Interactions of WS-ReliableMessaging with Web Service Security Infrastructures

WS-ReliableMessaging (WS-RM) describes a protocol that allows messages to be delivered reliably between distributed applications in the presence of software component, system, or network failures. While there are cases in which applications may wish to reliably exchange messages without the need for security, it is likely that the majority of applications that use WS-ReliableMessaging will require integrity, confidentiality, and authentication of the messages they exchange. In the context of Web Services operating over untrusted networks this requires the use of WS-Security, WS-SecureConversation, SSL/TLS or some other security infrastructure. Inevitably there are issues around the interaction between WS-ReliableMessaging and these security infrastructures when they are used to build a composite secure and reliable message channel. This note explores some of these issues and recommends some approaches to resolving them.
I. WS-ReliableMessaging and WS-Security

The arguments for loose coupling of distributed components apply equally well to the processing nodes of a SOAP messaging infrastructure. Ideally each node should depend only on the interfaces between it and the nodes it interacts with without knowledge of any details such as implementation, internal state, etc.

A. Binding of WS-ReliableMessaging to WS-Security

As of the current draft version, WS-ReliableMessaging is explicitly dependent upon WS-Security through the inclusion of a wsse:SecurityTokenReference (STR) element in the wsrm:CreateSequence message that is used to establish a WS-RM sequence. Although the inclusion of the STR is optional, the fact that it occurs in a message that is sent from the RM Source to the RM Destination means that the choice of using this feature is in the hands of the RM Source. Consequently, implementations of the RM Destination must be prepared to accept CreateSequence messages that contain an STR and implement the other operations (per-message authorization checks, etc.) implied by this acceptance.

This binding is undesirable for a number of reasons:

1. It impacts flexibility. Applications that do not require security or that wish to use some security mechanism other than WS-Security (such as SSL/TLS) in their WS-RM implementation must nevertheless include an implementation of WS-Security.

2. It impacts simplicity. If CreateSequence messages contain a security token then the application or environment must have some way of communicating (through API’s or configuration) which token to use when creating a sequence. This becomes more complex under architectures in which the WS-RM processing node functions as a shared service for multiple applications.
3. It creates unnecessary processing overhead. As the specification indicates, the point of binding a security token to a reliable messaging sequence is to make sure that all the messages sent under this sequence originate from a particular principal. This implies that, for each message, there will be a “sequence authorization check” to determine whether this message was sent from the proper principal. As we will illustrate below, this check is unnecessary.
B. Motivations and Requirements

It is understood that, although ideally we may not want to bind individual processing nodes together, sometimes it is necessary to do so if there is no other way to satisfy our requirements or if doing so allows us to achieve some greater, over-arching goal. It is difficult to tell if the binding between WS-RM and WS-Security satisfies either of these criteria since the specification contains no information of the motivation behind this linkage. Various conversations with the authors of WS-RM and other interested parties have brought forth a couple of scenarios that motivate a binding between WS-RM and WS-Security.

1. WS-RM implementations require the ability to guarantee that every message that is accepted into a particular WS-RM sequence originated from the same entity or there will be a security hole.

To illustrate why this might be the case imagine the following scenario: A large file transfer (LFT) service is built using Web Services. To simplify the design of this service WS-RM is used to handle the reliability aspects of the service and WS-Security to handle integrity, confidentiality and authentication. The LFT Service performs authorization checks based on the identity established and verified by the WS-Security layer. The purpose of these authorization checks is to determine whether a particular user has permission to upload a file to a particular location. There are two authorized users of the system, Alice and Bob. Both Alice and Bob have the credentials necessary to authenticate with the LFT service but Alice is not allowed to upload files to Bob’s sandbox and vice-versa.

The following conditions are true:

1. Bob has some motivation for inserting data into the files that Alice is uploading.

2. Bob has a way of determining when Alice is uploading a file.

3. Bob has a way of knowing or reliably guessing the wsrm:Identifier associated with Alice’s upload operations.

4. Bob is capable of either writing or obtaining code that can craft SOAP messages containing wsrm:Sequence headers with given wsrm:Identifier and wsrm:MessageNumber’s.

