an activity, recovery information in the 108
event of a failure, etc. 109

Furthermore, it may be required that additional application specific context information (e.g., extra 110
SOAP header information) flow to these participants or the services which use them. WS-CF 111
introduces a registration context type that builds on the context type defined in WS-Context to 112
provide additional information required to enlist as a participant in an activity. Applications may 113
use the registration context to define collections of services called “activity groups”. WS-114
Coordination Framework provides support for protocols that depend on group membership 115
paradigms, such as coordination and security. 116

2.1 Definitions 117

• Protocol type: A set of messages exchanged among participants in an activity for the 118
purpose of determining or executing a common outcome agreed upon by all participants. 119

• Coordination: The act of a software agent exchanging messages with the participants in 120
an activity for the purpose of determining a common outcome. 121

• Composite application: An application comprised of multiple Web services (including their 122
execution or implementation environments) joined to achieve a common purpose. 123

• Common outcome: A way in which Web services in a composite application can agree in 124
common as to whether or not the desired purpose of the composite was achieved. 125

• Activity: See also WS-Context. An activity represents a mechanism external to WS-CF 126
according to which multiple Web services are placed in combination to achieve a 127
common goal. 128

• Registration: The act of an individual Web service within a composite application of 129
registering to participate in a given protocol type. 130

• Termination: The end or completion of a given protocol type so that the participants in an 131
activity can agree upon a common outcome, as defined by the protocol type. 132

• Activity group: (Do we need a separate definition for an activity group?) 133

A Web service becomes a participant in an activity through its inclusion in an orchestration flow or 134
other means by which Web services can be combined into a composite application. An activity 135
becomes known to a coordinator via the registration of the individual Web services within the 136
activity for inclusion within a particular protocol. Various protocol types can be used to drive a 137
common outcome among the services, such as two-phase commit, compensations, and 138
asynchronous business process management. When a Web service registers, it registers for a 139
particular protocol type. The set of Web services in an activity group therefore is defined as the 140
set of services registering on behalf of the activity for the same protocol type. 141

The coordination protocol is executed using a sequence of correlated one-way message 142
exchange patterns. The use of correlated one-ways is required because HTTP is an unreliable 143
transport, and a coordinated protocol type needs to know whether or not a message was received 144
and processed. 145

 146

 9

3 WS-CF architecture 147

The following sections outline the architecture of WS-CF, describing the components that 148
implementations provide and those that are required from users. 149

3.1 Extended coordination modelsOverview 150

The WS-CFWS-CF provides an interface for services to enlist with a coordinator for a specific 151
protocol type, and allows the management and coordination in a Web services interaction of a 152
number of activities related to an overall application. It builds on the WS-Context specification to 153
provide a registration context that leverages the activity model and context structure Web 154
Services CTXContext Service (WS-CTXContext) specification and provides a coordination 155
service that plugs into WS-CTXContext.defined in WS-Context. In particular WS-CF: 156

Defines demarcation points which specify the start and end points of coordinated activities; this 157
is done automatically by invoking an Activity; 158

Defines demarcation points where coordination of participants occurs (i.e., at which points the 159
appropriate SOAP messages are sent to participants); 160

Registers participants for the activities that are associated with the application;Allows 161
services to register as participants in a protocol; 162

• Introduces the notion of an activity group; 163

• Allows for the registration of participants in activity groups; 164

• Propagates coordination-specific information across the networkAllows for propagation of 165
group-specific protocol information by enhancing the default context structure provided by 166
WS-CTXContext;WS-Context; 167

• The main components involved in using and defining the WS-CF are: 168

A Coordinator: Provides an interface for the registration of participants (such as activities) 169
triggered at coordination points. The coordinator is responsible for communicating the outcome of 170
the activity to the list of registered activities. Importantly, coordination is not restricted to the end 171
of an activity: an activity can execute (different) coordination protocols at arbitrary points during its 172
lifetime. Coordination extends the notion of an activity to represent a defined set of tasks with a 173
set of related coordination actions. 174

A Participant: The operation or operations that are performed as part of coordination sequence 175
processing. 176

A Coordination Service: Defines the behaviourbehavior for a specific coordination model. The 177
Coordination Service provides a processing pattern that is used for outcome processing. For 178
example, an ACID transaction service is one implementation of a Coordination Service that 179
provides a two-phase protocol definition whose coordination sequence processing includes 180
Prepare, Commit and Rollback. Other examples of Coordination Service implementations include 181
extended transaction patterns such as Sagas, Collaborations, Nested or Real-Time transactions 182
and non-transactional patterns such as Cohesions and Correlations. Coordination can also be 183
used to group related non-transactional activities. Multiple Coordination Service implementations 184
may co-exist within the same application and processing domain. WS-CF does not specify how a 185
Coordination Service is implemented. For example, a given implementation may support multiple 186
coordination protocols as in [1]. 187

As we shall show, WS-CF uses the Coordinator and Participant roles to define coordination 188
protocols and associated message sets. However, in order to support existing coordination 189
services which may have already defined coordinator and participant interfaces and message 190
sets, a WS-CF compliant implementation is only required to provide an implementation of the 191
Activity Lifecycle Service. This allows the coordinator to be tied to activities and to augment the 192

10

basic WS-CTXContext context. It is assumed that in the absence of WS-CF Coordinator Service 193
and Participants, the interfaces to these services and protocol message sets are defined 194
elsewhere and known by users/services. In the remainder of this specification we shall only 195
consider the specific case of protocols using all of the roles defined by WS-CF. 196

Figure 1 shows the various WS-CF services and their relationships to one another and WS-197
CTXContext. Web services are shown as circles. The mandated WS-CF services are the 198
CoordinationServiceALS and the CTXContext Service, whereas the optional services which may 199
be provided through non-WS-CF routes are the Application Web Service, Coordination Service 200
and Participant. 201

 202

Context Service ALS members

Coordination
Service ALS

Activity
Service

JTA
coordinator

be
gin

/end of a
cti

vit
y

Application
Web

Service

Participant

Coordination
Service

en
ro

l/p
ro

to
co

l m
es

sa
ge

s

en
ro

l/p
ro

to
co

l m
es

sa
ge

s

context

 203
Figure 1, WS-CF services. 204

3.2Protocol configuration and negotiation 205

It is possible that Web Service components may support multiple different Coordination Service 206
models (possibly representing different qualities of service). Either when the Web application is 207
created, or when one component initially interacts with another, some level of protocol negotiation 208
will be necessary to determine which transaction model will be used. If the component does not 209
support the required Coordination Service model then it will be up to the application to determine 210
whether or not it makes sense to continue to use the component. For example, it may make 211
sense for a transactional application to refuse to work with any service that does not support 212
transactional semantics, i.e., does not accept (and use) transaction contexts that may be sent to 213
it. 214

Additionally, the operational service protocol message exchange includes the requirement for a 215
means to: 216

 11

Allow a protocol message exchange independent of normal message exchange. 217

A means to perform outcome processing (an identity for direct communication between 218
coordinator and participant(s)). 219

It is important that the negotiation and protocol exchange mechanisms not place any additional 220
requirement on the transport. 221

Note, such requirements do not preclude the reuse of existing product 222
implementations. However, it must be recognized that when using a common 223
Web Service definition to communicate between operational domains that 224
messages exchanges may need to decomposed into their constituent parts, i.e., 225
a phase to establish and exchange service information and context and a phase 226
for the operational message. 227

In addition, we do not assume that a single remote invocation mechanism (e.g., HTTP) will be the 228
natural communication medium for all Web Services. How participants within and between 229
activities appear to each other is not central to this discussion. They may be services 230
communicating via HTTP with WS-CF information traveling via SMTP, for example. We assume 231
that they will use the most appropriate invocation protocol for the application. This does not 232
preclude a given application from using multiple object models and communication protocols 233
simultaneously. 234

3.3Relationship to WSDL 235

Where WSDL is used in this specification we shall use a synchronous invocation style for sending 236
requests. In order to provide for loose-coupling of entities all responses are sent using 237
synchronous call-backs. However, this is not prescriptive and other binding styles are possible. 238

For clarity WSDL is shown in an abbreviated form in the main body of the document: only 239
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [2]. 240
Complete WSDL is available at the end of the specification. 241

