

 1

Web Services Coordination 2

Framework Specification (WS-CF) 3

Committee Draft 0.2 4
 5

Version created 1 August 2005 6
 7

Editors 8
Mark Little (mark.little@arjuna.com) 9
Eric Newcomer (eric.newcomer@iona.com) 10
Greg Pavlik (greg.pavlik@oracle.com) 11

 12

 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
Copyright © 2005 The Organization for the Advancement of Structured Information 36

Standards [Appendix B] 37

Deleted: 1 August 200524
May 2005

mailto:mark.little@arjuna.com
mailto:eric.newcomer@iona.com
mailto:greg.pavlik@oracle.com

Abstract 38

OASIS Web Services Composite Application Framework (WS-CAF) provides a set of modular 39
and composable service definitions to facilitate the construction of applications that combine 40
multiple services together in composite applications. The fundamental capability offered by the 41
WS-Coordination Framework specification is the ability to register a web service as a participant 42
in some kind of domain specific function. An example scenario may be to register with a 43
publication-subscription topic to receive a stream of messages asynchronously. While it is 44
expected that the vast majority of protocols will involve some form of signaling to registered 45
services via SOAP messages, this signaling is not a part of the model itself. Monitoring protocols, 46
for example, may express interest in participation in some interaction semantic without any 47
subsequent signaling to registered services; messaging protocols may use an optimized channel 48
based on a native MOM protocol for message distribution. 49
WS-Context provides a late binding session model for the web services environment. SOAP 50
messages that are to be processed within the scope of an activity contain Context headers, 51
uniquely identifying a single activity. WS-Coordination Framework extends the session model for 52
protocols that require group membership paradigms by defining a Registration Context Type. The 53
Registration Context Type extends the basic context type and provides a Web service reference 54
to a Registration Service. Registration in the context of an activity adds the registered service to 55
an activity group. Membership in the group may be used to drive some group specific protocol 56
(e.g. data replication) over the lifetime of the activity group or may be used to coordinate signals 57
associated with a termination protocol (e.g., two phase commit). The purpose and semantics of 58
activity group membership are protocol specific. 59
Coordination is a requirement present in a variety of different aspects of distributed applications. 60
For instance, workflow, atomic transactions, caching and replication, security, auctioning, and 61
business-to-business activities all require some level of what may be collectively referred to as 62
“coordination.” For example, coordination of multiple Web services in choreography may be 63
required to ensure the correct result of a series of operations comprising a single business 64
transaction. Coordination protocols may be layered on WS-Coordination Framework. 65

 66

 67

Deleted: Web Services
Coordination Framework
Specification (WS-CF)¶
Editors draft version 0.4¶
3 May 2005¶

Deleted: -

Deleted: is

Deleted: ¶
 ¶

Table of contents 68

1 Note on terminology..4 69
1.1 Namespace...4 70

1.1.1 Prefix Namespace..4 71
1.2 Referencing Specifications ..4 72
1.3 Precedence of schema and WSDL ..4 73

2 Introduction...5 74
3 WS-CF architecture ..5 75

3.1 Overview...5 76
3.2 Invocation of Service Operations ...6 77
3.3 Relationship to WSDL ...7 78
3.4 Referencing and addressing conventions ..8 79

4 WS-CF components..9 80
4.1 Interposition ..9 81
4.2 Participant Service ..9 82
4.3 Registration Service ..9 83

4.3.1 Service-to-Registration interactions ..10 84
addParticipant...10 85
removeParticipant ...10 86
replaceParticipant ...11 87
replaceRegistration ...11 88
getParticipants ..11 89
getStatus ..12 90
4.3.2 Registration Context Type ..14 91
4.3.3 WS-CF faults..15 92
Invalid Protocol ...15 93
Duplicate Participant ...16 94
Participant Not Found ...16 95
Transient Fault ..16 96
Unknown Service ..16 97
4.3.4 Message exchanges ..16 98

5 Conformance considerations...18 99
6 References ...19 100
Appendix A. Acknowledgements..20 101
Appendix B. Notices ..21 102

 103

 104

Deleted: 5

Deleted: 5

Deleted: 9

Deleted: 10

Deleted: 11

Deleted: 11

Deleted: 12

Deleted: 14

Deleted: 15

Deleted: 15

Deleted: 15

Deleted: 16

Deleted: 16

Deleted: 16

Deleted: 16

Deleted: 18

Deleted: 19

Deleted: 20

Deleted: 21

Deleted: 1 Note on
terminology 4¶
1.1 Namespace 4¶
1.1.1 Prefix Namespace 4¶
1.2 Referencing
Specifications 4¶
2 Introduction 5¶
3 WS-CF architecture 6¶
3.1 Overview 6¶
3.2 Invocation of Service
Operations 6¶
3.3 Relationship to WSDL 7¶
3.4 Referencing and
addressing conventions 8¶
4 WS-CF components 10¶
4.1 Participant Service 10¶
4.2 Registration Service 11¶
4.2.1 Service-to-Registration
interactions 11¶
addParticipant 11¶
removeParticipant 12¶
recoverParticipant 12¶
recoverRegistration 13¶
getStatus 13¶
4.2.2 Registration Context 15¶
4.3 Interposition 16¶
5 References 17¶

4

1 Note on terminology 105

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 106
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 107
interpreted as described in RFC2119 [2]. 108
Namespace URIs of the general form http://example.org and http://example.com represents some 109
application-dependent or context-dependent URI as defined in RFC 2396 [3]. 110

1.1 Namespace 111

The XML namespace URI that MUST be used by implementations of this specification is: 112

http://docs.oasis-open.org/wscaf/2005/07/wscf 113

1.1.1 Prefix Namespace 114

Prefix Namespace

wscf http://docs.oasis-open.org/wscaf/2005/07/wscf

wsctx http://docs.oasis-open.org/wscaf/2005/06/wsctx

ref http://docs.oasisopen.org/wsrm/2004/06/reference-1.1

wsdl http://schemas.xmlsoap.org/wsdl/

xs http://www.w3.org/2001/XMLSchema

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd

tns http://docs.oasis-open.org/wscaf/2005/07/wscf

1.2 Referencing Specifications 115

One or more other specifications, such as (but not limited to) WS-ACID may reference the WS-116
CF specification. The usage of optional items in WS-CF is typically determined by the 117
requirements of such as referencing specification. 118
A referencing specification generally defines the protocol types based on WS-CF. Any application 119
that uses WS-CF must also decide what optional features are required. For the purpose of this 120
document, the term referencing specification covers both formal specifications and more general 121
applications that use WS-CF. 122

1.3 Precedence of schema and WSDL 123

Throughout this specification, WSDL and schema elements may be used for illustrative or 124
convenience purposes. However, in a situation where those elements within this document differ 125
from the separate WS-CF WSDL or schema files, it is those files that have precedence and not 126
this specification. 127
 128
 129

Formatted: Bullets and
Numbering

Deleted: Namespace URIs of
the general form "some-URI"
represents some application-
dependent or context-
dependent URI as defined in
RFC 2396 [3].¶

