
Web Services Atomic Transaction (WS-
AtomicTransaction)
Version 1.0

August 2005

Authors

Luis Felipe Cabrera, Microsoft
George Copeland, Microsoft
Max Feingold, Microsoft (Editor)
Robert W Freund, Hitachi
Tom Freund, IBM
Jim Johnson, Microsoft
Sean Joyce, IONA
Chris Kaler, Microsoft
Johannes Klein, Microsoft
David Langworthy, Microsoft
Mark Little, Arjuna Technologies
Anthony Nadalin, IBM
Eric Newcomer, IONA
David Orchard, BEA Systems
Ian Robinson, IBM
Tony Storey, IBM
Satish Thatte, Microsoft

Copyright Notice
(c) 2001-2005 Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International
Business Machines Corporation, IONA Technologies, Microsoft Corporation, Inc. All
rights reserved.

Permission to copy and display the “Web Services Atomic Transaction” Specification
(the “Specification”, which includes WSDL and schema documents), in any medium
without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the “Web Services Atomic Transaction” Specification that you make:

1. A link or URL to the “Web Services Atomic Transaction” Specification at
one of the Authors’ websites

2. The copyright notice as shown in the “Web Services Atomic Transaction”
Specification.

Arjuna, BEA, Hitachi, IBM, IONA and Microsoft (collectively, the “Authors”) each
agree to grant you a license, under royalty-free and otherwise reasonable, non-
discriminatory terms and conditions, to their respective essential patent claims that
they deem necessary to implement the “Web Services Atomic Transaction”
Specification.

THE “WEB SERVICES ATOMIC TRANSACTION” SPECIFICATION IS PROVIDED "AS IS,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE

Page 1 of 21

http://www.arjuna.com/
http://www.bea.com/
http://www.hitachi.com/
http://www.ibm.com/
http://www.ibm.com/
http://www.iona.com/
http://www.microsoft.com/

CONTENTS OF THE “WEB SERVICES ATOMIC TRANSACTION” SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THE “WEB SERVICES ATOMIC TRANSACTION”
SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the “Web Services Atomic Transaction”
Specification or its contents without specific, written prior permission. Title to
copyright in the “Web Services Atomic Transaction” Specification will at all times
remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification provides the definition of the atomic transaction coordination type
that is to be used with the extensible coordination framework described in the WS-
Coordination specification. The specification defines three specific agreement
coordination protocols for the atomic transaction coordination type: completion,
volatile two-phase commit, and durable two-phase commit. Developers can use any
or all of these protocols when building applications that require consistent agreement
on the outcome of short-lived distributed activities that have the all-or-nothing
property.

Composable Architecture
By using the SOAP [SOAP]and WSDL [WSDL] extensibility model, SOAP-based and
WSDL-based specifications are designed to work together to define a rich Web
services environment. As such, WS-AtomicTransaction by itself does not define all
features required for a complete solution. WS-AtomicTransaction is a building block
used with other specifications of Web services (e.g., WS-Coordination, WS-Security)
and application-specific protocols that are able to accommodate a wide variety of
coordination protocols related to the coordination actions of distributed applications.

Status
This specification has been developed through the WS-* Workshop process and is
offered for public consideration and/or implementation.

Acknowledgments
The following individuals have provided invaluable input into the design of the WS-
AtomicTransaction specification:

Francisco Curbera, IBM
Sanjay Dalal, BEA Systems
Doug Davis, IBM
Gert Drapers, Microsoft
Don Ferguson, IBM
Kirill Gavrylyuk, Microsoft
Dan House, IBM

Page 2 of 21

Oisin Hurley, IONA
Frank Leymann, IBM
Thomas Mikalsen, IBM
Jagan Peri, Microsoft
John Shewchuk, Microsoft
Alex Somogyi, BEA Systems
Stefan Tai, IBM
Gary Tully, IONA
Sanjiva Weerawarana, IBM

We also wish to thank the technical writers and development reviewers who provided
feedback to improve the readability of the specification.

Table of Contents
1. Introduction

1.1 Notational Conventions
1.2 Namespace
1.3 XSD and WSDL Files
1.4 AT Protocol Elements

2. Atomic Transaction Context
3. Atomic Transaction Protocols

3.1 Preconditions
3.2 Completion Protocol
3.3 Two-Phase Commit Protocol

3.3.1 Volatile Two-Phase Commit Protocol
3.3.2 Durable Two-Phase Commit Protocol
3.3.3 2PC Diagram and Notifications

4. AT Policy Assertion
4.1 Assertion Model
4.2 Normative Outline
4.3 Assertion Attachment
4.4 Assertion Example

5. Transaction Faults
5.1 InconsistentInternalState

6. Security Model
7. Security Considerations
8. Use of WS-Addressing Headers
9. References
10. State Tables

1. Introduction
The current set of Web service specifications [WSDL] [SOAP] defines protocols for
Web service interoperability. Web services increasingly tie together a number of

Page 3 of 21

participants forming large distributed applications. The resulting activities may have
complex structure and relationships.