Given these conditions it is not too difficult for Bob to wait until Alice starts a file upload and to begin creating SOAP messages with WS-RM headers that contain Alice’s wsrm:Identifier and likely wsrm:MessageNumber elements. Bob does not have Alice’s private key, so he can’t sign these messages as if he were Alice. However he can sign these messages using his own private key knowing that the LFT Service will accept his credentials (if the LFT Service were using WS-SecureConversation we would substitute the “sign with private key of . . .” step with “establish a security context as . . .”). The security node of the LFT Service will accept the messages sent by Bob because Bob is an authorized user of the system. The RM Destination node will accept the messages from Bob since they have a WS-RM header that references a valid wsrm:Identifier and (presumably) have never-before-seen wsrm:MessageNumber elements. The LFT Service will then write the data contained in the body of these phony messages into the file being uploaded by Alice. (It’s important not to get too fixated on the details of this scenario. The basic idea is that a trusted attacker takes advantage of the fact that there is no binding between WS-RM and security node’s to push messages into someone else’s WS-RM sequence).

The problem with this scenario lies in the emphasized sentence. It pre-supposes that the WS-RM sequence is visible to the LFT Service and that the LFT Service is interpreting the sequence in a particular way. Essentially it presumes that LFT Service is treating the WS-RM sequence as a “authenticated session handle”; performing an authorization check as to whether Alice could upload the file to a particular location when the WS-RM sequence is first established and subsequently treating all messages that with this WS-RM sequence as if they had arrived from Alice. 
[image: image1]
It is clear that, according to our definitions, a WS-RM sequence is as a type of session and a wsrm:Identifier is a kind of session handle. What is not clear, however, is the degree and manner in which the session semantics of a WS-RM sequence should be surfaced to the application. In other words, what can the destination application infer if it knows that two messages share the same wsrm:Identifier? The case could be made that the destination application should have visibility into the sequence ID and message number of the messages because, without this information, applications that are dependent upon the proper ordering of messages would have to implement another WS-RM-like layer at the application level (conversely you could argue that it is the RM Destination’s function to deliver the messages to the application in the proper order and that the application shouldn’t have to worry about sequence ID’s and message numbers).
What is not apparent, however, is that WS-RM sequences should be treated as authenticated sessions by the application. As of the current draft version, the WS-ReliableMessaging specification contains no language that indicates that WS-RM sequence’s can or should be treated as authenticated sessions. Furthermore, in the context of the overall architecture of Web Services, it is pretty clear that WS-RM sequences should not be required to support authenticated session semantics. Requiring WS-RM to support authenticated session semantics basically crams two logically distinct facilities, reliability and authenticated sessions, into a single specification in such a manner that neither facility can be readily separated from the other.

To see why this is so, re-consider the above scenario but this time with WS-RM removed. Obviously the LFT Service still needs to perform the proper authorization checks (using information established by the security node) on the incoming messages to make sure that Bob can’t upload files into Alice’s sandbox and vice versa. It doesn’t make sense that adding WS-RM to the processing pipeline should change the way in which the LFT Service performs these authorization checks. Furthermore, encouraging developers to use sequence ID’s as authenticated session handles would actually be harmful since a service written to depend upon a sequence ID as an authenticated session handle would have to be re-written if, for some reason, WS-RM were later removed. This re-write would be necessary even if the underlying security infrastructure never changed.
2. If the messages arriving at the RM-Destination are signed by more than one entity (as may happen in the case of trusted intermediaries), the WS-RM implementation needs the ability to distinguish between the possible signers to ensure that the correct entity signed the WS-RM header.

The scenario behind this requirement is similar to the first scenario except that the attacker is a trusted intermediary instead of a trusted peer. Again the attacker is taking advantage of their trusted status to get past the security layer. Once past the security layer they are using the lack of a binding between the security layer and the reliability layer to insert messages into sequences that are legitimately “owned” by them.