12

4Coordination and activities 242

In the WS-CTXContext specification it was shown how the framework manages the lifecycle of 243
Activities, which are used to scope application and service specific work, along with the 244
associated Activity contexts necessary for distributed invocations. It also described how services 245
can be plugged into this framework in order that they can enhance it at necessary stages in the 246
lifecycle of an Activity. In this section a specific service (coordination), which is integral to the 247
development of Web Services management, is presented. This service is more accurately 248
described as a framework that supports arbitrary coordination protocols; the intention is that such 249
protocols can be plugged into the framework to customize it for other application and service 250
requirements, e.g., by adding a two-phase protocol for consensus or a three-phase protocol if 251
operating in a particularly failure-prone or untrustworthy environment. This is also the first high-252
level service to be added to the core Context Service framework. It is our intention that other 253
services can then use coordination for their own purposes, e.g., transactions. 254

Coordination is the act of an entity (the coordinator) disseminating information to a number of 255
participants for a variety of reasons, e.g., in order to reach consensus on a decision, or simply to 256
guarantee that all participants obtain a specific message. Coordination is a fundamental 257
requirement in distributed systems that many applications use either explicitly or implicitly, e.g., 258
workflow, atomic transactions, caching and replication, security, auctioning, and business-to-259
business activities. Whenever coordination occurs, the propagation of additional information (the 260
coordination context) to coordinated participants is also required. 261

WS-CF defines the scope of an activity to be the scope of a coordinated interaction: upon 262
termination of an activity, the associated coordinator will be contacted in order that it can execute 263
the coordination protocol. Depending upon the coordination protocol, coordination may also occur 264
at arbitrary points during the lifetime of an individual activity, but this need not be supported by all 265
implementations. 266

4.1Activity coordination and control 267

An activity may run for an arbitrary length of time and may need to use coordination at any 268
number of points during its lifetime. For example, consider Figure 2, which shows a series of 269
connected activities co-operating during the lifetime of an application. The darker ellipses 270
represent coordination boundaries, whereas the lighter ellipses delimit activity boundaries. 271
Activity A1 uses two coordination points during its execution, whereas A2 uses none. Additionally, 272
coordinated activity A3 has another coordinated activity, A3’ nested within it. The activity service 273
and coordination framework combination is responsible for distributing both the activity and 274
coordination contexts between execution environments in order that the hierarchy can be fully 275
distributed. 276

 277

 13

Figure 2, Activity and Transaction Relationship. 278

The coordinator associated with an activity is allowed to change during the lifetime of the activity, 279
to reflect the changing requirements of activities. For example, in the diagram above, at the first 280
coordination point A1 may use a two-phase protocol to achieve consensus, whereas when the 281
activity terminates, a three phase protocol may be more appropriate. How activities are 282
coordinated is the domain of the Coordination Service. It does this by utilizing the components 283
described in the following sections. 284

4.2Coordination protocol definitions 285

A coordination protocol is defined by the message interactions between the coordinator and 286
its participants, and the semantics that are imposed on those interactions. It is beyond 287
the scope of this specification to manage semantic information about individual protocol 288
types. Coordination protocols are unambiguously identified by a URI. It is also beyond the 289
scope of the specification to indicate how coordinator implementations are located or 290
associated with their URIs.registration service, which provides an interface for the 291
registration of participants within a specific protocol. 292

• A participant service, which defines the operation or operations that are performed as 293
part of the protocol. 294

• A registration context, which allows participants to join an activity group. 295

The group membership facilities are used to build and manage relationships among services. For 296
example, an activity group can be used as the basic definition of a participant set for a given 297
coordination protocol. 298

WS-CF builds upon the activity concept defined in the WS-Context specification by narrowing the 299
notion of an activity to that of an activity group: such a group contains members (participants) that 300
will be driven through the same protocol. WS-CF says nothing about specifics of such 301
coordination protocols and when or where participants may join and leave: this is left up to the 302
protocol types. 303

Because WS-CF is meant to support a range of coordination protocols, each possessing different 304
protocol messages and potentially different coordinator interfaces, WS-CF does not define how or 305
when coordination occurs. This is left to the protocol types. 306

WS-CF defines the activity group and associated service (the Registration Service). The group 307
paradigm is central to coordination, whether it is coordinating the outcome of distributed 308
transactions, security domains, replica consistency, cache coherency etc. The activity group is 309
tied to an underlying WS-Context activity such that their lifetimes coincide. 310

Web services that wish to join or leave the group use of the Registration Service. The 311
membership of the group may also be obtained from the Registration Service. Specific 312
implementations of the Registration Service may impose restrictions on how and when group 313
membership changes may occur; these are outside the scope of the WS-CF specification. In 314
addition, some uses of group membership may place constraints on consistent views of group 315
membership, particularly in the presence of member failures. 316

This specification allows group membership to be managed with reference to a specific context; 317
the relationship between different contexts is defined by the WS-Context specification; specific 318
protocols based on activity groups may support subgroups and interposed activities. 319

3.2 Invocation of Service Operations 320

How application services are invoked is outside the scope of this specification; however, context 321
information related to the sender’s activity needs to be referenced and/or propagated. 322

All interactions are described in terms of correlated messages, which a referencing specification 323
MAY abstract at a higher level into request/response pairs. As long as implementations ensure 324
that the on-the-wire message formats are compliant with those defined in this specification, how 325

14

the end-points are implemented and how they expose the various operations (e.g., via WSDL [1]) 326
is not mandated by this specification. However, a normative WSDL binding is provided by default 327
in this specification. 328

Note, this specification does not assume that a reliable message delivery mechanism has to be 329
used for message interactions. As such, it MAY be implementation dependant as to what action is 330
taken if a message is not delivered or no response is received. 331

The WSDL binding is normative; however other implementations that are semantically equivalent 332
and preserve interoperability are allowed. 333

Faults and errors that may occur when a service is invoked are communicated back to other Web 334
services in the activity via SOAP messages that are part of the standard protocol. If an operation 335
fails because no activity is present when one is required, then the InvalidContextFault message 336
will be sent to the requester. To accommodate other errors or faults, all response service 337
signatures have a generalFault operation and as a transientFault operation. 338

Note, a transientFault message is produced when the implementation finds it 339
cannot successfully execute the requested operation at that time from some 340
temporary reason. This reason may be implementation or referencing 341
specification specific. A receiver of a transientFault is free to retry the operation 342
which originally generated it on the assumption that eventually a different 343
response will be produced. Sub-types of transientFault MAY be further defined 344
using the fault model described which can allow for the communication of more 345
specific information on the type of fault. 346

3.3 Relationship to WSDL 347

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the 348
normative style. Other binding styles may be used as long as interoperability is preserved, 349
although they may have different acknowledgment styles and delivery mechanisms. It is beyond 350
the scope of WS-Coordination Framework to define these styles. 351

Note, conformant implementations MUST support the normative WSDL defined 352
in the specification where those respective interfaces are required. WSDL for 353
optional components in the specification is REQUIRED only in the cases where 354
the respective components are supported. 355

For clarity WSDL is shown in an abbreviated form in the main body of the document: only 356
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1]. 357

3.4 Referencing and addressing conventions 358

There are multiple mechanisms for addressing messages and referencing Web services currently 359
proposed by the Web services community. This specification defers the rules for addressing 360
SOAP messages to existing specifications; the addressing information is assumed to be placed in 361
SOAP headers and respect the normative rules required by existing specifications. 362

However, the Coordination Framework message set requires an interoperable mechanism for 363
referencing Web Services. For example, context structures may reference the service that is used 364
to manage the content of the context. To support this requirement, WS-CAF has adopted an open 365
content model for service references as defined by the Web Services Reliable Messaging 366
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 3. 367

<xsd:schema targetNamespace="http://docs.oasis-368
open.org/wsrm/2004/06/reference-1.1.xsd" 369
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 370
elementFormDefault="qualified" attributeFormDefault="unqualified" 371
version="1.1"> 372
 <xsd:complexType name="ServiceRefType"> 373
 <xsd:sequence> 374

 15

 <xsd:any namespace="##other" processContents="lax" /> 375
 </xsd:sequence> 376
 <xsd:attribute name="reference-scheme" type="xsd:anyURI" 377
use="optional" /> 378
 </xsd:complexType 379

