Device and Service Templates for the Devices
Profile for Web Services

Andreas Bobek, Elmar Zeeb, Frank Golatowski, Dirk Timmermann
Institute of Applied Microelectronics and Computer Engineering
University of Rostock
Email: (andreas.bobek, elmar.zeeb, frank.golatowski, dirk.timmermann)@uni-rostock.de

Abstract— The continual improvements in embedded devices
and internet technologies increases the leverage of distributed
systems in domains like home automation, industry automation,
automotive and other application domains. The Devices Profile
for Web Services (DPWS) is a relative new specification based
on Web services that can be used as a cross domain distributed
system technology. Although the specification is almost finished
and software tools are on the way there are some issues left to
be done for pushing DPWS in a competitive direction. DPWS
still misses a description mechanism that defines interfaces to
the services/devices at development time. On the other hand
DPWS provides the concept of device and service types which
are used for dynamic discovery without proposing a formal type
description. Such mechanism improves interoperability between
related devices. This paper addresses this issue and proposes a
template approach similar to Universal Plug and Play (UPnP).

I. INTRODUCTION

The continual improvements in embedded devices and in-
ternet technologies increases the leverage of distributed sys-
tems in domains like home automation, industry automation,
automotive and other application domains. Because of the
complexity of embedded distributed systems there is a need for
an intelligent solution to discover, control and manage devices.
In the past technologies like Java Intelligent Network Infras-
tructure (Jini) [1], Universal Plug and Play (UPnP) [2] and
Home Audio/Video Interoperability (HAVi) [3] have proven to
manage this complexity and fit into one of these domains.
However, they have not gained influence as cross domain
technology. The Devices Profile for Web Services (DPWS) [4]
is a relative new specification based on Web services that
can be used as a cross domain distributed system technology.
DPWS is based on SOAP Web services and is very close to the
Web Services Architecture (WSA) [5] specified by the World
Wide Web Consortium (W3C). DPWS allows for the imple-
mentation of devices and applications that combine several
devices as Service Oriented Architecture (SOA). Embedded
distributed systems implemented as SOA and the increasing
acceptance of Web services provide a promising approach to
solve the complexity of distributed embedded applications and
propagate DPWS as cross domain technology.

The Service Oriented Architectures for Devices
(SOA4D) [6] and Web Services for Devices (WS4D) [7]
initiative deal with the implementation of SOAs with DPWS
in cross domain scenarios. Both resulted from the ITEA
project Service Infrastructure for Real-time Embedded

Networked Applications (SIRENA) [8][9] and are carried on
within the ITEA projects Local Mobile Services (LOMS) [10]
and Service Oriented Device Architectures (SODA) [11].
WS4D and SODA aim at making the knowledge around
DPWS public in the form of open source publications and by
forming a community for device-centric SOAs.

Although the specification is almost finished and software
tools are on the way there are some issues left to be done
for pushing DPWS in a competitive direction. The afore
mentioned technologies come with inbuilt description mecha-
nisms which define interfaces to the services at development
time. For example Jini uses Java interfaces, Web services
use Web Service Definition Language (WSDL) and UPnP
has a template specification. In DPWS such mechanisms are
still missing. This paper addresses this issue and proposes a
template approach similar to UPnP.

II. RELATED WORK
A. Web services and DPWS

Today WSA and Web services technology are considered to
be the prevalent form of SOA implementation. Due to the open
specification process and the amount of requirements we are
now confrontated with more than 60 specifications and binding
protocols [12] (which define collaboration of two or more
specific WS protocols). Profiles are means of constraining
heavy protocol families for targeting a specific domain.

The Devices Profile for Web Services defines a profile over
a specific set of Web services protocols to enable secure
Web service capabilities on resource-constraint devices. It
allows clients sending and receiving secure messages to and
from Web services, dynamically discovering of, describing
of, subscribing to, and receiving events from DPWS-enabled
devices.