Once more the lack of a binding between the WS-RM layer and the security layer does not create a security hole unless the Application Destination makes the mistake of treating the WS-RM sequence as an authenticated session. It is perhaps even clearer in this example that the WS-RM layer should not be burdened with the responsibility of arbitrating between message originators and message intermediaries.

We should note the effects both of these attack scenarios have on the RM Source. In our first example, the RM Destination node of the LFT Service might see message numbers 1-5 from Alice and messages 6-10 from Bob. Depending upon timing of the messages, configured policy, etc., the RM Source corresponding to Alice’s LFT Client will probably see SequenceAcknowledgement headers containing MessageNumbers that it has never sent. This should cause the RM Source to send an InvalidAcknowledgement to the RM Destination which will probably result in the entire sequence being invalidated. Regardless of the fact that it does not constitute a critical security vulnerability, the ability of one trusted entity to insert messages into the WS-RM sequence of another does represent a potential Denial of Service (DOS) attack.
C. Alternate Solutions

In knowledge of the fact that “there is nothing new under the sun” we should recognize that Web Applications that preserve users’ state via session cookies (e.g. the “JSESSIONID” cookie) face some of the same threats that WS-RM sequences do. Specifically if an attacker is able to observe or guess the value of their targets session cookie they will be able to impersonate their target in the Web Application. Implementers of application servers have addressed this issue by combining two factors:
1. Embedding a large amount of unique, random information in the value of each cookie. This makes the value un-guessable in the timespan required for an effective attack (i.e. the timespan of the average user session).

2. Enabling the use of SSL to provide confidentiality to the HTTP messages. This prevents attackers from being able to observe the values of the session cookies by snooping the targets connection to the application.

WS-RM can adopt a similar strategy towards protecting sequences. Specifically:
1. RM Destinations should embed a “large amount” of random information in the sequence IDs that they create. Exactly how much random information is required can be determined by the WS-RX TC (as a data point, SAML 2.0 Artifacts are required to include 20 bytes of random information but their usage is somewhat different).

2. The messages exchanged between the RM Source and RM Destination should be protected by some mechanism that can provide confidentiality to at least the sequence header if not the entire SOAP envelope (i.e. body and headers). This can be any mechanism capable of protecting SOAP messages including WS-Security, WS-SecureConversation, SSL, etc. Note that using WS-Security in this capacity is not the same as binding WS-RM and WS-Security together as described above. The Application Source and Application Destination are free to work out their security relationship independently of any WS-RM considerations (something they would undoubtedly do in any case) and this relationship can change without effecting their reliability configuration.
II. Processing Order
When designing a communications protocol that includes two or more logically distinct facilities, it is typical to model the design as a set of hierarchical, independent layers that communicate through well-defined interfaces. Outbound messages are processed sequentially downwards through the layers until they are eventually transported to their destination. Inbound messages are processed sequentially upwards through the layers until they reach the application.
A. WS-RM/Security Ordering

When specifying a composite secure and reliable message channel the issue of ordering the respective security and reliability layers crops up. Should the reliability layer sit on top of or beneath the security layer? In general protocol stacks are composed by placing the simpler, more fundamental layers on the bottom and building the more complex, abstract layers on top of these basic facilities. This guideline is not very useful in this case because it’s not clear which of “security” or “reliability” is simpler or more fundamental than the other (most “big picture” drawings of the Web Services stack show WS-ReliableMessaging and WS-Security as peers).

A major factor in this case is the semantics of WS-ReliableMessaging. WS-RM promises to deliver a message “to the application” meaning that, once WS-RM has acknowledged receipt of a message, the source application can assume that the destination application has or will receive the message. In general WS-RM should always be placed as close to the application layer (i.e. at the top of the stack) as possible to minimize the risk of any errors that may occur to inbound messages between the WS-RM layer and the application. If WS-RM sits below the security layer in our protocol stack, there exists the possibility that WS-RM will successfully process an inbound a message that will subsequently fail to pass through the security layer (e.g. due to an invalid signature or an expired key) to the destination application. Depending upon the processing model and implementation, this failure may occur after the underlying WS-RM layer has acknowledged receipt of the faulty message. At this point there is a serious divergence in the states of the source and destination applications. The source application thinks that the destination application has received a message that it has not. This is precisely one of the conditions that WS-RM is supposed to prevent.