The WS-Coordination specification defines an extensible framework for defining
coordination types. This specification provides the definition of an atomic transaction
coordination type used to coordinate activities having an "all or nothing" property.
Atomic transactions commonly require a high level of trust between participants and
are short in duration. The Atomic Transaction specification defines protocols that
enable existing transaction processing systems to wrap their proprietary protocols
and interoperate across different hardware and software vendors.

To understand the protocol described in this specification, the following assumptions
are made:

• The reader is familiar with existing standards for two-phase commit protocols and
with commercially available implementations of such protocols. Therefore this
section includes only those details that are essential to understanding the
protocols described.

• The reader is familiar with the WS-Coordination [WSCOOR] specification that
defines the framework for the WS-AtomicTransaction coordination protocols.

• The reader is familiar with WS-Addressing [WSADDR] and WS-Policy
[WSPOLICY].

Atomic transactions have an all-or-nothing property. The actions taken prior to
commit are only tentative (i.e., not persistent and not visible to other activities).
When an application finishes, it requests the coordinator to determine the outcome
for the transaction. The coordinator determines if there were any processing failures
by asking the participants to vote. If the participants all vote that they were able to
execute successfully, the coordinator commits all actions taken. If a participant
votes that it needs to abort or a participant does not respond at all, the coordinator
aborts all actions taken. Commit makes the tentative actions visible to other
transactions. Abort makes the tentative actions appear as if the actions never
happened. Atomic transactions have proven to be extremely valuable for many
applications. They provide consistent failure and recovery semantics, so the
applications no longer need to deal with the mechanics of determining a mutually
agreed outcome decision or to figure out how to recover from a large number of
possible inconsistent states.

Atomic Transaction defines protocols that govern the outcome of atomic
transactions. It is expected that existing transaction processing systems wrap their
proprietary mechanisms and interoperate across different vendor implementations.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [KEYWORDS].

Namespace URIs of the general form "some-URI" represents some application-
dependent or context-dependent URI as defined in RFC2396 [URI].

1.2 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

Page 4 of 21

 http://schemas.xmlsoap.org/ws/2004/10/wsat

This is also used as the CoordinationContext type for atomic transactions.

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

wscoor http://schemas.xmlsoap.org/ws/2004/10/wscoor

wsat http://schemas.xmlsoap.org/ws/2004/10/wsat

If an action URI is used then the action URI MUST consist of the wsat namespace
URI concatenated with the "/" character and the element name. For example:

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Commit

1.3 XSD and WSDL Files
The following links hold the XML schema and the WSDL declarations defined in this
document.

http://schemas.xmlsoap.org/ws/2004/10/wsat/wsat.xsd

http://schemas.xmlsoap.org/ws/2004/10/wsat/wsat.wsdl

Soap bindings for the WSDL documents defined in this specification MUST use
"document" for the style attribute.

1.4 AT Protocol Elements
The protocol elements define various extensibility points that allow other child or
attribute content. Additional children and/or attributes MAY be added at the indicated
extension points but MUST NOT contradict the semantics of the parent and/or owner,
respectively. If a receiver does not recognize an extension, the receiver SHOULD
ignore the extension.

2. Atomic Transaction Context
Atomic Transaction builds on WS-Coordination, which defines an activation and a
registration service. Example message flows and a complete description of creating
and registering for coordinated activities is found in the WS-Coordination
specification [WSCOOR].

The Atomic Transaction coordination context must flow on all application messages
involved with the transaction.

Atomic Transaction adds the following semantics to the CreateCoordinationContext
operation on the activation service.

• If the request includes the CurrentContext element, the target coordinator is
interposed as a subordinate to the coordinator stipulated inside the
CurrentContext element.

• If the request does not include a CurrentContext element, the target coordinator
creates a new transaction and acts as the root.

A coordination context may have an Expires attribute. This attribute specifies the
earliest point in time at which a transaction may be terminated solely due to its
length of operation. From that point forward, the transaction manager may elect to

Page 5 of 21

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2004/10/wscoor
http://schemas.xmlsoap.org/ws/2004/10/wsat
http://schemas.xmlsoap.org/ws/2004/10/wsat/wsat.xsd
http://schemas.xmlsoap.org/ws/2004/10/wsat/wsat.wsdl

unilaterally roll back the transaction, so long as it has not transmitted a Commit or a
Prepared notification.

The Atomic Transaction protocol is identified by the following coordination type:

 http://schemas.xmlsoap.org/ws/2004/10/wsat

3. Atomic Transaction Protocols
This specification defines the following protocols for atomic transactions.

• Completion: The completion protocol initiates commitment processing. Based
on each protocol's registered participants, the coordinator begins with Volatile
2PC then proceeds through Durable 2PC. The final result is signaled to the
initiator.

• Two-Phase Commit (2PC): The 2PC protocol coordinates registered
participants to reach a commit or abort decision, and ensures that all participants
are informed of the final result. The 2PC protocol has two variants:

• Volatile 2PC: Participants managing volatile resources such as a cache
should register for this protocol.

• Durable 2PC: Participants managing durable resources such as a database
should register for this protocol.

A participant can register for more than one of these protocols by sending multiple
Register messages.

3.1 Preconditions
The correct operation of the protocols requires that a number of preconditions MUST
be established prior to the processing:

1. The source MUST have knowledge of the destination's policies, if any, and the
source MUST be capable of formulating messages that adhere to this policy.