Deleted: 2

Deleted: 2

Deleted: 4

Deleted: 9

Deleted: d

Deleted: targetNamespace

Deleted: TXM

http://example.org/
http://example.com/

5

2 Architecture 130

Many protocols in distributed systems require software agents to perform a registration function to 131
participate in the protocol. Examples of protocols that require explicit registration functions include 132
notifications, transactions, virtually synchronous replica models based on group membership 133
paradigms, and security. WS-Coordination Framework provides a WSDL interface for registering 134
Web services as participants in arbitrary protocols. This is supported through the Registration 135
Service. 136
Context information can flow implicitly (transparently to the application) within normal messages 137
sent to the participants, or it may be an explicit action on behalf of the client/service. This 138
information is specific to the type of activity being performed and may identify registration 139
endpoints, the other participants in an Activity, recovery information in the event of a failure, etc. 140
Furthermore, it may be required that additional application specific context information flow to 141
these participants or the services which use them. WS-Coordination Framework introduces a 142
wscf:RegistrationContextType that builds on the context type defined in WS-Context to provide 143
additional information required to enlist as a participant in an activity. Applications may use the 144
registration context type by extension to define collections of services called “activity groups”. 145
WS-Coordination Framework provides support for protocols that depend on group membership 146
paradigms, such as coordination and security. 147
Coordination is an integral part of any distributed system, but there is no single type of 148
coordination protocol that can suffice for all composite applications. This specification defines a 149
common Web Services Coordination Framework (WS-CF) that allows users and services to tie 150
into it and customize it for each service or application. A suitably designed coordination 151
framework should provide enough flexibility and extensibility to its users that allow it to be 152
tailored, statically or dynamically, to fit any requirement. 153
This framework builds upon WS-Context and supports WS-ACID, WS-LRA and WS-BP, as well 154
as other Web Service standards in the area of choreography, workflow and transactions. In the 155
case of transactions, for example, unlike other attempts that are solutions to one specific problem 156
area and are therefore not applicable to others, different extended transaction models can be 157
relatively easily developed to suit specific domains, and interoperability across transaction 158
protocols supported. 159
The following sections outline the architecture of WS-CF, describing the components that 160
implementations provide and those that are required from users. 161

2.1 Overview 162

WS-CF builds upon the activity concept defined in the WS-Context specification [ref] by narrowing 163
the notion of an activity to that of an activity group: such a group contains members (participants) 164
that will be driven through the same protocol. WS-CF says nothing about specifics of such 165
coordination protocols and when or where participants may join and leave: this is left up to 166
referencing specifications to define. 167
The group membership facilities are used to build and manage relationships between services. 168
For example, an activity group can be used as the basic definition of a participant set in a 169
coordination protocol. The group paradigm is central to coordination, whether it is coordinating 170
the outcome of distributed transactions, security domains, replica consistency, cache coherency 171
etc. Because WS-CF is meant to support a range of coordination protocols, each possessing 172
different protocol messages and potentially different coordinator interfaces, WS-CF does not 173
define how or when coordination occurs. This is left to referencing specifications. 174
The activity group is tied to an underlying WS-Context activity such that their lifetimes coincide. 175
Web Services that wish to join or leave the group make use of the Registration Service; the 176
membership of the group may also be obtained from the Registration Service. 177

Formatted: Bullets and
Numbering

Deleted: Introduction

Deleted: TXM

Deleted: <#>WS-CF
architecture¶

6

• Specific implementations of the Registration Service MAY impose restrictions on how and 178
when group membership changes may occur; these are outside the scope of the WS-CF 179
specification. In addition, some uses of group membership MAY place constraints on 180
consistent views of group membership, particularly in the presence of member failures. 181
Ensuring this kind of view membership consistency is left to referencing specifications. 182

The main components involved in using and defining the WS-CF are: 183
• A Registration service, which provides an interface for the registration of participants within a 184

specific protocol. 185
• A Participant service, which defines the operation or operations that are performed as part of 186

the protocol. It is possible to register participants that have no protocol specific callback 187
operations. 188

• A Registration Context Type, which allows participants to join an activity group. 189
This specification allows group membership to be managed with reference to a specific context; 190
the relationship between different contexts is defined by the WS-Context specification; specific 191
protocols based on activity groups may support subgroups and interposed activities. Activity 192
groups are particularly useful for structuring relationships in the kinds of coordination protocols 193
found in transaction systems and data replication/consistency protocols for clustered services. 194
WS-CF supports the notion of interposition: where a Participant Service that is enlisted with a 195
Registration Service also behaves as a Registration Service to other Participant Services. In this 196
way, WS-CF supports the building of graphs and trees by the addition of participants to an activity 197
structure that are themselves registration endpoints. 198
The technique of interposition uses proxies (or subordinates). Each domain that imports a WS-CF 199
context MAY create a subordinate registration service that enrolls with the imported registration 200
service as though it were a participant. This specification does not prescribe how and when this 201
may occur. Interposition then requires the importing domain to use a different context when 202
communicating with services and participants that are required to register with the subordinate 203
registration service, as shown in Figure 33. 204

Participant/
proxy-registration
service

Registration Service

Participant

 205

Figure 1, Participant coordinator. 206

This specification does not define what are allowable forms of graphs that may be created using 207
interposition. Such definitions are the responsibility of referencing specifications. 208

2.2 Invocation of Service Operations 209

How application services are invoked is outside the scope of this specification: they MAY use 210
synchronous or asynchronous message passing. 211

Formatted: Bullets and
Numbering

Deleted: may

Deleted: may

Deleted: 1

Deleted: ¶

7

Irrespective of how remote invocations occur, context information related to the sender’s activity 212
needs to be referenced or propagated. This specification determines the format of the context, 213
how it is referenced, and how a context may be created. 214
In order to support both synchronous and asynchronous interactions, the components are 215
described in terms of the behavior and the interactions that occur between them. All interactions 216
are described in terms of correlated messages, which a referencing specification MAY abstract at 217
a higher level into request/response pairs. 218
Faults and errors that may occur when a service is invoked are communicated back to other Web 219
services in the activity via SOAP messages that are part of the standard protocol. To achieve this, 220
the fault mechanism of the underlying SOAP-based transport is used. For example, if an 221
operation fails because no activity is present when one is required, then the callback interface will 222
receive a SOAP fault including type of the fault and additional implementation specific information 223
items supported the SOAP fault definition. WS-Coordination Framework specific fault types are 224
described for each operation. A fault type is communicated as an XML QName; the prefix 225
consists of the WS-Coordination Framework namespace and the local part is the fault name listed 226
in the operation description. 227

Note, a transientFault message is produced when the implementation finds it 228
cannot successfully execute the requested operation at that time from some 229
temporary reason. This reason may be implementation or referencing 230
specification specific. A receiver of a transientFault is free to retry the operation 231
which originally generated it on the assumption that eventually a different 232
response will be produced. Sub-types of transientFault MAY be further defined 233
using the fault model described which can allow for the communication of more 234
specific information on the type of fault. 235

As long as implementations ensure that the on-the-wire message formats are compliant with 236
those defined in this specification, how the end-points are implemented and how they expose the 237
various operations (e.g., via WSDL [1]) is not mandated by this specification. However, a 238
normative WSDL binding is provided by default in this specification. 239