Hence, DPWS allows for easy integration of ad-hoc device
environments into the Web services world by leveraging the
Web services protocol family. This is one of its main benefit.
Further DPWS is applied to the latest Microsoft operating sys-
tem — Windows Vista — where it enables hardware components
to plug into the system and therefore is intended to replace
special drivers.

Web services and thus DPWS may be applied to het-
erogenous environments (e.g. operating systems, platforms,
programming languages...). They were formed by an open
specification process and are maintained by a large community

which give them an enormous potential as the future standard
SOA.

DPWS utilizes several protocols such as WS-Discovery,
WS-Eventing, WS-Transfer, WS-Policy, SOAP-over-UDP and
others.

B. Device and service templates in UPnP

UPnP’s original goal was not targeted to come up with
a technology stack for spontaneous networked devices and
services but to provide a framework for application protocols
for distributed device ensembles. Today UPnP’s application
protocols are their main benefit.

The Device Control Protocols (DCP) [13] are building on
a template and description system that is part of the UPnP
Device Architecture (UDA). There are device and service
templates. Device templates refer to services they use. Service
templates specify optional and mandatory actions as well as
state variables they provide. While each vendor may provide
his own descriptions the UPnP Forum develops DCPs regu-
larly in a standardized process. DCPs target devices/services
which are identified to be used by different vendors and hence
are expected to become standards.

This kind of process and definition of semantics is essential
for competing technologies to ensure interoperability. While
Web services have their own description format — WSDL —
something similar to UPnP’s typing system doesn’t exist.

IIT. MOTIVATION AND REQUIREMENTS

Currently there is no formalism available for defining a
service type or a device type. This is not quite correct as
WSDL has the concept of port types where XML quali-
fied names [14] stand for sets of specific operations. When
searching for devices/services with DPWS the WS-Discovery
protocol utilizes its own version of fypes which are also
XML qualified names, but have no further semantics. We can
take advantage of this fact and should define some semantics
around these discovery types.

Further we want to shorten the discovery process which
may take up to four sequential steps — depending on the
environment and dynamic aspects of the system. As devices
join and leave the network they are sending Hello and Bye
messages accordingly for announcing their presence/absence.
Clients wishing to use specific services have to search (probe)
for them. Listing 1 and 2 show two example messages which
also demonstrate the usage of DPWS types.

Discovery in DPWS is a four-step process in which firstly
devices are discovered using the WS-Discovery protocol — ref-
ered as device discovery — and afterwards services are discov-
ered by obtaining their WSDL descriptions via WS-Transfer
— refered as functional discovery (fig. 1). Announcing of and
probing for devices in a local network is based on a multicast
group predefined in WS-Discovery (step 1). Clients identify a
device by its unique logical address (WS-Addressing) which is
network independent and statically assigned for the complete
lifetime of the device. In step 2 a logical address is resolved
into a transport-specific address (e.g. HTTP URL) and in step 3

<?xml version="1.0"
<sl2:Envelope
xmlns:s12="http: //www.w3.0rg/2003/05/soap—envelope”
xmlns:wsa="http: //schemas.xmlsoap.org/ws/2004/08/
addressing”
xmlns:wsd="http: //schemas.xmlsoap.org/ws/2005/04/
discovery ™
<sl2:Header>
<wsd:AppSequence wsd:Instanceld="1193327769"

encoding="utf -8 7>

wsd:MessageNumber="1" />
<wsa:To>urn:schemas—xmlsoap—org:ws:2005:04:discovery</
wsa:To>