2. If a secure exchange of messages is required, then the source and destination
MUST have a security context.

3.2 Completion Protocol
The Completion protocol is used by an application to tell the coordinator to either try
to commit or abort an atomic transaction. After the transaction has completed, a
status is returned to the application.

An initiator registers for this protocol using the following protocol identifier:

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Completion

The diagram below illustrates the protocol abstractly:

Page 6 of 21

The coordinator accepts:

Commit
Upon receipt of this notification, the coordinator knows that the participant has
completed application processing and that it should attempt to commit the
transaction.

Rollback
Upon receipt of this notification, the coordinator knows that the participant has
terminated application processing and that it should abort the transaction.

The initiator accepts:

Committed
Upon receipt of this notification, the initiator knows that the coordinator reached
a decision to commit.

Aborted
Upon receipt of this notification, the initiator knows that the coordinator reached
a decision to abort.

Conforming implementations must implement Completion.

3.3 Two-Phase Commit Protocol
The Two-Phase Commit (2PC) protocol is a Coordination protocol that defines how
multiple participants reach agreement on the outcome of an atomic transaction. The
2PC protocol has two variants: Durable 2PC and Volatile 2PC.

3.3.1 Volatile Two-Phase Commit Protocol

Upon receiving a Commit notification in the completion protocol, the root coordinator
begins the prepare phase of all participants registered for the Volatile 2PC protocol.
All participants registered for this protocol must respond before a Prepare is issued
to a participant registered for Durable 2PC. Further participants may register with
the coordinator until the coordinator issues a Prepare to any durable participant. A
volatile recipient is not guaranteed to receive a notification of the transaction's
outcome.

Participants register for this protocol using the following protocol identifier:

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC

3.3.2 Durable Two-Phase Commit Protocol

After receiving a Commit notification in the completion protocol and upon
successfully completing the prepare phase for Volatile 2PC participants, the root
coordinator begins the Prepare phase for Durable 2PC participants. All participants

Page 7 of 21

registered for this protocol must respond Prepared or ReadOnly before a Commit
notification is issued to a participant registered for either protocol.

Participants register for this protocol using the following protocol identifier:

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Durable2PC

3.3.3 2PC Diagram and Notifications

The diagram below illustrates the protocol abstractly:

The participant accepts:

Prepare
Upon receipt of this notification, the participant knows to enter phase 1 and vote
on the outcome of the transaction. If the participant does not know of the
transaction, it must vote to abort. If the participant has already voted, it should
resend the same vote.

Rollback
Upon receipt of this notification, the participant knows to abort, and forget, the
transaction. This notification can be sent in either phase 1 or phase 2. Once
sent, the coordinator may forget all knowledge of this transaction.

Commit
Upon receipt of this notification, the participant knows to commit the transaction.
This notification can only be sent after phase 1 and if the participant voted to
commit. If the participant does not know of the transaction, it must send a
Committed notification to the coordinator.

The coordinator accepts:

Prepared
Upon receipt of this notification, the coordinator knows the participant is
prepared and votes to commit the transaction.

ReadOnly
Upon receipt of this notification, the coordinator knows the participant votes to
commit the transaction, and has forgotten the transaction. The participant does
not wish to participate in phase 2.

Aborted

Page 8 of 21

Upon receipt of this notification, the coordinator knows the participant has
aborted, and forgotten, the transaction.

Committed
Upon receipt of this notification, the coordinator knows the participant has
committed the transaction. That participant may be safely forgotten.

Replay
Upon receipt of this notification, the coordinator may assume the participant has
suffered a recoverable failure. It should resend the last appropriate protocol
notification.

Conforming implementations MUST implement the 2PC protocol.

4. AT Policy Assertion
WS-Policy Framework [WS-Policy] and WS-Policy Attachment [WS-PolicyAttachment]
collectively define a framework, model and grammar for expressing the capabilities,
requirements, and general characteristics of entities in an XML Web services-based
system. To enable a web service to describe transactional capabilities and
requirements of a service and its operations, this specification defines a pair of
Atomic Transaction policy assertions that leverage the WS-Policy framework.

4.1 Assertion Model
The AT policy assertions are provided by a web service to qualify the transactional
processing of messages associated with the particular operation to which the
assertions are scoped. The AT policy assertions indicate:

1. whether a requester MAY, MUST or SHOULD NOT include an AtomicTransaction
CoordinationContext flowed with the message.

2. the capability of the target service to process the message under an atomic
transaction regardless of whether the requester supplies an AtomicTransaction
CoordinationContext.

The AT policy assertions are semantically independent of one another, and may be
used together or in isolation.

4.2 Normative Outline
The normative outlines for the AT policy assertions are:

<wsat:ATAssertion [wsp:Optional="true"]? ... >

 ...

</wsat:ATAssertion>

The following describes additional, normative constraints on the outline listed above:

/wsat:ATAssertion

A policy assertion that specifies that an atomic transaction MUST be flowed inside a
requester’s message. From the perspective of the requester, the target service that
processes the transaction MUST behave as if it had participated in the transaction.
The transaction MUST be represented as a SOAP header in CoordinationContext
format, as defined in WS-Coordination [WS-Coordination].