Note, this specification does not assume that a reliable message delivery 240
mechanism has to be used for message interactions. As such, it MAY be 241
implementation dependant as to what action is taken if a message is not 242
delivered or no response is received. 243

2.3 Relationship to WSDL 244

Where WSDL is used in this specification it uses one-way messages with callbacks. This is the 245
normative style. Other binding styles are possible (perhaps defined by referencing specifications), 246
although they may have different acknowledgment styles and delivery mechanisms. It is beyond 247
the scope of WS-Coordination Framework to define these styles. 248

Note, conformant implementations MUST support the normative WSDL defined 249
in the specification where those respective interfaces are required. WSDL for 250
optional components in the specification is REQUIRED only in the cases where 251
the respective components are supported. 252

For clarity WSDL is shown in an abbreviated form in the main body of the document: only 253
portTypes are illustrated; a default binding to SOAP 1.1-over-HTTP is also assumed as per [1]. 254

Formatted: Bullets and
Numbering

Deleted: ntext

Deleted: ntext

Deleted: How application
services are invoked is outside
the scope of this specification;
however, context information
related to the sender’s activity
needs to be referenced and/or
propagated. ¶
Irrespective of how remote
invocations occur, context
information related to the
sender’s activity needs to be
referenced or propagated. This
specification determines the
format of the context, how it is
referenced, and how a context
may be created.¶
In order to support both
synchronous and
asynchronous interactions, the
components are described in
terms of the behavior and the
interactions that occur between
them. All interactions are
described in terms of
correlated messages, which a
referencing specification MAY
abstract at a higher level into
request/response pairs. ¶
Faults and errors that may
occur when a service is
invoked are communicated
back to other Web services in
the activity via SOAP
messages that are part of the
standard protocol. The fault
mechanism of the underlying
SOAP-based transport isn’t
used. For example, if an
operation fails because no
activity is present when one is
required, then it will be valid for
the InvalidContextFault
message to be received by the
response service. To
accommodate other errors or
faults, all response service
signatures have a generalFault
operation as well as a
transientFault operation.¶

8

2.4 Referencing and addressing conventions 255

There are multiple mechanisms for addressing messages and referencing Web services currently 256
proposed by the Web services community. This specification defers the rules for addressing 257
SOAP messages to existing specifications; the addressing information is assumed to be placed in 258
SOAP headers and respect the normative rules required by existing specifications. 259
 260
However, the Coordination Framework message set requires an interoperable mechanism for 261
referencing Web Services. For example, context structures may reference the service that is used 262
to manage the content of the context. To support this requirement, WS-CAF has adopted an open 263
content model for service references as defined by the Web Services Reliable Messaging 264
Technical Committee [5]. The schema is defined in [6][7] and is shown in Figure 221. 265

 <xs:complexType name="ServiceRefType"> 266
 <xs:sequence> 267
 <xs:any namespace="##other" processContents="lax"/> 268
 </xs:sequence> 269
 <xs:attribute name="reference-scheme" type="xsd:anyURI" 270
 use="optional"/> 271
 </xs:complexType> 272

Figure 2, service-ref Element 273
The ServiceRefType is extended by elements of the context structure as shown in Figure 3322. 274

<xs:element name=”context-manager” type=”ref:ServiceRefType”/> 275

Figure 3, ServiceRefType example. 276
Within the ServiceRefType, the reference-scheme is the namespace URI for the referenced 277
addressing specification. For example, the value for WSRef defined in the WS-MessageDelivery 278
specification [4] would be http://www.w3.org/2004/04/ws-messagedelivery. The value for WSRef 279
defined in the WS-Addressing specification [8] would be 280
http://schemas.xmlsoap.org/ws/2004/08/addressing. The reference scheme is optional and need 281
only be used if the namespace URI of the QName of the Web service reference cannot be used 282
to unambiguously identify the addressing specification in which it is defined. 283
Messages sent to referenced services MUST use the addressing scheme defined by the 284
specification indicated by the value of the reference-scheme element if present. Otherwise, the 285
namespace URI associated with the Web service reference element MUST be used to determine 286
the required addressing scheme. 287

Note, it is assumed that the addressing mechanism used by a given 288
implementation supports a reply-to or sender field on each received message so 289
that any required responses can be sent to a suitable response endpoint. This 290
specification requires such support and does not define how responses are 291
handled. 292

To preserve interoperability in deployments that contain multiple addressing schemes, there are 293
no restrictions on a system, beyond those of the composite services themselves. However, it is 294
RECOMMENDED where possible that composite applications confine themselves to the use of 295
single addressing and reference model. 296
Because the prescriptive interaction pattern used by WS-Coordination Framework is based on 297
one-way messages with callbacks, it is possible that an endpoint may receive an unsolicited or 298
unexpected message. The recipient is free to do whatever it wants with such messages. 299

Formatted: Bullets and
Numbering

Deleted: Figure 2Figure
1Figure 1

Inserted: Figure 2Figure 1

Deleted: d

Deleted: d

Deleted: d

Deleted: d

Deleted: d

Deleted: d

Deleted: <xsd:schema
targetNamespace="http:/
/docs.oasis-
open.org/wsrm/2004/06/r
eference-1.1.xsd"
xmlns:xsd="http://www.w
3.org/2001/XMLSchema"
elementFormDefault="qua
lified"
attributeFormDefault="u
nqualified"
version="1.1">¶

 <xsd:complexType
name="ServiceRefType">¶

 <xsd:sequence>¶

 <xsd:any
namespace="##other"
processContents="lax"
/> ¶

 </xsd:sequence>¶

 <xsd:attribute
name="reference-scheme"
type="xsd:anyURI"
use="optional" /> ¶

 </xsd:complexType¶

Deleted: 2

Inserted: 2

Deleted: 1

Deleted: Figure 3Figure
2Figure 2

Inserted: Figure 3Figure 2

Deleted: d

Deleted: 322

Inserted: 32

Deleted: A service that
requires a service reference
element MUST use the
mustUnderstand attribute for
the SOAP header element
within which it is enclosed and
MUST return a
mustUnderstand SOAP fault if
the reference element isn’t ... [1]

http://schemas.xmlsoap.org/ws/2004/08/addressing

9

3 WS-CF components 300

WS-CF provides three components that may be used to build collaborative protocols and 301
complex composite applications: the Participant service, the Registration service, and the 302
Registration Context Type. The components are described in terms of their behavior and the 303
interactions that occur between them. All interactions are described in terms of message 304
exchanges, which an implementation may abstract at a higher level into request/response pairs 305
or RPCs, for example. Like WS-Context, the components are organized in a hierarchical 306
relationship, where individual components may be used without reference to higher-level 307
constructs that build on them. For example, the Registration and Participant services can be used 308
without reference to an activity group. 309