<wsa:MessageID>urn:uuid:93F5AF9E3E4FCC8A911193327769653
</wsa:MessageID>
<wsa:Action>http: //schemas.xmlsoap.org/ws/2005/04/
discovery/Hello</wsa:Action>
</sl2:Header>
<s12:Body>
<wsd:Hello>
<wsa:EndpointReference>
<wsa:Address>urn:uuid:ce35ec80—f1b4 —11dc—bfea—
dbe7839e6721</ wsa:Address>
</wsa:EndpointReference>
<wsd:Types xmlns:nsl="http://schemas.xmlsoap.org/ws
/2006/02/devprof”>nsl:Device</wsd:Types>
<wsd:Scopes></wsd:Scopes>
<wsd:MetadataVersion>1193327769</wsd:MetadataVersion>
</wsd:Hello>
</s12:Body>
</sl2:Envelope>

Listing 1. Hello message example

<?xml version="1.0"
<sl12:Envelope
xmlns:s12="http: //www.w3.0rg/2003/05/soap—envelope”
xmlns:my="http: // myuri”
xmlns:wsa="http: //schemas.xmlsoap.org/ws/2004/08/
addressing”
xmlns:wsd="http: //schemas.xmlsoap.org/ws/2005/04/
discovery ™
<sl2:Header>
<wsa:MessageID>urn:uuid:ce35ec80—f1b4 —11dc—bfea—
dbe7f0d72218</wsa:MessageID>
<wsa:Action>http: //schemas.xmlsoap.org/ws/2005/04/
discovery/Probe</wsa:Action>
<wsa:To>urn:schemas—xmlsoap—org:ws:2005:04:discovery</
wsa:To>
<wsa:ReplyTo>
<wsa:Address>http: //schemas.xmlsoap.org/ws/2004/08/
addressing/role/anonymous</wsa:Address>
</wsa:ReplyTo>
</sl2:Header>
<sl2:Body>
<wsd:Probe>
<wsd:Types>my:Device</wsd:Types>
</wsd:Probe>
</s12:Body>
</sl12:Envelope>

encoding="UTF-8" 7>

Listing 2. Probe message example

device metadata (model data, device data...) is transferred
to the client using direct unicast transport. Device metadata
contains references (addresses) to all hosted services whose
description (WSDL) is transferred in step 4. If clients have
previous knowledge of their environments some of these steps
could be omitted. Moreover, if discovery types (step 1) would
already semantically bound to WSDLs (step 4), clients only
need to probe before using a special service.

Starting with these motivations we can conclude some
requirements which must be fulfilled in order to get a template
system that can be practically applied.

® oo
‘ ‘ ® @ @ resolve
multicast group (3 get device metadata/
OJO) T service references
. (@ get service
client metadata (WSDL)
Fig. 1. DPWS discovery steps

The system should be easily used at both development time
and runtime. At development time code generation should be
possible. Generating service and client code based on a WSDL
document is a usual and preferred way when implementing or
working with Web services (saving of time, decrease of erros
etc.). By applying this approach to the templating system we
can generate device code, service code and client code (service
usage and discovery-related code) at the same time.

As services (devices) and their interfaces evolve over time,
we need some kind of version mechanism that also cooperates
with the discovery mechanism. There may be additional oper-
ations to services or even additional services to device types
in the evolution process.

In some cases devices are modeled by using two ore more
services of the same type. In such cases the templating system
must differentiate between two or more service instances.

Other requirements concern boundary conditions such as
extensibility of device and service types, formal expression
which allows for automatical processing, and accessibility as
open and distributed type definitions are expected.

IV. DESIGN OF THE DPWS DEVICE AND SERVICE
TEMPLATES

Templates are expressed in XML as this is the dominated
markup language in Web services environments. For valid-
ity checks we further provide an XML schema [15]. For
reusing the semantics given for the XML elements in the WS-
Discovery schema some of our elements are named according
to their counterparts. This does not mean that these elements
or types are equal.

Further we devide template definitions in device and service
templates similar to UPnP. Services can then be reused for
different devices. For example a power service for putting
devices in on/off/sleep mode may be reused across device

types.

A. Service templates

Figure 2 shows the conceptual and formal structure of
service templates, listing 3 contains an example where we
define a power service around the type ws4dp:Power2.0.
Note that we provide an own type for XML qualified names
that distiguish between namespace URI and local name by
using according elements. This approach is more suitable for
parsers or XSL transformers than the inline notations where
qualified names are represented as text nodes used in WS-
Discovery and other protocols.