/wsat:ATAssertion/@wsp:Optional="true"

Page 9 of 21

Per WS-Policy [WS-Policy], this is compact notation for two policy alternatives, one
with and one without the assertion. Presence of both policy alternatives indicates
that the behavior indicated by the assertion is optional, such that an atomic
transaction MAY be flowed inside a requester’s message. The absence of the
assertion is interpreted to mean that a transaction SHOULD NOT be flowed inside a
requester’s message.

<wsat:ATAlwaysCapability ... />

The following describes additional, normative constraints on the outline listed above:

/wsat:ATAlwaysCapability

A policy assertion that specifies a capability of the target service indicating that a
requester’s message will be processed transactionally regardless of whether the
requester supplies an AtomicTransaction CoordinationContext. If an
AtomicTransaction context is provided by the requester, it will be used. Otherwise
the processing of the message will be within a transaction implicitly started and
ended by the target service’s environment as part of the processing of that message.

4.3 Assertion Attachment
Because the AT policy assertions indicate atomic transaction behavior for a single
operation, the assertions have Operation Policy Subject [WS-PolicyAttachment].

WS-PolicyAttachment defines two WSDL [WSDL 1.1] policy attachment points with
Operation Policy Subject:

• wsdl:portType/wsdl:operation – A policy expression containing the AT policy
assertion MUST NOT be attached to a wsdl:portType; the AT policy assertions
specify a concrete behavior whereas the wsdl:portType is an abstract construct.

• wsdl:binding/wsdl:operation – A policy expression containing the AT policy
assertions SHOULD be attached to a wsdl:binding.

4.4 Assertion Example
An example use of the AT policy assertion follows:

(01) <wsdl:definitions

(02) targetNamespace="bank.example.com"

(03) xmlns:tns="bank.example.com"

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

(05) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

(06) xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsat"

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd" >

(08)

(09) <wsp:Policy wsu:Id="TransactedPolicy1" >

(10) <wsat:ATAssertion wsp:optional="true" />

(11) <!-- omitted assertions -->

(12) </wsp:Policy>

Page 10 of 21

(13) <wsp:Policy wsu:Id="TransactedPolicy2" >

(14) <wsat:ATAlwaysCapability />

(15) <!-- omitted assertions -->

(16) </wsp:Policy>

(17) <!-- omitted elements -->

(18) <wsdl:binding name="BankBinding" type="tns:BankPortType" >

(19) <!-- omitted elements -->

(20) <wsdl:operation name="QueryBalance" >

(21) <wsp:PolicyReference URI="#TransactedPolicy2"

wsdl:required="true" />

(22) <!-- omitted elements -->

(23) </wsdl:operation>

(24) <wsdl:operation name="TransferFunds" >

(25) <wsp:PolicyReference URI="#TransactedPolicy1"

wsdl:required="true" />

(26) <!-- omitted elements -->

(27) </wsdl:operation>

(28) </wsdl:binding>

(29) </wsdl:definitions>

Lines (9-12) are a policy expression that includes an AT policy assertion (Line 10) to
indicate that an atomic transaction in WS-Coordination [WS-Coordination] format
MAY be used.
Lines (13-16) are a policy expression that includes an AT policy assertion (Line 14)
to indicate that a capability of the target service is that it will process messages in a
transaction regardless of whether any AtomicTransaction CoordinationContext is sent
by the requester.

Lines (20-23) are a WSDL [WSDL 1.1] binding. Line (21) indicates that the policy in
Lines (13-16) applies to this binding, specifically indicating that QueryBalance
messages are processed in an atomic transaction regardless of whether a requester
provides an AtomicTransaction CoordinationContext.

Lines (24-27) are a WSDL [WSDL 1.1] binding. Line (25) indicates that the policy in
Lines (9-12) applies to this binding, specifically indicating that an atomic transaction
MAY flow inside messages.

5. Transaction Faults
WS-AtomicTransaction faults MUST include as the [action] property the following
fault action URI:

http://schemas.xmlsoap.org/ws/2004/10/wsat/fault

Page 11 of 21

The faults defined in this section are generated if the condition stated in the
preamble is met. Faults are targeted at a destination endpoint according to the fault
handling rules defined in [WSADDR].

The definitions of faults in this section use the following properties:

[Code] The fault code.

[Subcode] The fault subcode.

[Reason] The English language reason element.

[Detail] The detail element. If absent, no detail element is defined for the fault.

For SOAP 1.2, the [Code] property MUST be either "Sender" or "Receiver". These
properties are serialized into text XML as follows:

SOAP Version Sender Receiver

SOAP 1.2 S:Sender S:Receiver

The properties above bind to a SOAP 1.2 fault as follows:

<S:Envelope>

 <S:Header>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/10/wsat/fault

 </wsa:Action>

 <!-- Headers elided for clarity. -->

 </S:Header>

 <S:Body>

 <S:Fault>

 <S:Code>

 <S:Value>[Code]</S:Value>

 <S:Subcode>

 <S:Value>[Subcode]</S:Value>

 </S:Subcode>

 </S:Code>

 <S:Reason>

 <S:Text xml:lang="en">[Reason]</S:Text>

 </S:Reason>

 <S:Detail>

 [Detail]

 ...