There are a number of ways to address this problem but each has significant drawbacks. Rather than trying to solve the problem caused by placing the security layer above the WS-RM layer, it is much simpler to place the WS-RM layer above the security layer. Any errors at the security level can be handled at the destination by simply dropping the faulty message. The WS-RM layer will treat this dropped message as missing and processing will continue normally (i.e. the destination will fail to acknowledge the faulty message and the source will re-transmit the message).

We should also take into consideration that we do not always have complete control over the placement of the security layer in our protocol stack. Although the limitations of SSL as an enterprise-class, end-to-end security mechanism are well understood, its support for a number of basic use cases combined with its ubiquity guarantee that it will be used for years to come. Placing the security layer below WS-RM means that, regardless of whether the service is configured to use WS-Security, SSL, VPNs, etc. the ordering of the layers will remain the same.

B. Deployment Models

Our protocol stack looks like this:


[image: image2]
Figure 1 - Monolithic Model
This is fine for execution infrastructures in which each of the components resides within the same processing space. However there are architectures in which the application and the WS-RM “layer”/processing-node are distinct entities that do not share an execution context (i.e. process or virtual machine), host, or network. Imagine, for example, an implementation of WS-ReliableMessaging that employed a shared store-and-forward (SAF) service. The SAF service does not exist on the same machine as the applications. In such cases our “protocol stack”/processing-node-layout might look like the following:

[image: image3]
Figure 2 - Simple Distributed Model

The problem with the model depicted above is fairly obvious; the messages flowing between the application and the WS-RM node are unprotected. While there may be operational environments in which this situation is acceptable, in the general case it is not. To fully flesh out our distributed model we need end-to-end security to protect our messages. Our distributed processing stack now looks like the following.

[image: image4]
Figure 3 – Complete Distributed Model

The above diagram does not imply the existence of a secure association between the application and the WS-RM node. Rather the application wishes to treat the WS-RM node as an untrusted intermediary by signing (and possibly encrypting) the bodies of the messages that it sends through the WS-RM node.

Note that by creating a “gap” between our application and the WS-RM processing node we have created a situation in which the scenario discussed above (a message is processed by WS-RM but later fails security checks) can occur. This is the price we have to pay for supporting a distributed architecture.
C. Sequence Header Binding
According to Section 5 (Security Considerations) of the WS-ReliableMessaging specification:
In order to properly secure messages, the body and all relevant headers need to be included in the signature. Specifically, the <wsrm:Sequence> header needs to be signed with the body in order to "bind" the two together.

Again the specification is not clear on why we need to do this to “properly secure” message but basically we are protecting against man-in-the-middle attacks in which the attacker has the ability to capture, alter, and forward messages. Without a binding between the sequence header and the message body this type of attacker can reorder messages by swapping headers and bodies. Note that the attacker can do this even if the headers and bodies are separately signed and/or encrypted.
It is not clear is whether the signature that binds a wsrm:Sequence with the message body is meant to be an additional signature that is inserted by the RM Source in addition to any existing signatures or whether there is supposed to be a single signature that serves the needs of both the application and the WS-RM sequence. The former case has issues around the order of processing of the various signatures (which we will get to later) but first let’s explore the issues around the concept of a single signature.
The problem with using a single signature to serve both the application and the WS-RM sequence is that, on the source side, the signing operation must wait until after the RM Source has inserted the wsrm:Sequence header into the message. Although this is may not be a problem for the monolithic model depicted in Figure 1, it is definitely a problem for the distributed model depicted in Figure 3. It means that the application cannot employ end-to-end security by signing the message before sending it to the RM Source. It also means that, if the identity of the signing party is that of the application (or the principal on whose behalf the application is running), this identity (including keys) must be shared across the network with the RM Source. If the identity of the signing party is not that of the application/principal but is instead that of the WS-RM node, this creates problems for the application destination since we have lost the identity of the initiating party.
The problem with inserting an additional signature into the message for the purposes of binding the WS-RM sequence to the message body is largely one of complexity. For example both the RM Destination and the Application Destination must be capable of distinguishing between the RM-level signature and any application-level signatures. Also, what identity should the RM Source use when signing the message? We’ve already shown that, in the distributed case, it is impractical to use the identity of the initiating principal therefore we must use the identity of the WS-RM node. The means that the WS-RM node must be provisioned with its own identity artifacts (e.g. keystores, certificates, etc.) and these artifacts must be managed over their life-cycle.
III. Recommendations
We recommend the following changes to the existing WS-ReliableMessaging specification.
1. Remove the tight coupling between WS-ReliableMessaging and WS-Security.
From the arguments above it is clear that WS-ReliableMessaging needs to be bound to WS-Security only if WS-ReliableMessaging is intended to provide both reliable messaging and some kind of authenticated session semantics. Since there are a number of reasons why it is not a good idea to do this, the elements of the WS-ReliableMessaging specification that bind it to WS-Security should be removed. Specifically the wsse:SecurityTokenReference element should be removed as an optional element of the wsrm:CreateSequence message.