Service
template

—
—
—
—
Service type WSDL

/T :

Port type referenced embedded

| !

12 DPWS Service Template

! HostedService

R

Type QNameType

Includes QNameType

PortType QNameType
WsdIReference URI

* |wsdl11:definitions

compatible
service types

1 |
mewler
Fig. 2. Service template structure
<?xml version="1.0" encoding="UTF-8"7>
<t:HostedService xmlns:t="http: //www.ws4d.org/templates/”>
<t:Type>

<t:URI>http: //www.ws4d.org/templates/power</t:URI>
<t:localName>Power2.0</t:localName>
</t:Type>
<t:Includes>
<t:URI>http: //www.ws4d.org/templates/power</t:URI>
<t:localName>Powerl.0</t:localName>
</t:Includes>
<t:PortType>
<t:URI>http: //www.ws4d.org/templates/power</t:URI>
<t:localName>PowerPortType</t:localName>
</t:PortType>
<t:WsdlReference>
http: //www.ws4d.org/templates/power/Power2.0. wsdl
</t:WsdlReference>
</t:HostedService>

Listing 3. A service template example

With service templates we get service types mapped to
specific port types of WSDL descriptions. WSDL service de-
scriptions provide the concept of port types where operations
are grouped together to interfaces. Service types can be linked
to any number of port types. Since port types could be defined
at different places we provide both, referencing WSDLs by
an URI within t :Wsd1lReference and embedding them as
wsdlll:definitions elements.

Further we introduced the t :PortTypes element which
contains a list of mandatory port type qualified names that
must be present in an implementation. Other port types de-
fined in the service descriptions are optional. This approach
allows for more readable type definitions as you can see the
required interfaces (port type); and it opens for extensibility as
implementors could add some vendor-specific services without
breaking the actual service type definition. As mentioned
above a port type can group several operations. Thus, all
operations belonging to one of the named port types are
required in the implementation.

As services will evolve over time we defined the
t:Includes element. Such element refers to a service
type (qualified name) that is entirely included in the newly
defined service type. However, that means the new service
has to be completely downwards compatible to each included
type. Since there could be any occurences of t:Includes
elements service types are constructed by multiple inheritance.

Both, the enumeration of required port types and the concept
of service type inclusion (multiple inheritance) features the
creation of layered service types. For example a service type
S1 requires port type P1. A second more specific service type

S2 could then be created by including S1 and requiring port
types P1, P2 and P3. However, both type definitions can be
based on the same WSDL description.

B. Device templates

Device DPWS Device Template

template Relationship
— P/ . Host

Service 1 |Type QNameType

Device type

Includes QNameType

>| *

UriTemplate String
Hosted

URL template referenced embedded

l 1 |Reference URI
Serviceld xor
+ 1 |HostedService

URL

)

Serviceld String

~

UrlTemplate String

Fig. 3. Device template structure

Figure 3 shows the conceptual and formal structure of
device templates, listing 4 contains an example where we
define a device type for a webcam.

<?xml version="1.0" encoding="UTF—8"7>
<t:Relationship xmlns:t="http: //www.ws4d.org/templates/”>
<t:Host>
<t:Type>
<t:URI>http: //www.ws4d.org/templates /webcam</t:URI>
<t:localName>Webcam</t:localName>
</t:Type>
<t:UrlTemplate>http://{ip}:4672/webcam</t:UrlTemplate>
</t:Host>
<t:Hosted>
<t:Reference>
http: //www.ws4d.org/templates/power/PowerService2 .0.
xml
</t:Reference>
<t:Serviceld>
http: //www.ws4d.org/power/powerservice?2
</t:Serviceld>
</t:Hosted>
<t:Hosted>
<t:Reference>
http: //www.ws4d.org/templates/config/
BasicDeviceConfig2.1.xml
</t:Reference>
</t:Hosted>
<t:Hosted>
<t:Reference>
http: //www.ws4d.org/templates/webcam/Webcaml .0 . xml
</t:Reference>
<t:UrlTemplate>http: //{ip}:4672/webcam/service</
t:UrlTemplate>
</t:Hosted>
</t:Relationship>