 </S:Detail>

Page 12 of 21

 </S:Fault>

 </S:Body>

</S:Envelope>

The properties bind to a SOAP 1.1 fault as follows:

<S11:Envelope>

 <S11:Body>

 <S11:Fault>

 <faultcode>[Subcode]</faultcode>

 <faultstring xml:lang="en">[Reason]</faultstring>

 </S11:Fault>

 </S11:Body>

</S11:Envelope>

5.1 InconsistentInternalState
This fault is sent by a participant to indicate that it cannot fulfill its obligations. This
indicates a global consistency failure and is an unrecoverable condition.

Properties:

[Code] Sender

[Subcode] wsat:InconsistentInternalState

[Reason] A global consistency failure has occurred. This is an unrecoverable
condition.

[Detail] unspecified

6. Security Model
The security model for atomic transactions builds on the model defined in WS-
Coordination [WSCOOR]. That is, services have policies specifying their
requirements and requestors provide claims (either implicit or explicit) and the
requisite proof of those claims. Coordination context creation establishes a base
secret which can be delegated by the creator as appropriate.

Because atomic transactions represent a specific use case rather than the general
nature of coordination contexts, additional aspects of the security model can be
specified.

All access to atomic transaction protocol instances is on the basis of identity. The
nature of transactions, specifically the uncertainty of systems means that the
security context established to register for the protocol instance may not be available
for the entire duration of the protocol.

Consider for example the scenarios where a participant has committed its part of the
transaction, but for some reason the coordinator never receives acknowledgement of
the commit. The result is that when communication is re-established in the future,
the coordinator will attempt to confirm the commit status of the participant, but the
participant, having committed the transaction and forgotten all information
associated with it, no longer has access to the special keys associated with the
token.

Page 13 of 21

The participant can only prove its identity to the coordinator when it indicates that
the specified transaction is not in its log and assumed committed. This is illustrated
in the figure below:

There are, of course, techniques to mitigate this situation but such options will not
always be successful. Consequently, when dealing with atomic transactions, it is
critical that identity claims always be proven to ensure that correct access control is
maintained by coordinators.

There is still value in coordination context-specific tokens because they offer a
bootstrap mechanism so that all participants need not be pre-authorized. As well, it
provides additional security because only those instances of an identity with access
to the token will be able to securely interact with the coordinator (limiting privileges
strategy). This is illustrated in the figure below:

The "list" of authorized participants ensures that application messages having a
coordination context are properly authorized since altering the coordination context
ID will not provide additional access unless (1) the bootstrap key is provided, or (2)
the requestor is on the authorized participant "list" of identities.

7. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security [WSSec]. In order to properly
secure messages, the body and all relevant headers need to be included in the
signature. Specifically, the <wscoor:CoordinationContext> header needs to be
signed with the body and other key message headers in order to "bind" the two
together.

Page 14 of 21

In the event that a participant communicates frequently with a coordinator, it is
RECOMMENDED that a security context be established using the mechanisms
described in WS-Trust [WSTrust] and WS-SecureConversation [WSSecConv] allowing
for potentially more efficient means of authentication.

It is common for communication with coordinators to exchange multiple messages.
As a result, the usage profile is such that it is susceptible to key attacks. For this
reason it is strongly RECOMMENDED that the keys be changed frequently. This "re-
keying" can be effected a number of ways. The following list outlines four common
techniques:

• Attaching a nonce to each message and using it in a derived key function with
the shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context (not possible for delegated keys)

• Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the SCT and
secret returned when the coordination context is created. That is, the keys used to
secure the channel may be independent of the key used to prove the right to register
with the activity.

The security context MAY be re-established using the mechanisms described in WS-
Trust [WSTrust] and WS-SecureConversation [WSSecConv]. Similarly, secrets can
be exchanged using the mechanisms described in WS-Trust. Note, however, that the
current shared secret SHOULD NOT be used to encrypt the new shared secret.
Derived keys, the preferred solution from this list, can be specified using the
mechanisms described in WS-SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol
and identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy [WSPOLICY] and WS-
SecurityPolicy [WSSecPolicy]).

• Authentication – Authentication is established using the mechanisms described
in WS-Security and WS-Trust [WSTrust]. Each message is authenticated using
the mechanisms described in WS-Security [WSSec].

• Accountability – Accountability is a function of the type of and string of the key
and algorithms being used. In many cases, a strong symmetric key provides
sufficient accountability. However, in some environments, strong PKI signatures
are required.

• Availability – Many services are subject to a variety of availability attacks.
Replay is a common attack and it is RECOMMENDED that this be addressed as
described in the next bullet. Other attacks, such as network-level denial of
service attacks are harder to avoid and are outside the scope of this specification.
That said, care should be taken to ensure that minimal processing be performed
prior to any authenticating sequences.

Page 15 of 21

• Replay – Messages may be replayed for a variety of reasons. To detect and
eliminate this attack, mechanisms should be used to identify replayed messages
such as the timestamp/nonce outlined in WS-Security [WSSec]. Alternatively,
and optionally, other technologies, such as sequencing, can also be used to
prevent replay of application messages.