Figure 3, service-ref Element 380

The ServiceRefType is extended by elements of the context structure as shown in Figure 4. 381

<xsd:element name=”context-manager” type=”ref:ServiceRefType”/> 382

Figure 4, ServiceRefType example. 383

Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced 384
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery 385
specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery. The value for WSRef 386
defined in the WS-Addressing specification [8] would be 387
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need 388
only be used if the namespace URI of the QName of the Web service reference cannot be used 389
to unambiguously identify the addressing specification in which it is defined. 390

Messages sent to referenced services MUST use the addressing scheme defined by the 391
specification indicated by the value of the reference-scheme element if present. Otherwise, the 392
namespace URI associated with the Web service reference element MUST be used to determine 393
the required addressing scheme. A service that requires a service reference element MUST use 394
the mustUnderstand attribute for the SOAP header element within which it is enclosed and MUST 395
return a mustUnderstand SOAP fault if the reference element isn’t present and understood. 396

Note, it is assumed that the addressing mechanism used by a given 397
implementation supports a reply-to or sender field on each received message so 398
that any required responses can be sent to a suitable response endpoint. This 399
specification requires such support and does not define how responses are 400
handled. 401

To preserve interoperability in deployments that contain multiple addressing schemes, there are 402
no restrictions on a system, beyond those of the composite services themselves. However, it is 403
RECOMMENDED where possible that composite applications confine themselves to the use of 404
single addressing and reference model. 405

Because the prescriptive interaction pattern used by WS-Coordination Framework is based on 406
one-way messages with callbacks, it is possible that an endpoint may receive an unsolicited or 407
unexpected message. The recipient is free to do whatever it wants with such messages. 408

16

4 WS-CF components 409

WS-CF provides five components that may be used to build collaborative protocols and complex 410
composite applications: the Participant service, the Registration service, and the Registration 411
context. The components are described in terms of their behaviourbehavior and the interactions 412
that occur between them. All interactions are described in terms of message 413
messages,exchanges, which an implementation may abstract at a higher level into 414
request/response pairs or RPCs, for example. As such, all communicated messages are required 415
to contain response endpointLike WS-Context, the components are organized in a hierarchical 416
relationship, where individual components may be used without reference to higher level 417
constructs that build on them. For example, the Registration and Participant services addresses 418
solely for the purposes of each interaction. 419

One consequence of these interactions is that faults and errors which may occur when a service 420
is invoked are communicated back to interested parties via messages which are themselves part 421
of the protocol. For example, if an operation might fail because no activity is present when one is 422
required, then it will be valid for the noActivityFault message to be received by the response 423
service. To accommodate other errors or faults, all response service signatures have a 424
generalFault operation. 425

Note, in the rest of this section we will use the term “invokes operation X on service Y” when 426
referring to invoking services. This term does not imply a specific implementation for performing 427
such service invocations and is used merely as a short-hand for “sends message X to service Y.” 428
As long as implementations ensure that the on-the-wire message formats are compliant with 429
those defined in this specification, how the endpoints are implemented and how they expose the 430
various operations (e.g., via WSDL [2]) is not mandated by this specification. 431

5.1Participantscan be used without reference to an activity group. 432

4.1 Interposition 433

WS-CF supports the notion of interposition: where a Participant Service that is enlisted with a 434
Registration Service also behaves as a Registration Service to other Participant Services. In this 435
way, WS-CF supports the building of graphs and trees by the addition of participants to an activity 436
structure that are themselves registration endpoints. 437

The technique of interposition uses proxies (or subordinates). Each domain that imports a WS-CF 438
context MAY create a subordinate registration service that enrolls with the imported registration 439
service as though it were a participant. This specification does not prescribe how and when this 440
may occur. Interposition then requires the importing domain to use a different context when 441
communicating with services and participants that are required to register with the subordinate 442
registration service, as shown in Figure 5. 443

 17

Participant/
proxy-registration
service

Registration Service

Participant

 444

Figure 5, Participant coordinator. 445

This specification does not define what are allowable forms of graphs that may be created using 446
interposition. Such definitions are the responsibility of referencing specifications. 447

4.2 Participant Service 448

AtMany distributed protocols require software agents to enlist as participants within a protocol to 449
achieve an application visible semantic. For example, participants may enlist in a transaction 450
protocol in order to receive messages at coordination points defined by the application or service, 451
messages are communicated between a coordinator and registered participants through the 452
exchange of protocol specific messages. For example, theprotocol. The termination of one 453
activity may initiate the start/restart of other activities in a workflow-like environment. Messages 454
can be used to infer a flow of control during the execution of an application. The information 455
encoded within a message will depend upon the implementation of the coordinationprotocol 456
model. 457

A Participant(coordination participant) will use the message in a manner specific to the 458
Coordination Service andprotocol and (optionally) return a result of it having done so. For 459
example, upon receipt of a specific message, a Participant couldstart another activity running 460
(e.g., a compensation activity); another Participant could commit any modifications to a database 461
when it receives one type of message, or undo them if it receives another type. 462

In some cases (e.g., monitoring protocols) Each participant supports a coordination protocol 463
specific to the model implemented by the coordinator (e.g., two-phase commit). In addition, the 464
work that a participant performs when it receives a message from the coordinator is dependent 465
on the participant’s implementation (e.g., to commit the reservation of the theatre ticket and debit 466
the user’s account). 467

Interactions for executing a coordination protocol are broken down into two distinct types (these 468
messages are all contextualized unless otherwise noted): 469

Coordinator-to-participant, where the coordinator sends a protocol message to the participant 470
and will eventually get a response. 471

Participant-to-coordinator, where the participant may autonomously communicate protocol 472
messages to the coordinator. 473

In order to perform the necessary interactions for coordinator-to-participant, two service roles are 474
defined (illustrated in Figure 3), with the following operations (messages): 475

The Participant: this accepts getStatus, AssertionType and getIdentity messages. The 476
CoordinatorParticipant endpoint address is propagated on all of these messages. 477

The CoordinatorParticipant: this accepts status, AssertionType, identity, wrongState and 478
generalFault call-back messages. Other error or fault messages are expected to be returned as 479
specific instances of the AssertionType response. 480

18

The coordinator sends an AssertionType message to the Participant with an accompanying 481
reference to a CoordinatorParticipant to which the Participant may eventually call-back with the 482
response. The Participant may then send back a specific AssertionType message if successful, 483
which will be interpreted in a manner specific to the coordination protocol. The wrongState and 484
generalFault messages are used to indicate error conditions. 485

The getIdentity message is used to obtain the unique identification for the relevant Participant. 486

Participant Coordinator
Participant

AssertionTy pe message

wrongState

AssertionTy pe message

identity

Coordinator generated

Participant generated

generalFault

getIdentity

getStatus

status

 487
Figure 3, Coordinator-to-participant interactions. 488

The interactions depicted in Figure 3, are presented on a per-role basis in the WSDL interface 489
shown in Figure 4. 490

<wsdl:portType name="ParticipantPortType"> 491
 <wsdl:operation name="getStatus"> 492
 <wsdl:input message="tns:GetStatusMessage"/> 493
 </wsdl:operation> 494
 <wsdl:operation name="getIdentity"> 495
 <wsdl:input message="tns:GetIdentityMessage"/> 496
 </wsdl:operation> 497
</wsdl:portType> 498
<wsdl:portType name="CoordinatorParticipantPortType"> 499
 <wsdl:operation name="status"> 500
 <wsdl:input message="tns:StatusMessage"/> 501
 </wsdl:operation> 502
 <wsdl:operation name="identity"> 503
 <wsdl:input message="tns:IdentityMessage"/> 504
 </wsdl:operation> 505
 <wsdl:operation name="wrongState"> 506
 <wsdl:input message="asw:WrongStateFaultMessage"/> 507
 </wsdl:operation> 508
 <wsdl:operation name="generalFault"> 509
 <wsdl:input message="tns:GeneralFaultMessage"/> 510
 </wsdl:operation> 511
</wsdl:portType> 512

Figure 4, WSDL portType Declarations for Participant and CoordinatorParticipant Roles 513

In order to perform the necessary interactions for normal participant-to-coordination interaction, 514
two service roles are defined, with the following operations (message-exchanges): 515

