
Dan Driscoll

Microsoft Corporation

dandris@microsoft.com

September 16, 2008

Agenda
 How WS-* specifications are organized

 Goals of DPWS

 Features and conceptual model

 DPWS from the device perspective

Devon Kemp, Canon Development Americas, Inc.

 Question and Answer

WS-* specs: building blocks
 Horizontal solutions

 Composable

 Extensible

 Loosely coupled
WS-Addressing

WS-Discovery

SOAP

WS-* specs: solution specs
 Vertical solutions

 Not always composable

 Not always extensible

 Sometimes tightly
coupled

WSD Print

WS-* specs: why we need DPWS

 Uniform choices of building block specifications

 Consistency in constraints applied to building blocks

 Need a generic way to discover and describe devices

Goals of DPWS
 Identify common core specifications

 Constraint specifications so they are easily
implemented on devices

 Define functionality common to all devices

 Set a minimum bar for implementation

 Define a conceptual model for devices and clients

 Discovery

 Metadata

 Your solution
 WSDL

 WS-Eventing

 Security

 …

Features: conceptual model

 Discovery

 Metadata

 Your solution
 WSDL

 WS-Eventing

 Security

 …

Features: conceptual model

Host service

Print service 2

Scan service

Print Service 1

 Discovery

 Metadata

 Your solution
 WSDL

 WS-Eventing

 Security

 …

Features: conceptual model

Print-specific description

Print document

Print job status event

W
S

D
L

Features: device organization
Every DPWS device has a Host service, and one or more

Hosted services:

 Host
 dpws:Device (handles Discovery and Metadata)

 Hosted
 Print service (handles print traffic for printer 1)

 Print service (handles print traffic for printer 2)

 Scan service (handles scan traffic)

 …

Features: Discovery
 WS-Discovery

 SOAP-over-UDP

Features: Metadata
 WS-Transfer (moves metadata)

 WS-MetadataExchange (defines a container format)

 DPWS Metadata (defines fields within the container)

 ThisModel: Manufacturer, model name, etc.

 ThisDevice: Serial number, firmware version, etc.

 Relationship: Host service, Hosted services

 WSDL (accessible through metadata)

Features: solution-specific
 WSDL

 Describes a service contract

 WS-Eventing

 Manages subscription lifetime

 MTOM

 Moves large binary data out of the SOAP envelope and
into a MIME attachment

Features: security
 WS-Discovery compact signatures

 Credentials as x.509 certificates

 Transport layer security (TLS)

Sept 18th, 2008

Devon Kemp

Engineering Manager, Canon

The Short Answer
 “it was straight-forward and relatively painless”.

 If you want the “Why?”, keep paying attention…

First…
Why talk about devices?

 Big challenge to add new protocols to devices

 Highly competitive market
 Extreme pressure to keep prices low

 $99 printers

 Low resources
 Minimal short-term memory

 Minimal long-term storage

 Minimal processing power

 Energy Star requirements

 Must use low-energy when not in use.

Usage of common protocols
 Some Device Protocols use a variety of Network

Protocols

 Sometimes an engineering team needs to learn &
implement “one-time” protocols
 E.g. SSDP, SLP, SNMP Traps,

 Two costs:
 Time for the engineering team to learn the new protocol

 “what is this specification saying??”

 Device resources consumed by that single-purpose code.

 E.g. Memory footprint of SSDP can’t be used by anything else.

Usage of common protocols
 DPWS utilizes common protocols

 As you’ve already heard…
 SOAP

 WSDL

 MIME (for binary data)

 Etc.

 Your engineering team probably already knows the protocols (or at
least, they’re familiar with them)
 Engineering “learning curve” is much smaller.

 Your device may already have these stacks implemented
 Implementation time is shortened

 Multiple use code – less resource requirements.
 Business unit is happy

Uses WSDL
 The services (i.e. Web Interfaces) are defined in WSDL

documents

 Machine readable!

 Code generating systems exist

 Doesn’t need to be translated to other languages to be
understood (like an English spec)

Expandable!
 “Polymorphisizes” easily

 Easy to be a scanner, printer, fax, etc. or all
 Just adjust the SOAP messages & events you want to handle .

 Scales vertically easily too
 Framework has a small footprint, and the services can be defined to

have many optional “parts”.
 e.g. not all events need to be supported

 Easy to use same code base on multiple device ‘types’
 Ports easily.

DPWS can be ‘quiet’
 Some Device Protocols need to constantly beacon

 Requires processing power

 Difficult for device to do other things, such as

 go to ‘sleep’

 Process a print job

WSDP Eventing
 Easy to implement, and provides for a rich user

experience

 Reuses the SOAP stack

 More ‘event’- based, rather than ‘variable’-based.

 Multiple ‘events’ in one message
 Allows for a rich eventing mechanism

 i.e. “Page 3 completed printing”

 Can approve/deny individual subscription requests
 Reduces the load of eventing

MTOM
 WSDP uses MTOM/MIME for binary data, and adds

certain restrictions
 The SOAP envelop must be the first MIME part.

 MIME messages are well known
 Simple to generate / consume for devices.

 Doesn’t require spooling – which devices can’t do.

3rd party libraries
 Although Canon does not necessarily use them in

production code, numerous 3rd party libraries exist

 gSOAP, etc.

 Allows a quick implementation, prototype, or just
reference code

 A WSDP environment can be built quickly for analysis
without a large investment.

Questions

Backup slides