3.1 Participant Service 310

Many distributed protocols require software agents to enlist as participants within a protocol to 311
achieve an application visible semantic. For example, participants may enlist in a transaction 312
protocol in order to receive messages at coordination points defined by the protocol. 313
A Participant will use coordination messages in a manner specific to the protocol and (optionally) 314
return a result of it having done so. For example, upon receipt of a specific message, a 315
Participant could commit any modifications to a database when it receives one type of message, 316
or undo them if it receives another type. In some cases (e.g., monitoring protocols) Participants 317
may register for protocols that do not include any subsequent signaling. In other cases, such as 318
publish-and-subscribe scenarios, Participants may register for a stream of messages that have 319
no fixed semantic content with respect to the protocol itself. In general, rules governing the 320
subsequent interaction between Participants and Registration endpoints are defined by 321
specifications that make use of WS-CF. As such, there is no WSDL interface defined for the 322
Participant Service; it is an abstract entity that is given concrete representation by referencing 323
specifications and is only discussed within the scope of this specification for clarity of the overall 324
model concept. 325

3.2 Registration Service 326

In order to become a Participant in a protocol, a service must first enlist with a Registration 327
service. The protocol that the Registration implementation uses will depend upon the type of 328
activity, application or service using the Registration service. For example, if Saga model is in use 329
then a compensation message may be required to be sent to Participants if a failure has 330
happened, whereas a coordinator for a strict transactional model may be required to send a 331
message informing participants to rollback. 332
How a Registration service for a specific protocol(s) is located or associated with the Context 333
Service is out of scope of this specification. A Registration service MAY identify the type of 334
protocol it supports using deployment specific mechanisms. 335
A Registration Service implementation provides support for the Registering Services to enlist 336
Participant services with a specific protocol semantic. Operations on the Registration service 337
MAY be implicitly associated with a Registration Context Type, i.e., it is propagated to the 338
Registration service in order to identify which activity group the Participant is interested in joining. 339
Services requiring protocols that rely explicitly on group membership like transactions or data 340
replication will require that the Registration service MUST be invoked with a subtype of the 341
Registration context. 342
In the following sections we shall discuss the different Registration service interactions and their 343
associated message exchanges. 344

Formatted: Bullets and
Numbering

Formatted: Bullets and
Numbering

Formatted: Bullets and
Numbering

Deleted: c

Deleted: <#>Interposition¶
WS-CF supports the notion of
interposition: where a
Participant Service that is
enlisted with a Registration
Service also behaves as a
Registration Service to other
Participant Services. In this
way, WS-CF supports the
building of graphs and trees by
the addition of participants to
an activity structure that are
themselves registration
endpoints.¶
The technique of interposition
uses proxies (or subordinates).
Each domain that imports a
WS-CF context MAY create a
subordinate registration
service that enrolls with the
imported registration service
as though it were a participant.
This specification does not
prescribe how and when this
may occur. Interposition then
requires the importing domain
to use a different context when
communicating with services
and participants that are
required to register with the
subordinate registration
service, as shown in Figure
3Figure 3.¶

Deleted: A Registration
Service implementation
provides support for the
Registering Services to enlist
Participant services with a
specific protocol semantic.
Operations on the Registration
service MAY be implicitly
associated with a Registration
context, i.e., it is propagated to
the Registration service in

... [2]

... [3]

10

3.2.1 Service-to-Registration interactions 345

These interactions define how a service (the Registering Service) may enlist or delist a 346
Participant (Service) with the Registration Service. The message exchanges are illustrated in 347
Figure 4544. They are factored into two different roles: 348
• Registration Service: this accepts the addParticipant, removeParticipant, replaceParticipant, 349

registrationReplaced, getParticipants and getStatus messages. All messages contain the 350
Registering Service endpoint for callback messages, although it is OPTIONAL as to whether 351
the Registration Service remembers these beyond a specific interaction. 352

• Registering Service: this accepts the participantAdded, participantRemoved, 353
participantReplaced, participantList, status, replaceRegistration messages. 354

addParticipant 355

This message is sent to the coordinator in order to register the specified Participant with the 356
protocol supported by the Registration service. A valid wscf:RegistrationContext MUST 357
accompany this message and the participant will be added to the activity group identified in the 358
context. This context MAY be passed by reference or by value. It is implementation dependant as 359
to whether any context information other than the basic reference values is required. If an invalid 360
wscf:RegistrationContext is used then an appropriate WS-Context error message MUST be 361
returned. 362
The protocol based on the RegistrationContextType may support multiple sub-protocols (e.g., 363
synchronizations that are executed prior to and after a two-phase commit protocol); in order to 364
define with which protocols to enlist the participant, the list of wscf:protocolType URIs may be 365
propagated in the message. The Registration Service MUST ensure that all protocols specified 366
are supported before any registration happened. If some of the protocols are not supported by the 367
Registration service then no registration occurs and the wscf:InvalidProtocol error message 368
MUST be sent to the Registering Service indicating which protocols were at fault. 369
Upon success, the Registration service calls back to the Registering Service with the 370
wscf:participantAdded message. Implementations MAY include in this message the unique 371
OPTIONAL endpoint reference for the Participant to use for further interactions. How and when 372
this endpoint reference should be used is outside the scope of this specification and is left to 373
referencing specifications to determine. For example, it may be used by the Participant to send 374
protocol specific coordination signals. 375
A referencing specification MAY decide to send the wsctx:InvalidState error message, for 376
example if the activity has begun completion, or has already completed when this operation is 377
attempted. 378
The termination of the activity group is triggered by the completion of the WS-Context service 379
activity. The relationship between activity groups and participant services is undefined following 380
the termination of an activity group. 381
If the same participant has been enrolled with the Registration service more than once and the 382
referencing specification does not allow this, then the wscf:DuplicateParticipant error message 383
is sent to the ServiceRespondant. How the registration of the same participant multiple times is 384
dealt with at the protocol level is outside the scope of this specification and is left to referencing 385
specifications to define, as the rules governing the protocol are defined by a referencing 386
specification 387

removeParticipant 388

This message causes the Registration service to delist the specified Participant. A valid 389
wscf:RegistrationContext MUST accompany this message to identify the activity group from 390
which the participant should be removed. This context MAY be passed by reference or by value. 391
It is implementation dependant as to whether any context information other than the basic 392

Formatted: Bullets and
Numbering

Deleted: Figure 5Figure
4Figure 4

Inserted: Figure 5Figure 4

Deleted: recoverParticipant

Deleted: registrationRecovere
d

Deleted: covered

Deleted: recoverRegistration

Deleted: ,

Deleted: generalFault,
wrongState,
duplicateParticipant,
invalidProtocol,
invalidParticipant, and
participantNotFound