 19

ParticipantCoordinator: this accepts the setResponse message. The endpoint address for the 516
ParticipantCoordinator is returned to the Participant during the registration process (see below). 517
The ParticipantRespondant address is propagated on all of these messages for call-back 518
response messages. 519

ParticipantRespondant: this accepts the responseSet, unknownCoordinator, generalFault, 520
protocolViolation and wrongState messages. 521

Figure 5 illustrates the interactions between Participant and coordinator. 522

The ParticipantCoordinator can send the setResponse message because some coordination 523
protocols will allow participants to make autonomous decisions based upon their current state 524
and assumptions about which notifications a coordinator may send them. This operation is called 525
to notify the coordinator identified in the associated context of the response (the AssertionType) 526
from the Participant. It is valid for the AssertionType parameter to be nil. The identity of the 527
message (the message URI) that triggered the Participant and the Participant identity are also 528
returned, as is a QName which represents some coordination-specific response; this is to allow 529
Participants to asynchronously send responses to messages that the ActivityCoordinator has not 530
yet (and may never) send: the coordinator is required to record both sets of data until the next 531
coordination point where it can determine, using the AssertionType provided by the Participant, 532
whether or not it should send coordination messages to the Participant. If the Participant sent a 533
response to a message the coordinator decided not to generate (e.g., it sent PREPARED 534
assuming the coordinator would prepare when in fact the coordinator rolls back), then it is up to 535
the implementation to determine what to do. Obviously if the Participant is allowed to make an 536
asynchronous response then the protocol should be able to deal with this eventuality. 537

Upon successfully receiving and recording the message, the coordinator will call-back with the 538
responseSet message. If the identity of the coordinator is invalid, then the unknownCoordinator 539
message will be sent to the ParticipantRespondant. If the message sent by the Participant is 540
incompatible with the current state of the coordinator, the coordinator will send the 541
protocolViolation message; if the coordinator refuses to accept the message from the Participant 542
then the wrongState message will be sent to the ParticipantRespondant. 543

 544
Figure 5, Participant-to-coordinator interactions. 545

20

 546

The ParticipantCoordinator and ParticipantRespondant roles are presented in WSDL in Figure 6. 547

<wsdl:portType name="ParticipantCoordinatorPortType"> 548
 <wsdl:operation name="setResponse"> 549
 <wsdl:input message="tns:SetResponseMessage"/> 550
 </wsdl:operation> 551
</wsdl:portType> 552
<wsdl:portType name="ParticipantRespondantPortType"> 553
 <wsdl:operation name="responseSet"> 554
 <wsdl:input message="tns:ResponseSetMessage"/> 555
 </wsdl:operation> 556
 <wsdl:operation name="unknownCoordinator"> 557
 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/> 558
 </wsdl:operation> 559
 <wsdl:operation name="generalFault"> 560
 <wsdl:input message="tns:GeneralFaultMessage"/> 561
 </wsdl:operation> 562
 <wsdl:operation name="protocolViolation"> 563
 <wsdl:input message="asw:ProtocolViolationFaultMessage"/> 564
 </wsdl:operation> 565
 <wsdl:operation name="wrongState"> 566
 <wsdl:input message="asw:WrongStateFaultMessage"/> 567
 </wsdl:operation> 568
</wsdl:portType> 569

Figure 6, WSDL portType Declarations for ParticipantCoordinator and ParticipantRespondant Roles. 570

5.2Qualifiers 571

Qualifiers are a feature of WS-CF that allows additional protocol specific and business specific 572
information to be exchanged by participating services. Typically qualifiers are used by participants 573
when enrolling with a coordinator to augment the enrolment or un-enrolment operations (the 574
addParticipant and removeParticipant operations) and thus enhance the coordination protocol. 575
For example, when enlisting a participant with a transaction, it is possible to specify a caveat on 576
enrolment via a suitable qualifier, such that the coordinator knows that the participant will cancel 577
the work if it does not hear from the coordinator within 24 hours. The schema fragment for WS-578
CF qualifiers is shown in Figure 7. 579

<xs:complexType name="QualifierType"> 580
 <xs:sequence> 581
 <xs:element name="qualifier-name" type="xs:string"/> 582
 <xs:any namespace="##any" processContents="lax" minOccurs="0"/> 583
 </xs:sequence> 584
</xs:complexType> 585

Figure 7, Qualifier XML Schema Type 586

5.3Coordinator 587

An activity coordinator is associated with each activity; this happens implicitly through the 588
appropriate Activity Lifecycle Service (ALS) that is enlisted with the CTXContext Service 589
framework. This ALS is informed when the activity starts (and in which case it may create a new 590
coordinator) and when it is completing (and in which case it will execute the coordination protocol 591
across the registered participants). When a message is sent by the activity (e.g., at termination 592
time), the coordinator’s role is to forward this to all registered Participants and to deal with the 593
outcomes generated by the Participants.Participants may register for protocols that do not include 594
any subsequent signaling. In other cases, such as publish-and-subscribe scenarios, Participants 595
may register for a stream of messages that have no fixed semantic content with respect to the 596

 21

protocol itself. In general, rules governing the subsequent interaction between Participants and 597
Registration endpoints are defined by specifications that make use of WS-CF. As such, there is 598
no defined WSDL interface defined for the Participant Service; it is an abstract entity that is given 599
concrete representation by referencing specifications and is only discussed within the scope of 600
this specification for clarity of the overall model concept. 601

4.3 Registration Service 602

The protocol that the coordinatorIn order to become a Participant in a protocol, a service must 603
first enlist with a Registration service. The protocol that the Registration implementation uses will 604
depend upon the type of activity, application or service using the coordinationRegistration service. 605
For example, if the coordinationRegistration service is being usedfor within an extended 606
transaction infrastructure, then one protocol implementationtype will not be sufficient. For 607
example, if Saga model is in use then a compensation message may be required to be sent to 608
Participants if a failure has happened, whereas a coordinator for a strict transactional model may 609
be required to send a message informing participants to rollback. 610

How an ALSa Registration service for a specificcoordination protocol(s) is located and ultimately 611
registered with the CTXContext Service is out of scope of this specification. An ALS mayA 612
Registration service MAY identify the type of coordination protocol it supports via the ALS identify 613
message, but otherusing deployment specific mechanisms may be used. 614

It is further envisaged that the Coordinator implementation can be a common/generic 615
infrastructure component that is neutral to a particular Coordination Service implementation. The 616
Coordinator is merely the registration point for interested participants of an activity. Obviously 617
each such registration point will be required to publish the protocol it uses when performing 618
coordination using the schema shown earlier. 619

A CoordinationRegistration Service implementationprovides: 620

Transmission of coordination specific messages over SOAP requires a publish/subscribe or 621
broadcast message interaction pattern; 622

Support for the Participant service interface between CTXContext Service and Participant. 623

 All operations on the coordinator service areprovides support for Registering Services to enlist 624
Participant Services with a specific activity group. Operations on the Registration service MAY be 625
implicitly associated with the currenta Registration context, i.e., it is propagated to the 626
coordinatorRegistration service in order to identify which coordinator is to be operated on.the 627
specific activity group. 628

In the following sections we shall discuss the different coordinatorRegistration service interactions 629
and their associated message exchanges. 630

5.3.14.3.1 Service-to-coordinatorService-to-Registration interactions 631

These interactions define how a service (the Registering Service) may enlist or delist a participant 632
with the coordinator and perform other service-specific operations, andParticipant (Service) with 633
the Registration Service. The message exchanges are illustrated in Figure 11Figure 8. They are 634
factored into two different roles: 635

ServiceCoordinator:Registration Service: this accepts the addParticipant, removeParticipant, 636
getQualifiers and getParentCoordinatorrecoverParticipant, registrationRecovered and getStatus 637
messages. All messages contain the ServiceRespondant endpoint for call-back messages. It is 638
this call-back address that is referenced in the extended context which is propagated between 639
application services. The ServiceRespondant Registering Service endpoint for callback 640
messages, although it is OPTIONAL as to whether the Registration Service remembers these 641
beyond a specific interaction. 642

endpoint address is propagated on all of these messages. 643

ServiceRespondant:Registering Service: this accepts the participantAdded, 644
participantRemoved, qualifiers, parentCoordinator,participantRecovered, status, 645

