
Web Services Coordination (WS-
Coordination)
Version 1.0

August 2005

Authors

Luis Felipe Cabrera, Microsoft
George Copeland, Microsoft
Max Feingold, Microsoft (Editor)
Robert W Freund, Hitachi
Tom Freund, IBM
Jim Johnson, Microsoft
Sean Joyce, IONA
Chris Kaler, Microsoft
Johannes Klein, Microsoft
David Langworthy, Microsoft
Mark Little, Arjuna Technologies
Anthony Nadalin, IBM
Eric Newcomer, IONA
David Orchard, BEA Systems
Ian Robinson, IBM
John Shewchuk, Microsoft
Tony Storey, IBM

Copyright Notice
(c) 2002-2005 Arjuna Technologies, Ltd., BEA Systems, Hitachi, Ltd., International
Business Machines Corporation, IONA Technologies, Microsoft Corporation. All rights
reserved.

Permission to copy and display the “Web Services Coordination” Specification (the
“Specification”, which includes WSDL and schema documents), in any medium without
fee or royalty is hereby granted, provided that you include the following on ALL copies of
the “Web Services Coordination” Specification that you make:

1. A link or URL to the “Web Services Coordination” Specification at one of the
Authors’ websites

2. The copyright notice as shown in the “Web Services Coordination”
Specification.

Arjuna, BEA, Hitachi, IBM, IONA and Microsoft (collectively, the “Authors”) each agree to
grant you a license, under royalty-free and otherwise reasonable, non-discriminatory
terms and conditions, to their respective essential patent claims that they deem
necessary to implement the “Web Services Coordination” Specification.

THE “WEB SERVICES COORDINATION” SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE

1 of 23

http://www.arjuna.com/
http://www.bea.com/
http://www.hitachi.com/
http://www.ibm.com/
http://www.ibm.com/
http://www.iona.com/
http://www.microsoft.com/

“WEB SERVICES COORDINATION” SPECIFICATION ARE SUITABLE FOR ANY PURPOSE;
NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE “WEB SERVICES COORDINATION” SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the “Web Services Coordination” Specification or its
contents without specific, written prior permission. Title to copyright in the “Web
Services Coordination” Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification (WS-Coordination) describes an extensible framework for providing
protocols that coordinate the actions of distributed applications. Such coordination
protocols are used to support a number of applications, including those that need to
reach consistent agreement on the outcome of distributed activities.

The framework defined in this specification enables an application service to create a
context needed to propagate an activity to other services and to register for coordination
protocols. The framework enables existing transaction processing, workflow, and other
systems for coordination to hide their proprietary protocols and to operate in a
heterogeneous environment.

Additionally this specification describes a definition of the structure of context and the
requirements for propagating context between cooperating services.

Composable Architecture
By using the SOAP [SOAP] and WSDL [WSDL] extensibility model, SOAP-based and
WSDL-based specifications are designed to be composed with each other to define a rich
Web services environment. As such, WS-Coordination by itself does not define all the
features required for a complete solution. WS-Coordination is a building block that is
used in conjunction with other specifications and application-specific protocols to
accommodate a wide variety of protocols related to the operation of distributed Web
services.

The Web service protocols defined in this specification should be used when
interoperability is needed across vendor implementations, trust domains, etc. Thus, the
Web service protocols defined in this specification can be combined with proprietary
protocols within the same application.

Status
This specification has been developed through the WS-* Workshop process and is
offered for public consideration and/or implementation.

2 of 23

Acknowledgments
The following individuals have provided invaluable input into the design of the WS-
Coordination specification:

Francisco Curbera, IBM
Sanjay Dalal, BEA Systems
Doug Davis, IBM
Don Ferguson, IBM
Kirill Gavrylyuk, Microsoft
Dan House, IBM
Oisin Hurley, IONA
Frank Leymann, IBM
Thomas Mikalsen, IBM
Jagan Peri, Microsoft
Alex Somogyi, BEA Systems
Stefan Tai, IBM
Satish Thatte, Microsoft
Gary Tully, IONA
Sanjiva Weerawarana, IBM

We also wish to thank the technical writers and development reviewers who provided
feedback to improve the readability of the specification.