2. Clarify the lack of authenticated session semantics in the WS-ReliableMessaging specification.
Although it is a mistake to presume that a WS-RM sequence has authenticated session semantics, it appears to be a common one. The WS-RM specification should contain non-normative text that states that WS-RM sequences are a construct that is used for the proper ordering of messages and the detection of missing messages only and that application developers should not make any other assumptions about what it means if a message was received into a particular WS-RM sequence. In particular it should be made clear that the assumption that, because a message was received into a particular WS-RM sequence it must have originated from the creator of the WS-RM sequence, creates a potential security vulnerability in which trusted peers and/or intermediaries can send forged messages that will be regarded as having originated from the creator of the WS-RM sequence.
3. Clarify the sensitive nature of the wsrm:Identifier element and add text that provides recommendations how to protect this element from guessing and eavesdropping.
A common thread running through the concerns about WS-RM and security is the fact that message numbers for WS-RM sequences are very easy to guess since they must start at 1 and increase monotonically. As this discussion has shown, knowledge of a sequence identifier combined with the ability to guess message numbers does not, in a properly designed system, allow an attacker anything more than the ability to disrupt the reliable message exchange. Nevertheless, the availability of information can be just as critical as the confidentiality or integrity of that information. Therefore text should be added to the WS-ReliableMessaging specification that outlines the denial of service attacks that are possible if the sequence identifier is either known or observable. The guidelines presented above for protecting sequence identifiers should be fleshed out and included as well.
4. Add additional guidelines for constructing signatures.
As Section II.C illustrates there are a number of issues around the use of signatures to bind the sequence header and message body together particular in cases in which there may be more than one signature present in the message. The WS-RM specification needs to provide clear guidelines on the construction and validation of signatures in these cases.
outgoing messages





incoming messages





outgoing messages





Transport





Transport





Security





WS-RM





Application





Transport





WS-RM





Security





Application








Definitions


For the purpose of this discussion we will define a session as a set of context information that is shared by two or more participants in a distributed interaction for the purpose of optimizing that interaction across a series of separate messages that are spaced relatively close together in time (i.e. the mean time between messages can be measured in minutes or seconds). An authenticated session is a session in which some of the shared context information deals with the identity and attributes of the other participants; this information is presumed to have been established in such a manner as to avoid impersonation. A session handle is a mutually understood reference to the shared context information.





SAF Service





SAF Service





outgoing messages





Transport





Transport





Security





WS-RM





Application





Security








� Suggestions that implementations that include an STR with the CreateSequence message and implementations that cannot process an STR “just won’t be able to talk to each other” are little more than a tacit admission that the WS-RM specification has serious interoperability issues.


� Another variation of this attack has the rogue intermediary simply switching sequence headers around amongst messages so that, unbeknownst to the RM Destination, message 3 has become message 4 and message 4 is now message 3.