22

recoverRegistration, generalFault,unknownCoordinator, wrongState, duplicateParticipant, 646
invalidProtocol, invalidParticipant, and participantNotFound messages. 647

addParticipant 648

This message is sent to the coordinator in order to register the specified Participant with the 649
ActivityCoordinatorprotocol supported by the Registration service. A valid RegistrationContext 650
MUST accompany this message and the participant will be added to the activity group identified 651
in the context. If no coordinator can be located, then the invalidCoordinator message is sent to 652
the ServiceRespondant. 653

This context MAY be passed by reference or by value. It is implementation dependant as to 654
whether any context information other than the basic reference values is required. 655

The coordinatorprotocol may support multiple sub-protocols (e.g., synchronizations that are 656
executed prior to and after a two-phase commit protocol); in order to define with which protocols 657
to enlist the participant, the list of protocolType URI isURIs may be propagated in the message. 658
The Registration Service MUST ensure that all protocols specified are supported before If the 659
protocol isany registration happened. If some of the protocols are not supported by this 660
coordinator thenthe Registration service then no registration occurs and the invalidProtocol 661
message willMUST be sent to the Registering Service indicating which protocols were at fault. 662

ServiceRespondant. 663

Upon success, the coordinatorRegistration service calls back to the 664
ServiceRespondantRegistering Service with the participantAdded message, including in this 665
message the ParticipantCoordinator address. 666

a unique OPTIONAL endpoint reference that MAY be used by the Registering Service or 667
Participant Service for further interactions. How and when this endpoint reference should be used 668
is outside the scope of this specification and is left to referencing specifications to determine. For 669
example, it may be used by a coordination service to refer to the endpoint that the participant 670
should use for the coordination protocol. 671

IfA referencing specification MAY decide to send the wrongState message if the Activity has 672
begun completion, or has already completed, then the wrongState message is sent.completed 673
when this operation is attempted. 674

The termination of the activity group MAY be triggered by the completion of the WS-Context 675
service activity. 676

If the same participant has been enrolled with the coordinatorRegistration service more than once 677
and the coordination protocolreferencing specification does not allow this, then the 678
duplicateParticipant message is sent to the ServiceRespondant. 679

ServiceRespondant. How the registration of the same participant multiple times is dealt with at 680
the protocol level is outside the scope of this specification and is left to If the participant is invalid 681
within the scope of the coordinator, the invalidParticipant message is sent to the 682
ServiceRespondant.referencing specifications to define, as the rules governing the protocol are 683
defined by a referencing specification 684

removeParticipant 685

This message causes the Registration service to delist the specified Participant. A valid 686
RegistrationContext MUST accompany this message to identify the activity group from which the 687
participant should be removed. This context MAY be passed by reference or by value. It is 688
implementation dependant as to whether any context information other than the coordinator to 689
remove the specified Participant from the ActivityCoordinator identifier in the associated context. 690
basic reference values is required. If successful, the ParticipantRemoved message is sent to the 691
invoker. 692

 23

If the Participant has not previously been registered with the coordinatorRegistration service for 693
the specified coordination protocol,activity group, then it will send the participantNotFound 694
message to the ServiceRespondant.Registering Service. 695

If no coordinator can be located, then the invalidCoordinator message is sent to the 696
ServiceRespondant. 697

Removal of a participant need not be supported by the specific coordination implementation and 698
obviously itprotocol and may also be dependant upon where in the protocol the 699
coordinatorsystem is as to whether ita referencing specification will allow the participant to be 700
removed. 701

removed. The rules governing removal of participants from participation in a protocol or activity 702
group are governed by referencing specifications. IfA referencing specification MAY decide to 703
send the wrongState message if removal is disallowed; for example, the Activity has begun 704
completion, or has completed, then the wrongState message is sent.already completed when this 705
operation is attempted. 706

getParentCoordinator 707

This message causes the address of the parent coordinator of the coordinator referenced in the 708
associated context to be sent to the ServiceRespondant via the parentCoordinator message. If 709
there is no parent (i.e., this coordinator is top-level), then an empty address will be sent. 710

If no coordinator can be located, then the invalidCoordinator message is sent to the 711
ServiceRespondant. 712

getQualifiers 713

This message causes the coordinator service to return the list of all qualifiers currently registered 714
with it via the qualifiers message on the ServiceRespondant. If no coordinator can be located, 715
then the invalidCoordinator message is sent to the ServiceRespondant. 716

24

 In addition, 717
some protocols may allow for Registration service to autonomously delist Participant services. In 718
this case, the Registration Service will send an unsolicited ParticipantRemoved message to the 719
service that was responsible for enlisting the Participant. 720

recoverParticipant 721

This operation is used by a participant that has previously successfully enlisted with a 722
Registration service: when the Participant fails and subsequently recovers it may not be able to 723
recover at the same address that it used to enlist with the Registration service. The 724
recoverParticipant operation allows the participant to inform the Registration service that it has 725
moved from the original address to a new address. It may also be used to start recovery 726
operations by the protocol engine. 727

A valid RegistrationContext MUST accompany this message in order to identify the group in 728
which the failed participant previously existed. This context MAY be passed by reference or by 729
value. It is implementation dependant as to whether any context information other than the basic 730
reference values is required. 731

If successful, the participantRecovered message is sent to the invoker. If the recovery handshake 732
occurs in the context of an activity, the message also contains the current status of the activity. 733
This status may be used by the recovering participant to perform local recovery operations, 734
although this will depend upon the protocol in use. For example, if the participant was enrolled in 735
a presumed-abort transaction protocol and recovery indicated that the transaction no longer 736
exists, then the participant can cancel any work it may be controlling. 737

If the coordinator cannot be located, then the invalidActivityFault message is sent back. 738

If the status of the coordinator is such that recovery is not allowed at this time, the wrongState 739
message is sent to the Registering Service by the coordinator. 740

If the Registration Service cannot deal with recovery of the participant for a temporary reason, the 741
transientFault message is sent and the receiver MAY try again. 742

 25

recoverRegistration 743

This operation on the Registering Service MAY be used by a recovered Registration Service to 744
indicate that it has recovered on a new endpoint address. When a Registration Service fails and 745
subsequently recovers it may not be able to recover at the same address that prior Registering 746
Services used to enlist with the Registration service. This OPTIONAL operation allows the 747
Registration Service to inform Registering Services that it has moved from the original address to 748
a new address. It may also be used to start recovery operations by the protocol engine. 749

The use of recoverRegistration SHOULD only be attempted when the Registration Service has 750
failed and recovered on another endpoint because to do otherwise MAY result in continued use of 751
stale RegistrationContext information elsewhere in the application; the context refers to the old 752
endpoint address for the Registration Service. 753

A valid RegistrationContext MUST accompany this message. This context MAY be passed by 754
reference or by value. It is implementation dependant as to whether any context information other 755
than the basic reference values is required. 756

If successful, the registrationRecovered message is sent to the Registration Service. If the 757
recovery handshake occurs in the context of an activity, the message also contains the current 758
status of the activity. This status may be used by recipients to perform local recovery operations, 759
although this will depend upon the protocol in use 760

If the Registering Service cannot be located, then the unknownService message is sent back. 761

If the Registering Service cannot deal with recovery of the Registration Service for a temporary 762
reason, the transientFault message is sent and the receiver MAY try again. 763

getStatus 764

The status of the activity group may be obtained by sending the getStatus message to the 765
recovery coordinator. A valid RegistrationContext MUST accompany this message. This context 766
MAY be passed by reference or by value. It is implementation dependant as to whether any 767
context information other than the basic reference values is required. 768

The status, which may be one of the status values specified by the Context Service, or may be 769
specific to the protocol, identified by its QName, is returned to the invoker via the status message. 770
GetStatus will return the same Status value that is returned by the getStatus operation on the 771
Context Service, assuming the queries occur at the same point in the activity lifecycle. 772

 773

 774

26

 775

Figure 11, Service-to-coordinator interactions. 776

The ServiceRespondant and ServiceCoordinatorRegistration Service and Registering Service 777
roles are elucidated in WSDL form in Figure 1213Figure Figure 1213Figure 9.. 778