8. Use of WS-Addressing Headers
The messages defined in WS-Coordination and WS-AtomicTransaction can be
classified into four types:

• Request messages: CreateCoordinationContext and Register.

• Reply messages: CreateCoordinationContextResponse and
RegisterResponse.

• Notification messages: Commit, Rollback, Committed, Aborted, Prepare,
Prepared, ReadOnly and Replay.

• Fault messages

Request and reply messages follow the standard "Request Reply" pattern as defined
in WS-Addressing. Notification messages follow the standard "one way" pattern as
defined in WS-Addressing. There are two types of notification messages:

• A notification message is a terminal message when it indicates the end of a
coordinator/participant relationship. Committed, Aborted and ReadOnly are
terminal messages.

• A notification message is not a terminal message when it does not indicate the
end of a coordinator/participant relationship. Commit, Rollback, Prepare,
Prepared and Replay are not terminal messages.

The following statements define addressing interoperability requirements for the
respective WS-Coordination and WS-AtomicTransaction message types:

Request messages

• MUST include a wsa:MessageID header.

• MUST include a wsa:ReplyTo header.

Reply messages

• MUST include a wsa:RelatesTo header, specifying the MessageID from the
corresponding Request message.

Non-terminal notification messages

• MUST include a wsa:ReplyTo header

Terminal notification messages

• SHOULD NOT include a wsa:ReplyTo header

Fault messages

• MUST include a wsa:RelatesTo header, specifying the MessageID from the
Request or Notification message that generated the fault condition.

Notification messages are addressed by both coordinators and participants using the
Endpoint References initially obtained during the Register-RegisterResponse
exchange. If a wsa:ReplyTo header is present in a notification message it MAY be
used by the recipient, for example in cases where a Coordinator or Participant has

Page 16 of 21

forgotten a transaction that is completed and needs to respond to a resent protocol
message. Permanent loss of connectivity between a coordinator and a participant in
an in-doubt state can result in data corruption.

If a wsa:FaultTo header is present on a message that generates a fault condition,
then it MUST be used by the recipient as the destination for any fault. Otherwise,
fault messages MAY be addressed by both coordinators and participants using the
Endpoint References initially obtained during the Register-RegisterResponse
exchange.

All messages are delivered using connections initiated by the sender. Endpoint
References MUST contain physical addresses and MUST NOT use well-known
"anonymous" endpoint defined in WS-Addressing.

9. References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC
2119, Harvard University, March 1997

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI):
Generic Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August
1998

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001

[WSCOOR]
Web Services Coordination (WS-Coordination), Arjuna Technologies Ltd., BEA
Systems, Hitachi Ltd., IBM, IONA Technologies and Microsoft, August 2005

[WSADDR]
Web Services Addressing (WS-Addressing), Microsoft, IBM, Sun, BEA Systems,
SAP, Sun, August 2004

[WSPOLICY]
Web Services Policy Framework (WS-Policy), VeriSign, Microsoft, Sonic Software,
IBM, BEA Systems, SAP, September 2004

[WSPOLICYATTACH]
Web Services Policy Attachment (WS-PolicyAttachment), VeriSign, Microsoft,
Sonic Software, IBM, BEA Systems, SAP, September 2004

[WSDL]
Web Services Description Language (WSDL) 1.1

"http://www.w3.org/TR/2001/NOTE-wsdl-20010315"

[WSSec]
OASIS Standard 200401, March 2004, "Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004)"

Page 17 of 21

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://schemas.xmlsoap.org/ws/2004/10/coord
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

[WSSecPolicy]
Web Services Security Policy Language (WS-SecurityPolicy), Microsoft, VeriSign,
IBM, RSA Security, July 2005

[WSSecConv]
Web Services Secure Conversation Language (WS-SecureConversation),
OpenNetwork, Layer7, Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA
Systems, Oblix, RSA Security, Ping Identity, Westbridge, Computer Associates,
February 2005

[WSTrust]
Web Services Trust Language (WS-Trust), OpenNetwork, Layer7, Netegrity,
Microsoft, Reactivity, VeriSign, IBM, BEA Systems, Oblix, RSA Security, Ping
Identity, Westbridge, Computer Associates, February 2005

10. State Tables
The following state tables specify the behavior of coordinators and participants when
presented with protocol messages or internal events. These tables present the view
of a coordinator or participant with respect to a single partner. A coordinator with
multiple participants can be understood as a collection of independent coordinator
state machines.

Each cell in the tables uses the following convention:

action to take
next state

Legend

action to take
next state

Legend

Each state supports a number of possible events. Expected events are processed by
taking the prescribed action and transitioning to the next state. Unexpected protocol
messages will result in a fault message, with a standard fault code such as Invalid
State or Inconsistent Internal State. Events that may not occur in a given state are
labelled as N/A.