Deleted: i

Deleted: ,

Deleted: including

Deleted: wrong

Deleted: A

Deleted: d

Deleted: RegistrationContext

11

reference values is required. If successful, the ParticipantRemoved message is sent to the 393
invoker. 394
If the Participant has not previously been registered with the Registration service for the specified 395
activity group, then it will send the wscf:ParticipantNotFound error message to the Registering 396
Service. 397
Removal of a participant need not be supported by the specific protocol and may also be 398
dependant upon where in the protocol the system is as to whether a referencing specification will 399
allow the participant to be removed. The rules governing removal of participants from participation 400
in a protocol or activity group are governed by referencing specifications. A referencing 401
specification MAY decide to send the wsctx:InvalidState error message if removal is disallowed; 402
for example, the activity has begun completion, or has already completed when this operation is 403
attempted. 404
In addition, some protocols may allow for Registration service to autonomously delist Participant 405
services. In this case, the Registration Service will send an unsolicited ParticipantRemoved 406
message to the service that was responsible for enlisting the Participant. 407

replaceParticipant 408

This operation is used by a participant that has previously successfully enlisted with a 409
Registration service: when the Participant fails and subsequently recovers it may not be able to 410
recover at the same address that it used to enlist with the Registration service. The 411
replaceParticipant operation allows the participant to inform the Registration service that it has 412
moved from the original address to a new address. It may also be used to start recovery 413
operations by the protocol engine. 414
A valid wscf:RegistrationContext MUST accompany this message in order to identify the group 415
in which the failed participant previously existed. This context MAY be passed by reference or by 416
value. It is implementation dependant as to whether any context information other than the basic 417
reference values is required. 418
If successful, the participantReplaced message is sent to the invoker. If the recovery handshake 419
occurs in the context of an activity, the message also contains the current status of the activity. 420
This status may be used by the recovering participant to perform local recovery operations, 421
although this will depend upon the protocol in use. For example, if the participant was enrolled in 422
a presumed-abort transaction protocol and recovery indicated that the transaction no longer 423
exists, then the participant can cancel any work it may be controlling. 424
If the coordinator cannot be located, then the wsctx:UnknownContext error message is sent 425
back. 426
If the status of the coordinator is such that recovery is not allowed at this time, the 427
wsctx:InvalidState error message is sent to the Registering Service by the coordinator. 428
If the Registration Service cannot deal with recovery of the participant for a temporary reason, the 429
wscf:TransientFault message is sent and the receiver MAY try again. 430

getParticipants 431

This operation returns the list of participants that have been enrolled with the activity group. A 432
valid wscf:RegistrationContext MUST accompany this message. This context MAY be passed 433
by reference or by value. It is implementation dependant as to whether any context information 434
other than the basic reference values is required. 435
If successful, the participantList message is sent to the Registering Service. 436
A referencing specification MAY decide to send the wsctx:InvalidState error message if the 437
Activity has begun completion, or has already completed when this operation is attempted. 438

Deleted: p

Deleted: wrong

Deleted: A

Deleted: recoverParticipant

Deleted: recoverParticipant

Deleted: RegistrationContext

Deleted:

Deleted: participantRecovere
d

Deleted: invalidActivityFault

Deleted: wrong

Deleted: t

Deleted: recoverRegistratio
n

Deleted: replaceRegistratio
n¶
This operation on the
Registering Service MAY be
used by a recovered
Registration Service to indicate
that it has recovered on a new
endpoint address. When a
Registration Service fails and
subsequently recovers it may
not be able to recover at the
same address that prior

Inserted: replaceRegistratio

Deleted: recoverRegistration

Deleted: replaceRegistration

Deleted: ransientFault error

Inserted: replaceRegistration

Inserted: wscf:Registration

Deleted: RegistrationContext

Deleted: information

Inserted: wscf:Registration

Deleted: RegistrationContext

Deleted: MUST accompany

Deleted: registrationRecovere

Deleted: registrationReplaced

Deleted: u

Inserted: registrationReplace

Inserted: wscf:U

Deleted: nknownService

Deleted: t

Inserted: error

Inserted: wscf:T

Inserted: error

Inserted: ¶

... [9]

... [13]

... [7]

... [14]

... [6]

... [11]

... [15]

... [12]

... [4]

... [8]

... [5]

... [10]

... [16]

12

The termination of the activity group is triggered by the completion of the WS-Context service 439
activity. The relationship between activity groups and participant services is undefined following 440
the termination of an activity group. 441

getStatus 442

The status of the activity group may be obtained by sending the getStatus message to the 443
recovery coordinator. A valid wscf:RegistrationContext MUST accompany this message. This 444
context MAY be passed by reference or by value. It is implementation dependant as to whether 445
any context information other than the basic reference values is required. 446
The status, which may be one of the status values specified by the Context Service, or may be 447
specific to the protocol, identified by its QName, is returned to the invoker via the status message. 448
GetStatus will return the same Status value that is returned by the getStatus operation on the 449
Context Service, assuming the queries occur at the same point in the activity lifecycle. 450

replaceRegistration 451

This operation on the Registering Service MAY be used by a recovered Registration Service to 452
indicate that it has recovered on a new endpoint address. When a Registration Service fails and 453
subsequently recovers it may not be able to recover at the same address that prior Registering 454
Services used to enlist with the Registration service. This OPTIONAL operation allows the 455
Registration Service to inform Registering Services that it has moved from the original address to 456
a new address. It may also be used to start recovery operations by the protocol engine. 457
The use of replaceRegistration SHOULD only be attempted when the Registration Service has 458
failed and recovered on another endpoint because to do otherwise MAY result in continued use of 459
stale wscf:RegistrationContext information elsewhere in the application; the context refers to 460
the old endpoint address for the Registration Service. 461
A valid wscf:RegistrationContext MUST accompany this message. This context MAY be 462
passed by reference or by value. It is implementation dependant as to whether any context 463
information other than the basic reference values is required. 464
If successful, the registrationReplaced message is sent to the Registration Service. If the 465
recovery handshake occurs in the context of an activity, the message also contains the current 466
status of the activity. This status may be used by recipients to perform local recovery operations, 467
although this will depend upon the protocol in use 468
If the Registering Service cannot be located, then the wscf:UnknownService error message is 469
sent back. 470
If the Registering Service cannot deal with recovery of the Registration Service for a temporary 471
reason, the wscf:TransientFault error message is sent and the receiver MAY try again. 472
 473
 474

13

 475

Figure 4, Service-to-coordinator interactions. 476
The Registration Service and Registering Service roles are elucidated in WSDL form in Figure 477
5655. 478

<wsdl:portType name="RegistrationServicePortType"> 479
 <wsdl:operation name="addParticipant"> 480
 <wsdl:input message="tns:AddParticipantMessage"/> 481
 </wsdl:operation> 482
 <wsdl:operation name="removeParticipant"> 483
 <wsdl:input message="tns:RemoveParticipantMessage"/> 484
 </wsdl:operation> 485
 <wsdl:operation name="replaceParticipant"> 486
 <wsdl:input message="tns:ReplaceParticipantMessage"/> 487
 </wsdl:operation> 488
 <wsdl:operation name="registrationReplaced"> 489

Deleted:

Deleted: 544

Inserted: 54

Comment: All of this needs
changing.