Table of Contents
1. Introduction

1.1 The Model
1.2 Extensibility
1.3 Notational Conventions
1.4 Namespace
1.5 XSD and WSDL Files
1.6 Coordination Protocol Elements

2. CoordinationContext
3. Coordination Service

3.1 Activation Service
3.1.1 CreateCoordinationContext
3.1.2 CreateCoordinationContextResponse

3.2 Registration Service
3.2.1 Register Message
3.2.2 RegistrationResponse Message

4. Coordination Faults
4.1. Invalid State
4.2. Invalid Protocol
4.3. Invalid Parameters

3 of 23

4.4. No Activity
4.5. Context Refused
4.6 Already Registered

5. Security Model
5.1. CoordinationContext Creation
5.2. Registration Rights Delegation

6. Security Considerations
7. Glossary
8. References

1. Introduction
The current set of Web service specifications [WSDL, SOAP] defines protocols for Web
service interoperability. Web services increasingly tie together a large number of
participants forming large distributed computational units – we refer to these
computation units as activities.

The resulting activities are often complex in structure, with complex relationships
between their participants. The execution of such activities often takes a long time to
complete due to business latencies and user interactions.

This specification defines an extensible framework for coordinating activities using a
coordinator and set of coordination protocols. This framework enables participants to
reach consistent agreement on the outcome of distributed activities. The coordination
protocols that can be defined in this framework can accommodate a wide variety of
activities, including protocols for simple short-lived operations and protocols for complex
long-lived business activities.

Note that the use of the coordination framework is not restricted to transaction
processing systems; a wide variety of protocols can be defined for distributed
applications.

1.1 The Model
This specification describes a framework for a coordination service (or coordinator)
which consists of these component services:

• An Activation service with an operation that enables an application to create a
coordination instance or context.

• A Registration service with an operation that enables an application to register for
coordination protocols.

• A coordination type-specific set of coordination protocols.

This is illustrated below in Figure 1.

4 of 23

Applications use the Activation service to create the coordination context for an activity.
Once a coordination context is acquired by an application, it is then sent by whatever
appropriate means to another application.

The context contains the necessary information to register into the activity specifying
the coordination behavior that the application will follow.

Additionally, an application that receives a coordination context may use the
Registration service of the original application or may use one that is specified by an
interposing, trusted coordinator. In this manner an arbitrary collection of Web services
may coordinate their joint operation.

1.2 Extensibility
The specification provides for extensibility and flexibility along two dimensions. The
framework allows for:

• The publication of new coordination protocols.

• The selection of a protocol from a coordination type and the definition of extension
elements that can be added to protocols and message flows.

Extension elements can be used to exchange application-specific data on top of message
flows already defined in this specification. This addresses the need to exchange such
data as isolation-level supported signatures or other information related to business-
level coordination protocols. The data can be logged for auditing purposes, or evaluated
to ensure that a decision meets certain business-specific constraints.

To understand the syntax used in this specification, you should be familiar with the
WSDL [WSDL] specification, including its HTTP and SOAP binding styles. All WSDL port
type definitions provided here assume the existence of corresponding SOAP and HTTP
bindings.

Terms introduced in this specification are explained in the body of the specification and
summarized in the glossary.

1.3 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [KEYWORDS].

5 of 23

Namespace URIs of the general form "some-URI" represents some application-
dependent or context-dependent URI as defined in RFC2396 [URI].

This specification uses an informal syntax to describe the XML grammar of the XML
fragments below:

• The syntax appears as an XML instance, but the values indicate the data types
instead of values.

• Element names ending in "..." (such as <element.../> or <element...>) indicate that
elements/attributes irrelevant to the context are being omitted.

• Attributed names ending in "..." (such as name=...) indicate that the values are
specified below.

• Grammar in bold has not been introduced earlier in the document, or is of particular
interest in an example.

• <-- description --> is a placeholder for elements from some "other" namespace (like
##other in XSD).

• Characters are appended to elements, attributes, and <!-- descriptions --> as
follows: "?" (0 or 1), "*" (0 or more), "+" (1 or more). The characters "[" and "]" are
used to indicate that contained items are to be treated as a group with respect to the
"?", "*", or "+" characters.