<wsdl:portType 779
name="ServiceCoordinatorPortType">name="RegistrationServicePortType"> 780
 <wsdl:operation name="addParticipant"> 781
 <wsdl:input message="tns:AddParticipantMessage"/> 782
 </wsdl:operation> 783
 <wsdl:operation name="removeParticipant"> 784
 <wsdl:input message="tns:RemoveParticipantMessage"/> 785
 </wsdl:operation> 786
 <wsdl:operation name="getQualifiers"> 787
 <wsdl:input message="tns:GetQualifiersMessage"/> 788
 </wsdl:operation> 789
 <wsdl:operation name="getParentCoordinator"> 790
 <wsdl:input message="tns:GetParentCoordinatorMessage"/> 791
 </wsdl:operation> 792
</wsdl:portType> 793
<wsdl:portType name="ServiceRespondantPortType"> 794
 <wsdl:operation name="participantAdded"> 795
 <wsdl:input message="tns:ParticipantAddedMessage"/> 796
 </wsdl:operation> 797
 <wsdl:operation name="participantRemoved"> 798
 <wsdl:input message="tns:ParticipantRemovedMessage"/> 799
 </wsdl:operation> 800
 <wsdl:operation name="qualifiers"> 801
 <wsdl:input message="tns:QualifiersMessage"/> 802
 </wsdl:operation> 803
 <wsdl:operation name="parentCoordinator"> 804
 <wsdl:input message="tns:ParentCoordinatorMessage"/> 805
 </wsdl:operation> 806

 27

 <wsdl:operation name="generalFault"> 807
 <wsdl:input message="tns:GeneralFaultMessage"/> 808
 </wsdl:operation> 809
 <wsdl:operation name="unknownCoordinator">name="invalidActivity"> 810
 <wsdl:input 811
message="tns:UnknownCoordinatorFaultMessage"/>message="wsctx:InvalidActi812
vityFaultMessage"/> 813
 </wsdl:operation> 814
 <wsdl:operation name="wrongState"> 815
 <wsdl:input message="asw:WrongStateFaultMessage"/> 816
 </wsdl:operation> 817
 <wsdl:operation name="duplicateParticipant"> 818
 <wsdl:input message="tns:DuplicateParticipantFaultMessage"/> 819
 </wsdl:operation> 820
 <wsdl:operation name="invalidProtocol"> 821
 <wsdl:input message="tns:InvalidProtocolFaultMessage"/> 822
 </wsdl:operation> 823
 <wsdl:operation name="invalidParticipant"> 824
 <wsdl:input message="tns:InvalidParticipantMessage"/> 825
 </wsdl:operation> 826
 <wsdl:operation name="participantNotFound"> 827
 <wsdl:input message="tns:ParticipantNotFoundFaultMessage"/> 828
 </wsdl:operation> 829
</wsdl:portType> 830

Figure 12139, WSDL portType Declarations for ServiceRespondant and ServiceCoordinator, WSDL 831
portType Declarations for Registration Service and Registering Service Roles. 832

5.3.2Client-to-coordinator interactions 833

These interactions (illustrated in Figure 10) essentially define how a client (user) of the 834
coordinator service can obtain the status of the coordinator or ask it to perform coordination. They 835
are factored into two different services: 836

ClientCoordinator: supports the coordinate and getStatus messages. All messages contain the 837
ClientRespondant endpoint for call-back results. The ClientRespondant endpoint address is 838
propagated on all of these messages. 839

ClientRespondant: supports the coordinated, status, wrongState, notCoordinated, 840
protocolViolation, invalidCoordinator, invalidActivity and generalFault messages. 841

coordinate 842

If the coordination protocol supports it then the coordinator will execute a particular coordination 843
protocol (specified by a protocol URI) on the currently enlisted participants, upon receiving the 844
coordinate message at any time prior to the termination of the coordination scope. This message 845
instructs the ActivityCoordinator to send protocol messages to all of the registered Participants; 846
since the coordinator may be invoked multiple times during the lifetime of an activity, it is possible 847
that different protocol messages may be sent each time coordinate is called. Once the 848
Participants have processed the messages and returned outcomes, it is up to the 849
ActivityCoordinator to consolidate these individual outcomes into a single result, which is sent to 850
the ClientRespondant via the coordinated message. 851

If there is no Activity associated with the context then the invalidCoordinator message will be 852
generated. 853

Because this operation can be used to cause messages to be sent to Participants at times other 854
than when the Activity completes, the implementation of the coordinator must ensure that such 855
messages clearly identify that the Activity is not completing. If the Activity has begun completion, 856
or has completed, then the invalidActivity message is sent to the ClientRespondant. 857

28

The coordinator may also send the protocolViolation or wrongState messages to the 858
ClientRespondant to indicate appropriate error conditions that may occur while executing the 859
coordination protocol. 860

The notCoordinated response is used to indicate that the coordinator (and hence coordination 861
protocol) does not allow coordination to occur at any time other than the termination of the 862
activity. Other, protocol specific errors are expected to be returned as data encoded within the 863
AssertionType. 864

getStatus 865

The status of the coordinator may be obtained by sending the getStatus message to the 866
coordinator. The status, which may be one of the status values specified by the CTXContext 867
Service, or may be specific to the coordination protocol, identified by its QName, is returned to 868
the ClientRespondant via the status message. 869

 870
Figure 10, Client-to-coordinator interactions. 871

The ClientRespondant and ClientCoordinator roles are shown in WSDL form in Figure 11. 872

<wsdl:portType name="ClientCoordinatorPortType"> 873
 <wsdl:operation name="coordinate"> 874
 <wsdl:input message="tns:CoordinateMessage"/> 875
 </wsdl:operation> 876
 <wsdl:operation name="getStatus"> 877
 <wsdl:input message="tns:GetStatusMessage"/> 878
 </wsdl:operation> 879
</wsdl:portType> 880
<wsdl:portType name="ClientRespondantPortType"> 881
 <wsdl:operation name="status"> 882
 <wsdl:input message="tns:StatusMessage"/> 883
 </wsdl:operation> 884
 <wsdl:operation name="coordinated"> 885
 <wsdl:input message="tns:CoordinatedMessage"/> 886

 29

 </wsdl:operation> 887
 <wsdl:operation name="notCoordinated"> 888
 <wsdl:input message="tns:NotCoordinatedMessage"/> 889
 </wsdl:operation> 890
 <wsdl:operation name="wrongState"> 891
 <wsdl:input message="asw:WrongStateFaultMessage"/> 892
 </wsdl:operation> 893
 <wsdl:operation name="protocolViolation"> 894
 <wsdl:input message="asw:ProtocolViolationFaultMessage"/> 895
 </wsdl:operation> 896
 <wsdl:operation name="invalidCoordinator"> 897
 <wsdl:input message="tns:InvalidCoordinatorFaultMessage"/> 898
 </wsdl:operation> 899
 <wsdl:operation name="invalidActivity"> 900
 <wsdl:input message="tns:InvalidActivityFaultMessage"/> 901
 </wsdl:operation> 902
 <wsdl:operation name="generalFault"> 903
 <wsdl:input message="tns:GeneralFaultMessage"/> 904
 </wsdl:operation> 905
</wsdl:portType> 906

Figure 11, WSDL portType Declarations for ClientRespondant and ClientCoordinator Roles 907

5.3.34.3.2 Context enhancementRegistration Context 908

In order to perform coordination,support registration in activity groups it is necessary for the 909
participants to be enrolled with coordinators.enlisted in the activity group via some mechanism. 910
This specification defines a Registration service to support enlistment in an activity group. In a 911
distributed environment, this requires information about the coordinatorRegistration service 912
(essentially its network endpoint) to be available to remote participants. The CTXContext Service 913
is already responsibleWS-Context provides mechanisms for propagating basic context 914
informationbetween distributed activities.betweenservices. As we have seen, the information 915
contained within this basic activity context is simply the unique activity identity. However, it has 916
been designed to be extensible such that additional, service-specific information may be added to 917
the context via Activity Lifecycle Services. In the case of the relevant coordination lifecycle 918
service, this information is the identity and optional information associated with the demarcation 919
activity and management of the context. WS-hierarchy of coordinator references. 920

<xs:complexType name="ContextType">Coordination Framework extends the ContextType 921
defined in WS-Context to allow services to register as Participants in an activity. The 922
RegsitrationContextType is shown in Figure 5. 923