Listing 4. A device template example

DPWS uses the special concept of Relationship for device
descriptions. Relationships contain exactly one host (the de-
vice for that the relationship is defined) and several hosted
elements (the services the host offers). This concept is applied
to our device type definitions.

Within t:Host the device type is declared. Here again
t:Includes elements can be enumerated. Devices that
implement this type must be downwards compatible to the
included types.

For each service type the device type offers there is one
t:Hosted element. It contains either an URI reference to

a service type definition or the actual t:HostedService

element goes inline. To each service a specific service ID
can be applied. Service IDs are used within DPWS to identify
service instances unambiguously. Thus, it is poosible for a
device type to include two services of the same type but with
different IDs.

URL templates are used for establishing fixed URL parts
and linking them to a service instance or device type. In the
example above the device is bound to the port 4672 and the
path is also forced. Therefore, when knowing the IP address
the device can be accessed without further discovery processes.
Parts of the URL that have to be dynamically resolved are
quoted with curly braces as defined in [16].

There is always a trade-off between referencing parts of
the specification and embedding them statically. Reference
targets could be changed or manipulated whereas embeddings
make reusability and readability more difficult. Real-world
device and service specifications should always be published
as human-readable documents. The provided notations should
then be part of this document.

C. Discovery revised

As already shown, a complete discovery process with
DPWS contains several steps. One objective of device and
service templates is the reduction of steps in the discovery
process to shorten its duration and reduce network traffic.

Probe(types, scopes)

client

ProbeMatch

Resolve

ResolveMatch

Get (metadata) | contains
H _ service
device metadata

references

Get (metadata)

service

' contains
service

address

Fig. 4. Shortened discovery

For our device example the network addresses of the web-
cam device and the webcam service are given if the IP address
of the device is known. Therefore discovery can be finished
after resolving the device (fig. 4). In a more static scenario
discovery could even be omitted. Note that for the other two
services no URL templates are specified for which reason at
least device metadata has to be requested.

V. TEMPLATE INTEGRATION INTO TOOLKITS,
DEVELOPMENT FLOW AND EXAMPLE

One of the requirements of device and service templates was
the better integration of software tools to support the developer
at development time. SOAP Web services already offer this
benefit by WSDL. Many SOAP Web service toolkits offer code
generators for WSDL. These code generators generate stub and
skeleton code and often also an XML Schema data binding.

This feature is already utilized in the WS4D DPWS toolKkits.
But WSDL covers only service level metadata while DPWS
has device and service level metadata at run time. Device and
service templates alone won’t solve this issue. As a device can
implement several device or service templates another concept
is required.

Therefore the concept of device instances is introduced.
Device instances are needed to offer code generation for device
and service description of DPWS devices at development time.
The format of device instances should have at least the same
elements as the service and device template format as well as
toolkit specific extensions. Instead of template values device
instances should contain instance values that are specific for
one device or model.

Code -

Generator

|

Device | Device Device
— |
Templates Instance |
|
I
Service |
Templates Code |
|
|
|
|

| DPWS implementation specific

Fig. 5. Code generation with device and service templates

The design flow starts with the device and service templates
that are implemented by a device, goes to the corresponding
device instance and finally to the generated code as illustrated
in figure 5. In this design flow two software tools are involved.
The first tool that creates a device instance from several device
and service templates may be a command line tool or a wizard
that supports the developer. The second tool is the actual
code generator that generates code based on a device instance
for the device and the client side. On the device side the
code covers functions to initialization of device and model
description, functions to setup service instances and service
types and a function to set up the device. The generated code
on the client side offers functions to find devices of a specific
type, to find services of a specific type on a device and to find
a service with a specific ID on a device.