Deleted: Figure 6Figure
5Figure 5

Inserted: Figure 6Figure 5

Deleted: recoverParticip
ant

Deleted: RecoverParticip
antMessage

Deleted: registrationRec
overed

14

 <wsdl:input message="tns:RegistrationReplacedMessage"/> 490
 </wsdl:operation> 491
 <wsdl:operation name="getStatus"> 492
 <wsdl:input message="tns:GetStatusMessage"/> 493
 </wsdl:operation> 494
 <wsdl:operation name="getParticipants"> 495
 <wsdl:input message="tns:GetParticipantsMessage"/> 496
 </wsdl:operation> 497
</wsdl:portType> 498
<wsdl:portType name="RegisteringServicePortType"> 499
 <wsdl:operation name="participantAdded"> 500
 <wsdl:input message="tns:ParticipantAddedMessage"/> 501
 </wsdl:operation> 502
 <wsdl:operation name="participantRemoved"> 503
 <wsdl:input message="tns:ParticipantReplacedMessage"/> 504
 </wsdl:operation> 505
 <wsdl:operation name="participantReplaced"> 506
 <wsdl:input message="tns:ParticipantRecoveredMessage"/> 507
 </wsdl:operation> 508
 <wsdl:operation name="replaceRegistration"> 509
 <wsdl:input message="tns:ReplaceRegistrationMessage"/> 510
 </wsdl:operation> 511
 <wsdl:operation name="status"> 512
 <wsdl:input message="tns:StatusMessage"/> 513
 </wsdl:operation> 514
 <wsdl:operation name="participantList"> 515
 <wsdl:input message="tns:ParticipantListMessage"/> 516
 </wsdl:operation> 517
</wsdl:portType> 518

Figure 5, WSDL portType Declarations for Registration Service and Registering Service Roles. 519

3.2.2 Registration Context Type 520

In order to support registration in activity groups it is necessary for the participants to be made 521
aware of the Registration Service associated with the activity group via some mechanism. In a 522
distributed environment, this requires information about the Registration service (essentially its 523
network endpoint) to be available to remote participants. WS-Context provides mechanisms for 524
propagating basic activity context information between services. The information contained within 525
this basic activity context is the unique activity identity and optional information associated with 526
demarcation of the activity lifecycle and management of the context. WS-Coordination 527
Framework extends the wsctx:ContextType defined in WS-Context to allow services to register 528
as Participants in an activity. The wscf:RegsitrationContextType is shown in Figure 5. 529
 530

<xs:complexType name="RegistrationContextType"> 531
 <xs:complexContent> 532
 <xs:extension base="wsctx:ContextType"> 533
 <xs:sequence> 534
 <xs:element name="registration-service" type="ref:ServiceRefType" 535
 minOccurs="1"/> 536
 <xs:element name="sub-protocol" type="xs:anyURI" 537
 maxOccurs="unbounded"/> 538
 <xs:element name="participant-service" type="ref:ServiceRefType" 539
 maxOccurs="unbounded"/> 540
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/> 541
 </xs:sequence> 542
 </xs:extension> 543
 </xs:complexContent> 544
</xs:complexType> 545

Formatted: Bullets and
Numbering

Deleted: RegistrationRec
overedMessage

Deleted: ParticipantRemo
vedMessage

Deleted: participantReco
vered

Deleted: recoverRegistra
tion

Deleted: RecoverRegistra
tionMessage

Deleted:
<wsdl:operation
name="generalFault">¶

 <wsdl:input
message="tns:GeneralFau
ltMessage"/>¶

 </wsdl:operation>¶

 <wsdl:operation
name="wrongState">¶

 <wsdl:input
message="asw:WrongState
FaultMessage"/>¶

 </wsdl:operation>¶

 <wsdl:operation
name="duplicateParticip
ant">¶

 <wsdl:input
message="tns:DuplicateP
articipantFaultMessage"
/>¶

 </wsdl:operation>¶

 <wsdl:operation
name="invalidProtocol">¶

 <wsdl:input
message="tns:InvalidPro
tocolFaultMessage"/>¶

 </wsdl:operation>¶

 <wsdl:operation
name="invalidParticipan
t">¶

 <wsdl:input
message="tns:InvalidPar
ticipantMessage"/>¶

 </wsdl:operation>¶

 <wsdl:operation
name="participantNotFou
nd">¶

 <wsdl:input
message="tns:Participan
tNotFoundFaultMessage"/
>¶

 </wsdl:operation>¶

Deleted: 655

Inserted: 65

Deleted: any

15

Figure 6, WS-CF RegistrationContextType derives from the WS-Context ContextType. 546

The Registration Context Type contains the following elements in addition to the WS-Context 547
wsctx:ContextType structure: 548
• A service reference to a Registration service. This enables Participant services to be enlisted 549

or delisted in an activity group. 550
• A list of zero or more sub-protocol URIs that are used to specify the sub-protocols in which a 551

service may register as a Participant. For example, a transaction protocol may support 552
synchronization and two phase commit subprotocols. 553

• A list of zero or more service references indicating the list of services registered as 554
Participants in the activity group. 555

Referencing specifications define contexts derived from the RegistrationContextType. As per WS-556
Context, the QName of the derived context represents the protocol type for the activity. The XML 557
below shows an example of a subtyped Registration context. 558

<example:cfContext 559
 xmlns="http://docs.oasis-open.org/wscaf/2005/06/wsctx" 560
 xmlns:wscf="http://docs.oasis-open.org/wscaf/2005/07/wscf" 561
 xmlns:example=”http://example.com/cf/” 562
 expiresAt="2005-07-26T22:50:00+01:00"> 563
 <context-identifier> 564
 http://example.org/abcdef:012345 565
 </context-identifier> 566
 <context-service> 567
 <example:address> 568
 http://example.org/wscf/service 569
 </example:address> 570
 </context-service> 571

 <parent-context expiresAt="2005-07-27T22:50:00+01:00"> 572
 <context-identifier> 573
 http://example.org/5e4f2218b 574
 </context-identifier> 575
 <context-service> 576
 <example:address> 577
 http://example.org/wsctx/service 578

 </example:address> 579
 </context-service> 580
 </parent-context> 581
 <wscf:registration-service> 582
 <example:address> 583
 http://example.org/wscf/RegistrationService 584
 </example:address> 585
 </wscf:registration-service> 586
</example:cfContext> 587

3.2.3 WS-CF faults 588

This section defines well-known error codes to be used in conjunction with an underlying fault 589
handling mechanism. 590

Invalid Protocol 591

This fault is be sent by the Registration Service if an attempt is made to register a participant with 592
a protocol that is not supported. This is an unrecoverable condition. 593
The qualified name of the fault code is: 594

wscf:InvalidProtocol 595

Field Code Changed

Field Code Changed

Formatted: Bullets and
Numbering

Deleted: 766

Inserted: 76

Deleted: c

Deleted: s

Deleted: ¶

Deleted: The XML below
shows an example of a
Registration context.¶

Deleted: context

Deleted:

Deleted: 4

Deleted: 9

Deleted: tx

Deleted:

Deleted: 4

Deleted:

Deleted:

Deleted: docs.oasis-

Deleted:

Deleted:

Deleted: tx

Deleted:

Deleted: ¶

Deleted: <type>

Deleted:

Deleted: 4

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: c

... [19]

... [17]

... [18]

... [20]

http://docs.oasis-open.org/wscaf/2004/09/wsctxexample.org/abcdef:012345
http://example.org/wscftx/service
http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
http://docs.oasis-open.org/wscaf/2004/09//wsctx/5e4f2218b
http://example.org/wsctx/service
http://docs.oasis-� open.org/wscaf/2004/09//wsctx/context/type1