 924

<xs:complexType name="RegistrationContextType"> 925
 <xs:complexContent> 926
 <xs:extension base="wsctx:ContextType"> 927
 <xs:sequence> 928
 <xs:element name="protocol-reference" 929
type="tns:ProtocolReferenceType"/> 930
 <xs:element name="coordinator-reference" 931
type="tns:CoordinatorReferenceType" 932
 maxOccurs="unbounded"/>name="registration-service" 933
type="ref:ServiceRefType" 934
 minOccurs="1"/> 935
 <xs:any namespace="##any" processContents="lax" 936
maxOccurs="unbounded"/>minOccurs="0"/> 937
 </xs:sequence> 938
 </xs:extension> 939
 </xs:complexContent> 940
</xs:complexType> 941

30

Figure 161712, WS-CF ContextType, WS-CF RegistrationContextType derives from the WS-CTXContext 942
ContextType. 943

The Registration context contains the following elements in addition to the WS-Context 944
ContextType structure: 945

A service reference to a Registration service. This enables Participant services to be enlisted or 946
delisted in an activity group. 947

XXXparticipant list? (see comment) 948

 949

The XML below shows an example of a coordinationRegistration context fora coordinator 950
implementation of a two-phase completion protocol. 951

<context 952
xmlns="http://www.webservicestransactions.org/schemas/wsctx/2003/03" 953
 timeout="100"> 954
 <context-identifier> 955
 http://www.webservicestransactions.org/wsctx/abcdef:012345 956
 </context-identifier> 957
 <activity-service> 958
 http://www.webservicestransactions.org/wsctx/service 959
 </activity-service> 960
 <type> 961
 http://www.webservicestransactions.org/wsctx/context/type1 962
 </type> 963
 <activity-list> 964
 <service>http://www.webservicestransactions.org/service1</service> 965
 <service>http://www.webservicestransactions.org/service2</service> 966
 </activity-list> 967
 <child-contexts> 968
 <child-context timeout="200"> 969
 <context-identifier> 970
 http://www.webservicestransactions.org/wsctx/5e4f2218b 971
 </context-identifier> 972
 <activity-service> 973
 http://www.webservicestransactions.org/wsctx/service 974
 </activity-service> 975
 976
<type>http://www.webservicestransactions.org/wsctx/context/type1</type> 977
 <activity-list mustUnderstand="true" mustPropagate="true"> 978
 <service>http://www.webservicestransactions.org/service3</service> 979
 <service>http://www.webservicestransactions.org/service4</service> 980
 </activity-list> 981
 </child-context> 982
 </child-contexts> 983
 <protocol-reference 984
protocolType="http://www.webservicestransactions.org/some-ref"/> 985
 <coordinator-reference 986
coordinator="http://www.webservicestransactions.org/coord" 987
 activityIdentity="http://www.webservicestransactions.org/some-988
activity"/> 989
/context> 990

5.4Interposition 991

Consider the situation depicted in Figure 13, where there is a coordinator and three participants. 992
If we assume that each of these participants is on a different machine to the coordinator and each 993
other then each of the lines connecting the coordinator to the participants also represents the 994
invocations from the coordinator to the participants and vice versa. 995

 31

Coordinator

Participant

 996
Figure 13, Coordinator-participant distributed interactions. 997

The overhead involved in making these distributed invocations will depend upon a number of 998
factors, including how congested the network is, the load on the respective machines and the size 999
of the coordination domain In addition, as the number of participants increase, so does the 1000
overhead involved in the coordinator executing the coordination protocol. 1001

A common approach to ameliorate this overhead is to first recognize the fact that as far as a 1002
coordinator is concerned it does not matter what the participant implementation is: although one 1003
participant may interact with a database to commit a transaction, another may just as readily be 1004
responsible for forwarding the coordinators’ messages to a number of databases: essentially 1005
acting as a coordinator itself, as shown in Figure 14. 1006

Participant/
proxy-coordinator

Coordinator

Participant

 1007
Figure 14, Participant coordinator. 1008

In this case, the participant is acting like a proxy for the coordinator (the root coordinator): in the 1009
example, the proxy coordinator is responsible for interacting with the two participants when it 1010
receives an invocation from the coordinator and collating their responses (and it’s own) for the 1011
coordinator. As far as the participants are concerned they are invoked by a coordinator, whereas 1012
as far as the root coordinator is concerned it only sees participants. 1013

This technique of using proxy coordinators (or subordinate (sub-) coordinators) is known as 1014
interposition. Each domain that imports a context may create a subordinate coordinator that 1015
enrolls with the imported coordinator as though it were a participant. Interposition obviously 1016
requires the domain to use a different context when communicating with services and participants 1017
within the domain since at the very least the coordinator endpoint will be different. Any 1018
participants that are required to enroll with the coordinated activity within this domain actually 1019
enroll with the subordinate coordinator. In a large distributed application, a tree of coordinators 1020
and participants may be created, as illustrated in Figure 15. WS-CF does not mandate that 1021
interposition is supported by an implementation. 1022

32

Root coordinator

Leaf
participant

Subordinate
coordinator

 1023
Figure 15, Interposition. 1024

Because a subordinate coordinator must execute the coordination protocol on its enlisted 1025
participants, it must have its own log and corresponding failure recovery subsystem. The 1026
subordinate must record sufficient recovery information for any work it may do as a participant 1027
and additional recovery information for its role as a coordinator. 1028

5.5State management and recovery 1029

It is inherently complex to recover applications after failures (e.g., machine crashes). For 1030
example, the states of objects in use prior to the failure may be corrupt. The advantage of using 1031
transactions to control operations on persistent objects is that transaction systems ensure the 1032
consistency of the objects, regardless of whether or not failures occur. A transaction system 1033
guarantees that regardless of (non-catastrophic) failures, all transactions that were in flight when 1034
the failure occurred will either be committed or rolled back, making permanent or undoing any 1035
changes to objects. 1036

Rather than mandate a particular means by which objects should make themselves persistent, 1037
many transaction systems simply state the requirements they place on such objects if they are to 1038
be made recoverable, and leave it up to the object implementers to determine the best strategy 1039
for their object’s persistence. The transaction system itself will have to make sufficient information 1040
persistent such that, in the event of a failure and subsequent recovery, it can tell these objects 1041
whether to commit any state changes or roll them back. However, it is typically not responsible for 1042
the application object’s persistence. 1043

In a similar way, the WS-CF specification does not mandate a specific persistence and recovery 1044
mechanism. Rather it states what the requirements are on such a service in the event of a failure, 1045
and leaves it to individual implementers to determine their own recovery mechanisms. In a 1046
distributed application, where an individual activity may run on different implementations of the 1047
WS-CF during its lifetime, recovery is the responsibility of these different implementations. Each 1048
implementation may perform recovery in a completely different manner, forming recovery 1049
domains. 1050

Note, failure recovery semantics are strongly tied to the protocol that the coordinator supports. As 1051
such, information about for how long a coordinator must remember failures and their participants 1052
cannot be mandated by this specification. It is important that the contract that exists between 1053
coordinator and participant is defined by the implementer of the coordination protocol, especially 1054
in the case of failures. It is this contract that will be used by both the coordinator and participant to 1055
interpret responses to the recovery protocol. 1056

Unlike in a traditional transactional system, where crash recovery mechanisms are only 1057
responsible for guaranteeing consistency of object data, applications that use Coordination 1058

 33

Service’s will typically also require the ability to recover the activity structure that was present at 1059
the time of the failure, enabling the application to progress onwards. 1060

Some of the recovery requirements are outlined below: 1061

application logic: the logic required to drive the activities during normal runtime is required 1062
during recovery in order to drive any in-flight activities to application specific consistency. Since it 1063
is the application level that imposes meaning on Participants and messages, it is predominately 1064
the application that is responsible for driving recovery. 1065

application object consistency: the states of all application objects must be returned to some 1066
form of application specific consistency after a failure. 1067

The following roles are defined to assist in recovery; the message interactions are shown in 1068
Figure 16: 1069

RecoveryCoordinator: this service is used to drive recovery on behalf of a participant. It 1070
supports the recover and getStatus messages. The RecoveryParticipant endpoint address is 1071
propagated on all of these messages for call-back results. 1072