• The XML namespace prefixes (defined below) are used to indicate the namespace of
the element being defined.

• Examples starting with <?xml contain enough information to conform to this
specification; others examples are fragments and require additional information to be
specified in order to conform.

XSD schemas and WSDL definitions are provided as a formal definition of grammars
[xml-schema1] [WSDL].

1.4 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

 http://schemas.xmlsoap.org/ws/2004/10/wscoor

The namespace prefix "wscoor" used in this specification is associated with this URI.

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

wscoor http://schemas.xmlsoap.org/ws/2004/10/wscoor

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing

If an action URI is used, then the action URI MUST consist of the coordination
namespace URI concatenated with the '/' character and the element name. For
example:

 http://schemas.xmlsoap.org/ws/2004/10/wscoor/Register

6 of 23

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2004/10/wscoor
http://schemas.xmlsoap.org/ws/2004/08/addressing

1.5 XSD and WSDL Files
The following links hold the XML schema and the WSDL declarations defined in this
document.

http://schemas.xmlsoap.org/ws/2004/10/wscoor/wscoor.xsd

http://schemas.xmlsoap.org/ws/2004/10/wscoor/wscoor.wsdl

Soap bindings for the WSDL documents defined in this specification MUST use
"document" for the style attribute.

1.6 Coordination Protocol Elements
The protocol elements define various extensibility points that allow other child or
attribute content. Additional children and/or attributes MAY be added at the indicated
extension points but MUST NOT contradict the semantics of the parent and/or owner,
respectively. If a receiver does not recognize an extension, the receiver SHOULD ignore
the extension.

2. CoordinationContext
The CoordinationContext is a Context type that is used to pass Coordination information
to parties involved in a coordination service. CoordinationContext elements are placed
within application messages. Conveying a context on an application message is
commonly referred to as flowing the context. A CoordinationContext provides access to
a coordination registration service, a coordination type, and relevant extensions.

The following is an example of a CoordinationContext supporting a transaction service:

<?xml version="1.0" encoding="utf-8"?>

<S:Envelope xmlns:S="http://www.w3.org/2003/05/soap-envelope">

 <S:Header>

 . . .

 <wscoor:CoordinationContext

 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"

 xmlns:wscoor="http://schemas.xmlsoap.org/ws/2004/10/wscoor"

 xmlns:myApp="http://fabrikam123.com/myApp"

 S:mustUnderstand="true">

 <wscoor:Identifier>

 http://Fabrikam123.com/SS/1234

 </wscoor:Identifier>

 <wscoor:Expires>3000</wscoor:Expires>

 <wscoor:CoordinationType>

 http://schemas.xmlsoap.org/ws/2004/10/wsat

 </wscoor:CoordinationType>

 <wscoor:RegistrationService>

7 of 23

http://schemas.xmlsoap.org/ws/2004/10/wscoor/wscoor.xsd
http://schemas.xmlsoap.org/ws/2004/10/wscoor/wscoor.wsdl

 <wsa:Address>

 http://Business456.com/mycoordinationservice/registration

 </wsa:Address>

 <wsa:ReferenceProperties>

 <myApp:BetaMark> ... </myApp:BetaMark>

 <myApp:EBDCode> ... </myApp:EBDCode>

 </wsa:ReferenceProperties>

 </wscoor:RegistrationService>

 <myApp:IsolationLevel>

 RepeatableRead

 </myApp:IsolationLevel>

 </wscoor:CoordinationContext>

 . . .

 </S:Header>

 </S:Body>

 . . .

 </S:Body >

</S:Envelope>

When an application propagates an activity using a coordination service, applications
MUST include a Coordination context in the outgoing message.

When a context is exchanged as a SOAP header, the mustUnderstand attribute must be
present and its value must be true.

3. Coordination Service
The Coordination service (or coordinator) is an aggregation of the following services:

• Activation service: Defines a CreateCoordinationContext operation that allows a
CoordinationContext to be created. The exact semantics are defined in the
specification that defines the coordination type. The Coordination service MAY
support the Activation service.