16

Duplicate Participant 596

This fault is be sent by the Registration Service if an attempt is made to register a participant 597
multiple times and the referencing specification does not allow this. 598
The qualified name of the fault code is: 599

wscf:DuplicateParticipant 600

Participant Not Found 601

This fault is be sent by the Registration Service if an attempt is made to remove a participant that 602
has not been registered. 603
The qualified name of the fault code is: 604

wscf:ParticipantNotFound 605

Transient Fault 606

This fault is sent if an attempt is made to replace an endpoint when recovery is not currently 607
allowed. Retrying the operation SHOULD eventually result in success. 608
The qualified name of the fault code is: 609

wscf:TransientFault 610

Unknown Service 611

This fault is sent if an attempt is made to replace a Registration Service endpoint and the 612
recipient does not recognise the Registration Service to be replaced. 613
The qualified name of the fault code is: 614

wscf:UnknownService 615

3.2.4 Message exchanges 616

The WS-CAF protocol family is defined in WSDL, with associated schemas. All the WSDL has a 617
common pattern of defining paired port-types, such that one port-type is effectively the requestor, 618
the other the responder for some set of request-response operations. 619
portType for an initiator (“client” for the operation pair) will expose the responses of the 620
“request/response” as input operations (and should expose the requests as output messages); 621
the responder (service-side) only exposes the request operations as input operations (and should 622
expose the responses as output messages). 623
Each “response” is shown on the same line as the “request” that invokes it. Where there are a 624
number of responses to a “request”, these are shown on successive lines. The initiator portTypes 625
typically include various fault and error operations. 626

Initiator (as receiver
of response)

Responder “requests” “responses”

RegisteringService RegistrationService

addParticipant participantAdded
wsctx:UnknownContext
wsctx:InvalidState
wscf:DuplicateParticipant
wscf:InvalidProtocol

Formatted: Bullets and
Numbering

Deleted:
wscf:InvalidParticipant
wscf:ParticipantNotFound

17

Initiator (as receiver
of response)

Responder “requests” “responses”

removeParticipant participantRemoved
wsctx:UnknownContext
wsctx:InvalidState
wscf:ParticipantNotFound

replaceParticipant participantReplaced
wsctx:UnknownContext
wsctx:InvalidState
wscf:TransientFault

getParticipants participantList
wsctx:InvalidState
wsctx:UnknownContext

getStatus status
wsctx:UnknownContext
wsctx:InvalidState

RegistrationService RegisteringService replaceRegistration registrationReplaced
wsctx:InvalidState
wscf:TransientFault
wscf:UnknownService
wsctx:UnknownContext

 627

Deleted:

Deleted: wscf:DuplicatePartici
pant
wscf:InvalidProtocol
wscf:InvalidParticipant

Inserted: wscf:DuplicateParti
cipant
wscf:InvalidProtocol
wscf:InvalidParticipant
wscf:ParticipantNotFound... [21]

18

4 Conformance considerations 628

The WS-CF specification defines an activity group model where participant services may be 629
enrolled with the group for purposes defined by referencing specifications. WS-CF is itself a 630
referencing specification of WS-Context and extends the basic context structure 631
(wsctx:ContextType) defined by that specification. A conformant implementation of WS-CF 632
MUST be based on a conformant WS-Context implementation. Activity group lifecycle 633
demarcation and control SHOULD be managed by the WS-Context Context Service. 634
Conformant implementations of the Coordination Service MUST follow the rules stated in Section 635
4, including supporting the wscf:RegistrationContext structure, which MAY be passed by 636
reference or by value. 637
All messages based on the normative WSDL provided in this specification MUST be augmented 638
by a Web services addressing specification to support callback-style message exchange. 639
Specifications that build on WS-CF MUST satisfy all requirements for referencing specifications 640
that are identified for contexts, participant-services and registration-services. 641

 642

Formatted: Bullets and
Numbering

Deleted:

19

5 References 643

[1] WSDL 1.1 Specification, see http://www.w3.org/TR/wsdl 644
[2] "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, S. Bradner, Harvard 645
University, March 1997. 646
[3] "Uniform Resource Identifiers (URI): Generic Syntax," RFC 2396, T. Berners-Lee, R. Fielding, 647
L. Masinter, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 648
[4] WS-Message Delivery Version 1.0, http://www.w3.org/Submission/2004/SUBM-ws-649
messagedelivery-20040426/ 650
[5] WS-Reliability latest specification, http://www.oasis-651
open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf. See Section 4.2.3.2 652
(and its subsection), 4.3.1 (and its subsections). Please note that WS-R defines BareURI as the 653
default. 654
[6] Addressing wrapper schema, http://www.oasis-655
open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd 656
[7] WS-R schema that uses the serviceRefType, http://www.oasis-657
open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd 658
[8] Web Services Addressing, see http://www.w3.org/Submission/ws-addressing/ 659
[9] OASIS Web Services Context Specification, http://www.oasis-660
open.org/committees/tc_home.php?wg_abbrev=ws-caf 661

Deleted: [1] OMG, Additional
Structuring Mechanisms for the
OTS Specification, September
2000, document orbos/2000-
04-02.¶
[2] WSDL 1.1 Specification.
See
http://www.w3.org/TR/wsdl¶

Deleted: 3

Deleted:

Deleted: ¶
[4]

http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/committees/download.php/8909/WS-Reliability-2004-08-23.pdf
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8365/reference-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.oasis-open.org/apps/org/workgroup/wsrm/download.php/8477/ws-reliability-1.1.xsd
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/wsdl

20

Appendix A. Acknowledgements 662

The following individuals were members of the committee during the development of this 663
specification: 664

Formatted: Bullets and
Numbering

21

Appendix B. Notices 665

OASIS takes no position regarding the validity or scope of any intellectual property or other rights 666
that might be claimed to pertain to the implementation or use of the technology described in this 667
document or the extent to which any license under such rights might or might not be available; 668
neither does it represent that it has made any effort to identify any such rights. Information on 669
OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS 670
website. Copies of claims of rights made available for publication and any assurances of licenses 671
to be made available, or the result of an attempt made to obtain a general license or permission 672
for the use of such proprietary rights by implementors or users of this specification, can be 673
obtained from the OASIS Executive Director. 674
OASIS invites any interested party to bring to its attention any copyrights, patents or patent 675
applications, or other proprietary rights which may cover technology that may be required to 676
implement this specification. Please address the information to the OASIS Executive Director. 677

 678
Copyright © OASIS Open 2005. All Rights Reserved. 679
This document and translations of it may be copied and furnished to others, and derivative works 680
that comment on or otherwise explain it or assist in its implementation may be prepared, copied, 681
published and distributed, in whole or in part, without restriction of any kind, provided that the 682
above copyright notice and this paragraph are included on all such copies and derivative works. 683
However, this document itself does not be modified in any way, such as by removing the 684
copyright notice or references to OASIS, except as needed for the purpose of developing OASIS 685
specifications, in which case the procedures for copyrights defined in the OASIS Intellectual 686
Property Rights document must be followed, or as required to translate it into languages other 687
than English. 688
The limited permissions granted above are perpetual and will not be revoked by OASIS or its 689
successors or assigns. 690
This document and the information contained herein is provided on an “AS IS” basis and OASIS 691
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO 692
ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY 693
RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A 694
PARTICULAR PURPOSE. 695
 696
 697

Formatted: Bullets and
Numbering

Page 8: [1] Deleted Mark Little 23/05/2005 12:30 PM

A service that requires a service reference element MUST use the mustUnderstand
attribute for the SOAP header element within which it is enclosed and MUST return a
mustUnderstand SOAP fault if the reference element isn’t present and understood.