RecoveryParticipant: this service is used to return the recovery information to a recovering 1073
participant via call-backs. It supports the recovered, status, unknownCoordinator, wrongState and 1074
generalFault messages. 1075

recover 1076

This operation is used by participants that have previously successfully registered with a 1077
coordinator. When a participant fails and subsequently recovers it may not be able to recover at 1078
the same address that it used to enlist with the coordinator. The recover operation allows the 1079
participant to inform that coordinator that the participant has moved from the original address to a 1080
new address. It may also be used to start recovery operations by the coordinator. 1081

If successful, the recoverResponse message is sent to the RecoveryParticipant along with the 1082
current status of the transaction. This status may be used by the recovering participant to perform 1083
recovery, although this will depend upon the coordination protocol in use. For example, if the 1084
participant was enrolled in a presumed-abort transaction protocol and recover indicated that the 1085
transaction no longer exists, then the participant can cancel any work it may be controlling. 1086

If the coordinator cannot be located, then the unknownCoordinator message is sent back. 1087

If the status of the coordinator is such that recovery is not allowed at this time, the wrongState 1088
message is sent to the RecoveryParticipant by the coordinator. 1089

getStatus 1090

The status of the coordinator may be obtained by sending the getStatus message to the 1091
coordinator. The status, which may be one of the status values specified by the CTXContext 1092
Service, or may be specific to the coordination protocol, identified by its QName, is returned to 1093
the RecoveryParticipant via the status message. 1094

34

 1095
Figure 16, Participant recovery. 1096

The RecoveryCoordinator and RecoveryParticipant interfaces are presented in Figure 17. 1097

<wsdl:portType name="RecoveryCoordinatorPortType"> 1098
 <wsdl:operation name="recover"> 1099
 <wsdl:input message="tns:RecoverMessage"/> 1100
 </wsdl:operation> 1101
 <wsdl:operation name="getStatus"> 1102
 <wsdl:input message="tns:GetStatusMessage"/> 1103
 </wsdl:operation> 1104
</wsdl:portType> 1105
<wsdl:portType name="RecoveryParticipantPortType"> 1106
 <wsdl:operation name="recovered"> 1107
 <wsdl:input message="tns:RecoveredMessage"/> 1108
 </wsdl:operation> 1109
 <wsdl:operation name="status"> 1110
 <wsdl:input message="tns:StatusMessage"/> 1111
 </wsdl:operation> 1112
 <wsdl:operation name="unknownCoordinator"> 1113
 <wsdl:input message="tns:UnknownCoordinatorFaultMessage"/> 1114
 </wsdl:operation> 1115
 <wsdl:operation name="wrongState"> 1116
 <wsdl:input message="asw:WrongStateFaultMessage"/> 1117
 </wsdl:operation> 1118
 <wsdl:operation name="generalFault"> 1119
 <wsdl:input message="tns:GeneralFaultMessage"/> 1120
 </wsdl:operation> 1121
</wsdl:portType> 1122

Figure 17, WSDL portType Declarations for RecoveryParticipant and RecoveryCoordinator Roles 1123

 35

6Roles & Responsibilities 1124

With reference to Figure 18, the following section describes the roles and responsibilities specific 1125
to the WS-CF architecture. 1126

 WSCF

������������������������������
������������������������������
������������������������������
������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������

Coordinator Participant

Coordination protocol messages Participants

 XML
Message Set

Coordination
Framework Coordination

Framework

Application WebService

Coordination Service

SOAP SOAP

WSDL for Coordination
Service and Activity Service
to communicate.

WSDL

XML -
Signal
Message
Definition

Context
(XML)
included on
application flow or
service flows

�������
�������

High Level Service
High Level Service

��������
��������

�������
�������

�������
�������

Demarcation API

 1127

Figure 18, WS-CF components. 1128

6.1Coordination Service Activity Lifecycle Service provider 1129

This Web service ties into the WS-CTXContext and allows the application to define the beginning 1130
and ending points of a coordinated activity and to direct the outcome. The scope of an activity 1131
becomes the scope of a coordinated interaction. The relationship between the ALS and the 1132
coordination service is not mandated by WS-CF. 1133

6.2Coordination Service Provider 1134

The coordination service provider supplies an implementation of a completion processing facility 1135
that provides a means to orchestrate a number of tasks that have a common interest. Examples 1136
of such a coordination service include usage patterns for transactional activity (e.g., an 1137
OMG/OTS or Java/JTS Transaction Service implementation), extended/relaxed transactional 1138
activity (e.g., an OMG/OTS Additional Structuring Mechanism implementation to support other 1139
forms of processing such as long-running, collaboration or real-time activities) and other 1140
behaviors (including non-transactional groupings). 1141

The definition of a coordination service supplies the following: 1142

Protocol: Defines the characteristics of a coordination service and the contracts & obligations for 1143
the participants of an activity. 1144

36

6.3Web Service Provider 1145

The Web Service provider (or the resources associated with the Web Service) need to provide 1146
the following: 1147

A Participant implementation to respond to the coordination messages from a Coordination 1148
Service implementation. It is envisaged that Participants are interchangeable or pluggable to 1149
provide differing levels of Quality of Service depending on the Coordination Service utilized for an 1150
activity. 1151

Support the Participant API’s (interface between CTXContext Service and Participant). It is the 1152
Participant that is the coordinated counterpart for the service that enlisted it with the coordinator. 1153
Obviously a service may act as a Participant, though this is not a requirement. 1154

 1155

 37

7Example 1156

Workflow systems with scripting facilities for expressing the composition of an activity (a business 1157
process) offer a flexible way of building application specific extended transactions. In this section 1158
we describe how WS-CF can be utilized for coordinating workflow activities. In this example, the 1159
coordinator starts new activities to perform units of work and eventually receives the results. As 1160
such, each Participant drives the lifecycle of an activity. 1161

The coordinator-participant interaction protocol three messages, “start”, “start_ack”, “outcome”. 1162

start: the message is sent from a “parent” activity to a “child” activity, to indicate that the “child” 1163
activity should start (via an AssertionType). The message may contain additional information 1164
required to parameterize the starting of the activity (workflow task). 1165

start_ack: this AssertionType is sent from a “child” activity to a “parent” activity, as the result of a 1166
“start” message, to acknowledge that the “child” activity has started. 1167

outcome: this message is sent from a “child” activity to a “parent” activity, to indicate that the 1168
“child” activity has completed (via setResponse). The AssertionType may contain information 1169
about how the activity terminated, e.g., whether or not it completed successfully. 1170

The interaction depicted in Figure 19is activity a coordinating the parallel execution of b and c 1171
followed by d. Whenever a child activity is started the parent activity registers a Participant with it 1172
that is used to deliver the “outcome” to the parent. 1173

 a:Activity c:Activity d:Activity b:Activity

“start”

“start”

“start”

“outcome”

“outcome”

“outcome”

“start_ack”

“start_ack”

“start_ack”

 1174
Figure 19, Workflow coordination. 1175

38

8Issues 1176

Other issues that will need to be considered when implementing many business transactions 1177
include: 1178

Security and confidentiality: any business transaction involving buying or selling items, whether 1179
they be hotel rooms or newspapers, requires guarantees that the buyer/seller is who they appear 1180
to be, and that no one can “snoop” the connection and obtain information they are not entitled to. 1181

Audit trail: maintaining a log of the actions performed during a business transaction can be 1182
useful for a number of reasons, not least that of non-repudiation in the case of legal action. 1183

Protocol completeness guarantee: even in the presence of failures, the correctness guarantee 1184
for the application relies upon the structure of the application activity being followed. The 1185
information about which activity to invoke when and under what circumstances must reside in, for 1186
example, a highly available repository, such that failure of the original “controller” (that entity 1187
which was responsible for parsing and driving the activities) does not cause the activity to stop, or 1188
for branches of it to be ignored. 1189

Quality of service: some Web Services may support different types of extended transaction 1190
model as well as different communication protocols. The selection of which model to use may 1191
depend upon quality of service requirements. 1192

How these fit into the WS-CF will be one of the areas of future research and development. 1193

 1194

 39

5 References 1195

[1] OMG, Additional Structuring Mechanisms for the OTS Specification, September 2000, 1196
document orbos/2000-04-02. 1197

[2] WSDL 1.1 Specification. See http://www.w3.org/TR/wsdlhttp://www.w3.org/TR/wsdl 1198

[3] OASIS Web Services Context Specification, 1199

[4] 1200