Page 18 of 21

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/02/sc/
http://schemas.xmlsoap.org/ws/2005/02/trust/

NoneNoneN/AN/ANoneActiveN/AAll
Forgotten

N/AN/A
Send Rollback

AbortingN/AN/AN/AN/A
Write
Failed

N/AN/ASend Commit
Committing

N/AN/AN/AN/AWrite
Done

N/AN/AN/AN/ARecord Outcome
PreparedSuccess

N/AN/ACommit
Decision

N/A
Resend
Commit

Committing
N/AN/AResend Prepare

Preparing
N/AN/AComms

Times out

Ignore
Aborting

Ignore
Committing

Ignore
PreparedSuccessN/A

Send Rollback
Aborting

Send Rollback
AbortingN/A

Expires
Times out

Return
Aborted
Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/ASend Rollback

Aborting
Send Rollback

Aborting

Return
Aborted
None

User
Rollback

Return
Aborted
Aborting

Return
Committed
Committing

Ignore
PreparedSuccessN/A

Ignore
Preparing

Send Prepare
Preparing

Return
Aborted
None

User
Commit

Internal
Events

Send
Rollback
Aborting

Send
Commit

Committing

Ignore
PreparedSuccessN/A

Send Rollback
Aborting

Send Rollback
Aborting

Durable: Send
Rollback

Volatile: Invalid
State
None

Replay

Invalid
State

Aborting

Forget
Committing

Invalid State
PreparedSuccess

N/AInvalid State
Aborting

Invalid State
Aborting

Ignore
None

Committed

Forget
Aborting

Invalid State
Committing

Invalid State
PreparedSuccess

N/AForget
Aborting

Forget
Aborting

Ignore
None

Aborted

Forget
Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/AForget

Preparing
Forget
Active

Ignore
NoneReadOnly

Resend
Rollback,
and forget
Aborting

Resend
Commit

Committing

Ignore
PreparedSuccessN/A

Record Vote
Preparing

Invalid State
Aborting

Durable: Send
Rollback

Volatile: Invalid
State
None

Prepared

Invalid
State

Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/A

Durable: Invalid State
Aborting

Volatile:Send
RegisterResponse

Active

Send
RegisterResponse

Active

Invalid State
NoneRegister

AbortingCommittingPreparedSuccessPreparedPreparingActiveNone

StatesInbound
Events

Atomic Transaction 2PC protocol
(Coordinator View)

NoneNoneN/AN/ANoneActiveN/AAll
Forgotten

N/AN/A
Send Rollback

AbortingN/AN/AN/AN/A
Write
Failed

N/AN/ASend Commit
Committing

N/AN/AN/AN/AWrite
Done

N/AN/AN/AN/ARecord Outcome
PreparedSuccess

N/AN/ACommit
Decision

N/A
Resend
Commit

Committing
N/AN/AResend Prepare

Preparing
N/AN/AComms

Times out

Ignore
Aborting

Ignore
Committing

Ignore
PreparedSuccessN/A

Send Rollback
Aborting

Send Rollback
AbortingN/A

Expires
Times out

Return
Aborted
Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/ASend Rollback

Aborting
Send Rollback

Aborting

Return
Aborted
None

User
Rollback

Return
Aborted
Aborting

Return
Committed
Committing

Ignore
PreparedSuccessN/A

Ignore
Preparing

Send Prepare
Preparing

Return
Aborted
None

User
Commit

Internal
Events

Send
Rollback
Aborting

Send
Commit

Committing

Ignore
PreparedSuccessN/A

Send Rollback
Aborting

Send Rollback
Aborting

Durable: Send
Rollback

Volatile: Invalid
State
None

Replay

Invalid
State

Aborting

Forget
Committing

Invalid State
PreparedSuccess

N/AInvalid State
Aborting

Invalid State
Aborting

Ignore
None

Committed

Forget
Aborting

Invalid State
Committing

Invalid State
PreparedSuccess

N/AForget
Aborting

Forget
Aborting

Ignore
None

Aborted

Forget
Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/AForget

Preparing
Forget
Active

Ignore
NoneReadOnly

Resend
Rollback,
and forget
Aborting

Resend
Commit

Committing

Ignore
PreparedSuccessN/A

Record Vote
Preparing

Invalid State
Aborting

Durable: Send
Rollback

Volatile: Invalid
State
None

Prepared

Invalid
State

Aborting

Invalid State
Committing

Invalid State
PreparedSuccessN/A

Durable: Invalid State
Aborting

Volatile:Send
RegisterResponse

Active

Send
RegisterResponse

Active

Invalid State
NoneRegister

AbortingCommittingPreparedSuccessPreparedPreparingActiveNone

StatesInbound
Events

Atomic Transaction 2PC protocol
(Coordinator View)

Notes:

Page 19 of 21

1. Transitions with a “N/A” as their action are inexpressible. A TM should view these
transitions as serious internal consistency issues, and probably fatal.