This design flow was implemented as prototype for the
WS4D-gSOAP toolkit. This toolkit is an implementation of
DPWS based on gSOAP [17] for the programming languages
C and C++. To use the format of the device and service
templates as basis for the device instance format seems to
be a good way to proceed. The device wizard was imple-
mented with XSLT. It simply merges all the templates into
the device instance and tests if there are conflicts like several
URI templates for the hosting service that don’t match. If
the templates can be merged, they are extended with toolkit
specific information and written into the device instance file.
Toolkit specific extensions are needed as the code generator
may require further information to generate code. In the case
of the WS4D-gSOAP the code generator needs name attributes
for services as the service IDs from the service templates are
URIs. So it is easier to specify additional identifiers that can

be mapped to C or C++ language identifiers than mapping
URIs to C or C++ identifiers. The code generator is also
implemented with XSLT. It generates C code to support the
device and service setup on the device side and functions to
ease the discovery of devices and services on the client side.

VI. CONCLUSION AND FUTURE WORK

In this paper a template format for DPWS devices and
services similar to UPnP was introduced by a simple webcam
device example. This template format clarifies the device and
service discovery process in DPWS and makes the integration
of code generation tools easier. The integration into the design
flow of a DPWS device was shown with a prototype for the
WS4D-gSOAP toolkit.

Concerning future work, the template mechanism will be
fully integrated into the toolkits of WS4D. With the template
mechanism WS4D can start to define a set for basic device and
service templates that can be reused by developers to reduce
the effort making devices or applications DPWS capable.

ACKNOWLEDGMENT

This work has been funded by German Federal Ministry of
Education and Research under reference number 01—SF11H.

REFERENCES

[1] Jini Architecture Specification, Version 1.2, Sun Microsystems, 2001.

[2] UPnP Device Architecture v.1.0.1, UPnP Forum, 2003.

[3] J. Teirikangas, HAVi: Home Audio Video Interoperability, Helsinki
University of Technology, 2001.

[4] Devices Profile for Web Services, Microsoft, 2005.

[S] “Web Services Architecture,” W3C Working Group, 2004,
http://www.w3.org/TR/ws-arch/.
[6] “Service-oriented Architectures for Devices,” SOA4D,

http://www.soadd.org.
[7] “Web Services for Devices Initiative,” WS4D, http://www.ws4d.org.
[8] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service Infrastruc-
ture for Real-time Embedded Networked Devices: A service oriented
framework for different domains,” in International Conference on Net-
working (ICN), 2006.
[9] “SIRENA: Service Infrastructure for Real-time Embedded Networked
Applications,” 2006, http://www.sirena-itea.org.
“LOMS: Local Mobile Services,” 2007, http://www.loms-itea.org.
“Service Oriented Device Architectures,” SODA, http://www.soda-
itea.org.

[10]
[11]

[12] “Web Services Standards as of QI 2007,” innoQ, 2007,
http://www.innoq.com/soa/ws-standards/poster/.
[13] “UPnP Device Control Protocol,” UPnP Forum,

http://www.upnp.org/standardizeddcps/default.asp.

T. Bray, D. Hollander, A. Layman, and R. Tobin, Namespaces in XML

1.0 (Second Edition), 2006, http://www.w3.0org/TR/REC-xml-names/ns-

qualnames.

“XML Schema,” W3C, http://www.w3.org/XML/Schema.

J. Gregorio, URI Template, Network Working Group, Internet Draft,

2006, http://bitworking.org/projects/URI-Templates/draft-gregorio-

uritemplate-00.html.

[17] R. A. van Engelen,
http://www.cs.fsu.edu/%7Eengelen/soap.html.

[14]

[15]
[16]

gSOAP, 2007,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /Kartika
 /Latha
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sshlinedraw
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