Page 9: [2] Deleted Mark Little 30/06/2005 7:13 PM

4.1Interposition
WS-CF supports the notion of interposition: where a Participant Service that is
enlisted with a Registration Service also behaves as a Registration Service to other
Participant Services. In this way, WS-CF supports the building of graphs and trees by
the addition of participants to an activity structure that are themselves registration
endpoints.
The technique of interposition uses proxies (or subordinates). Each domain that
imports a WS-CF context MAY create a subordinate registration service that enrolls
with the imported registration service as though it were a participant. This
specification does not prescribe how and when this may occur. Interposition then
requires the importing domain to use a different context when communicating with
services and participants that are required to register with the subordinate registration
service, as shown in Figure 3Figure 3.

Participant/
proxy-registration
service

Registration Service

Participant

Figure 33, Participant coordinator.
This specification does not define what are allowable forms of graphs that may be
created using interposition. Such definitions are the responsibility of referencing
specifications.

Page 9: [3] Deleted Mark Little 23/05/2005 12:31 PM

A Registration Service implementation provides support for the Registering Services
to enlist Participant services with a specific protocol semantic. Operations on the
Registration service MAY be implicitly associated with a Registration context, i.e., it
is propagated to the Registration service in order to identify which activity group the
Participant is interested in joining. Services requiring protocols that rely explicitly on
group membership like transactions or data replication will require that the
Registration service MUST be invoked with a Registration context.

Page 11: [4] Deleted Kevin Conner 01/08/2005 11:50 AM

replaceRegistration
This operation on the Registering Service MAY be used by a recovered Registration
Service to indicate that it has recovered on a new endpoint address. When a
Registration Service fails and subsequently recovers it may not be able to recover at

the same address that prior Registering Services used to enlist with the Registration
service. This OPTIONAL operation allows the Registration Service to inform
Registering Services that it has moved from the original address to a new address. It
may also be used to start recovery operations by the protocol engine.

The use of

Page 11: [5] Inserted Mark Little 21/05/2005 10:39 PM

replaceRegistration

Page 11: [6] Deleted Kevin Conner 01/08/2005 11:50 AM

replaceRegistration SHOULD only be attempted when the
Registration Service has failed and recovered on another endpoint
because to do otherwise MAY result in continued use of stale
wscf:RegistrationContext

Page 11: [7] Deleted Kevin Conner 01/08/2005 11:50 AM

ransientFault error message is sent and the receiver MAY try again.

Page 11: [8] Inserted Mark Little 21/05/2005 9:50 PM

wscf:RegistrationContext

Page 11: [9] Deleted Kevin Conner 01/08/2005 11:50 AM

information elsewhere in the application; the context refers to the old endpoint
address for the Registration Service.

A valid wscf:RegistrationContext

Page 11: [10] Inserted Mark Little 21/05/2005 9:50 PM

wscf:RegistrationContext

Page 11: [11] Deleted Kevin Conner 01/08/2005 11:50 AM

MUST accompany this message. This context MAY be passed by reference or by
value. It is implementation dependant as to whether any context information other
than the basic reference values is required.

If successful, the

Page 11: [12] Deleted Mark Little 21/05/2005 10:39 PM

registrationRecovered

Page 11: [13] Deleted Kevin Conner 01/08/2005 11:50 AM

registrationReplaced message is sent to the Registration Service. If the recovery
handshake occurs in the context of an activity, the message also contains the current
status of the activity. This status may be used by recipients to perform local recovery
operations, although this will depend upon the protocol in use

If the Registering Service cannot be located, then the wscf:U

Page 11: [14] Inserted Mark Little 21/05/2005 10:39 PM

registrationReplaced

Page 11: [15] Deleted Kevin Conner 01/08/2005 11:50 AM

nknownService error message is sent back.

If the Registering Service cannot deal with recovery of the
Registration Service for a temporary reason, the wscf:T

Page 11: [16] Inserted Mark Little 21/05/2005 10:44 PM

getParticipants
This operation returns the list of participants that have been enrolled with the activity
group. A valid wscf:RegistrationContext MUST accompany this message. This
context MAY be passed by reference or by value. It is implementation dependant as
to whether any context information other than the basic reference values is required.
If successful, the participantList message is sent to the Registering Service.
A referencing specification MAY decide to send the wsctx:InvalidState error
message if the Activity has begun completion, or has already completed when this
operation is attempted.
The termination of the activity group is triggered by the completion of the WS-
Context service activity. The relationship between activity groups and participant
services is undefined following the termination of an activity group.

Page 15: [17] Deleted Unknown

docs.oasis-open.org/wscaf/2004/09/wsctx

Page 15: [18] Deleted Mark Little 23/05/2005 12:34 PM

 <type>
 http://docs.oasis-open.org/wscaf/2004/09/wsctx/context/type1
 </type>

Page 15: [19] Deleted Mark Little 23/05/2005 12:34 PM

 <type>
 http://example.org/wsctx/context/type1

 </type>

Page 15: [20] Change Unknown

Formatted Bullets and Numbering

Page 17: [21] Inserted Mark Little 28/06/2005 6:41 PM

removeParticipant participantRemoved
wsctx:UnknownContext
wsctx:InvalidState

wscf:DuplicateParticipant
wscf:InvalidProtocol
wscf:InvalidParticipant
wscf:ParticipantNotFound

replaceParticipant participantReplaced
wsctx:UnknownContext
wsctx:InvalidState
wscf:TransientFault

getParticipants participantList
wsctx:InvalidState
wsctx:UnknownContext

getStatus status
wsctx:UnknownContext
wsctx:InvalidState

RegistrationService RegisteringService replaceRegistration registrationReplaced
wsctx:InvalidState
wscf:TransientFault
wscf:UnknownService
wsctx:UnknownContext

	Note on terminology
	Namespace
	Prefix Namespace

	Referencing Specifications
	Precedence of schema and WSDL

	Architecture
	The following sections outline the architecture of WS-CF, describing the components that implementations provide and those that are required from users.
	Overview
	Invocation of Service Operations
	Relationship to WSDL
	Referencing and addressing conventions

	WS-CF components
	Participant Service
	Participant Service
	Registration Service
	Service-to-Registration interactions
	addParticipant
	removeParticipant
	replaceParticipant
	getParticipants
	getParticipants
	getStatus
	replaceRegistration
	Registration Context Type
	WS-CF faults
	Invalid Protocol
	Duplicate Participant
	Participant Not Found
	Transient Fault
	Unknown Service
	Message exchanges

	Conformance considerations
	References