2. Internal events are those that are created either within a TM itself, or on its local
system.

3. “Forget” implies that the subordinate’s is participation is removed from the coordinator
(if necessary), and otherwise the message is ignored

Page 20 of 21

N/A
Send Committed and

Forget
Committing

N/AN/A
Record
Commit
Prepared

N/AN/ACommit
Decision

N/AN/AResend Prepared
PreparedSuccessN/AN/AN/AN/AComms

Times out

Ignore
Aborting

Ignore
Committing

Ignore
PrepareSuccess

Ignore
Prepared

Send Aborted
Aborting

Send
Aborted
Aborting

N/AExpires
Times out

Internal
Events

Send Aborted, and
Forget

Aborting

InconsistentInternalState
Committing

Initiate Rollback,
Send Aborted, and

Forget
Aborting

Initiate Rollback,
Send Aborted,

and Forget
Aborting

Initiate
Rollback,

Send Aborted,
and Forget
Aborting

Initiate
Rollback,

Send
Aborted, and

Forget
Aborting

Send
Aborted

None
Rollback

InconsistentInternalState
Aborting

Ignore
Committing

Initiate commit
decision

Committing

Invalid State
Aborting

Invalid State
Aborting

Invalid State
Aborting

Send
Committed

None
Commit

Resend Aborted, and
forget

Aborting

Ignore
Committing

Resend Prepared
PreparedSuccess

Ignore
Prepared

Ignore
Preparing

Gather Vote
Decision
Preparing

Send
Aborted

None
Prepare

Invalid State
Aborting

Invalid State
Committing

Invalid State
PreparedSuccess

Invalid State
Prepared

Invalid State
Aborting

Invalid State
Active

Register
Subordinate

Active

Register
Response

AbortingCommittingPreparedSuccessPreparedPreparingActiveNone

StatesInbound
Events

Atomic Transaction 2PC protocol
(Participant View)

NoneNoneN/AN/A
Send

ReadOnly
None

N/ANoneAll
Forgotten

N/AN/AN/A

Initiate Rollback,
Send Aborted,

and Forget
Aborting

N/AN/AN/AWrite
Failed

N/AN/AN/ASend Prepared
PreparedSuccessN/AN/AN/AWrite

Done

N/AN/AN/AN/ASend Aborted
AbortingN/AN/ARollback

Decision

N/A
Send Committed and

Forget
Committing

N/AN/A
Record
Commit
Prepared

N/AN/ACommit
Decision

N/AN/AResend Prepared
PreparedSuccessN/AN/AN/AN/AComms

Times out

Ignore
Aborting

Ignore
Committing

Ignore
PrepareSuccess

Ignore
Prepared

Send Aborted
Aborting

Send
Aborted
Aborting

N/AExpires
Times out

Internal
Events

Send Aborted, and
Forget

Aborting

InconsistentInternalState
Committing

Initiate Rollback,
Send Aborted, and

Forget
Aborting

Initiate Rollback,
Send Aborted,

and Forget
Aborting

Initiate
Rollback,

Send Aborted,
and Forget
Aborting

Initiate
Rollback,

Send
Aborted, and

Forget
Aborting

Send
Aborted

None
Rollback

InconsistentInternalState
Aborting

Ignore
Committing

Initiate commit
decision

Committing

Invalid State
Aborting

Invalid State
Aborting

Invalid State
Aborting

Send
Committed

None
Commit

Resend Aborted, and
forget

Aborting

Ignore
Committing

Resend Prepared
PreparedSuccess

Ignore
Prepared

Ignore
Preparing

Gather Vote
Decision
Preparing

Send
Aborted

None
Prepare

Invalid State
Aborting

Invalid State
Committing

Invalid State
PreparedSuccess

Invalid State
Prepared

Invalid State
Aborting

Invalid State
Active

Register
Subordinate

Active

Register
Response

AbortingCommittingPreparedSuccessPreparedPreparingActiveNone

StatesInbound
Events

Atomic Transaction 2PC protocol
(Participant View)

NoneNoneN/AN/A
Send

ReadOnly
None

N/ANoneAll
Forgotten

N/AN/AN/A

Initiate Rollback,
Send Aborted,

and Forget
Aborting

N/AN/AN/AWrite
Failed

N/AN/AN/ASend Prepared
PreparedSuccessN/AN/AN/AWrite

Done

N/AN/AN/AN/ASend Aborted
AbortingN/AN/ARollback

Decision

Notes:

1. Transitions with a “N/A” as their action are inexpressible. A TM should view these
transitions as serious internal consistency issues, and probably fatal.

2. Internal events are those that are created either within a TM itself, or on its local
system.

Page 21 of 21

	Web Services Atomic Transaction (WS-AtomicTransaction)
	Version 1.0
	August 2005
	Authors
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Acknowledgments
	Table of Contents
	1. Introduction
	1.1 Notational Conventions
	1.2 Namespace
	1.3 XSD and WSDL Files
	1.4 AT Protocol Elements

	2. Atomic Transaction Context
	3. Atomic Transaction Protocols
	3.1 Preconditions
	3.2 Completion Protocol
	3.3 Two-Phase Commit Protocol
	3.3.1 Volatile Two-Phase Commit Protocol
	3.3.2 Durable Two-Phase Commit Protocol
	3.3.3 2PC Diagram and Notifications

	4. AT Policy Assertion
	4.1 Assertion Model
	4.2 Normative Outline
	4.3 Assertion Attachment
	4.4 Assertion Example

	5. Transaction Faults
	5.1 InconsistentInternalState

	6. Security Model
	7. Security Considerations
	8. Use of WS-Addressing Headers
	9. References
	10. State Tables