• Registration service: Defines a Register operation that allows a Web service to
register to participate in a coordination protocol. The Coordination service MUST
support the Registration service.

• A set of coordination protocol services for each supported coordination type. These
are defined in the specification that defines the coordination type.

Figure 2 illustrates how two application services (App1 and App2) with their own
coordinators (CoordinatorA and CoordinatorB) interact as the activity propagates
between them. The protocol Y and services Ya and Yb are specific to a coordination
type, which are not defined in this specification.

8 of 23

1. App1 sends a CreateCoordinationContext for coordination type Q, getting back a
Context Ca that contains the activity identifier A1, the coordination type Q and an
Endpoint Reference to CoordinatorA's Registration service RSa.

2. App1 then sends an application message to App2 containing the Context Ca.

3. App2 prefers CoordinatorB, so it uses CreateCoordinationContext with Ca as an input
to interpose CoordinatorB. CoordinatorB creates its own CoordinationContext Cb
that contains the same activity identifier and coordination type as Ca but with its
own Registration service RSb.

4. App2 determines the coordination protocols supported by the coordination type Q
and then Registers for a coordination protocol Y at CoordinatorB, exchanging
Endpoint References for App2 and the protocol service Yb. This forms a logical
connection between these Endpoint References that the protocol Y can use.

5. This registration causes CoordinatorB to forward the registration onto CoordinatorA's
Registration service RSa, exchanging Endpoint References for Yb and the protocol
service Ya. This forms a logical connection between these Endpoint References that
the protocol Y can use.

Figure 2: Two applications with their own coordinators

3.1 Activation Service
The Activation service creates a new activity and returns its coordination context.

An application sends:

CreateCoordinationContext
The structure and semantics of this message is defined in Section 3.1.1.

The activation service returns:

CreateCoordinationContextResponse

9 of 23

The structure and semantics of this message is defined in Section 3.1.2.

3.1.1 CreateCoordinationContext

This request is used to create a coordination context that supports a coordination type
(i.e., a service that provides a set of coordination protocols). This command is required
when using a network-accessible Activation service in heterogeneous environments that
span vendor implementations. To fully understand the semantics of this operation it is
necessary to read the specification where the coordination type is defined (e.g. WS-
AtomicTransaction).

The following pseudo schema defines this element:

<CreateCoordinationContext ...>

 <Expires> ... </Expires>?

 <CurrentContext> ... </CurrentContext>?

 <CoordinationType> ... </CoordinationType>

 ...

</CreateCoordinationContext>

/CreateCoordinationContext/CoordinationType
This provides the unique identifier for the desired coordination type for the activity
(e.g., a URI to the Atomic Transaction coordination type).

/CreateCoordinationContext/Expires
Optional. The expiration for the returned CoordinationContext expressed as an
unsigned integer in milliseconds.

/CreateCoordinationContext/CurrentContext
Optional. The current CoordinationContext. This may be used for a variety of
purposes including recovery and subordinate coordination environments.

/CreateCoordinationContext /{any}
Extensibility elements may be used to convey additional information.

/CreateCoordinationContext /@{any}
Extensibility attributes may be used to convey additional information.

A CreateCoordinationContext message can be as simple as the following example.
<CreateCoordinationContext>

 <CoordinationType>

 http://schemas.xmlsoap.org/ws/2004/10/wsat

 </CoordinationType>

</CreateCoordinationContext>

3.1.2 CreateCoordinationContextResponse

This returns the CoordinationContext that was created.

The following pseudo schema defines this element:

<CreateCoordinationContextResponse ...>

10 of 23

 <CoordinationContext> ... </CoordinationContext>

 ...

</CreateCoordinationContextResponse>

/CreateCoordinationContext/CoordinationContext
This is the created coordination context.

/CreateCoordinationContext /{any}
Extensibility elements may be used to convey additional information.

/CreateCoordinationContext /@{any}
Extensibility attributes may be used to convey additional information.

The following example illustrates a response:
<CreateCoordinationContextResponse>

 <CoordinationContext>

 <Identifier>

 http://Business456.com/tm/context1234

 </Identifier>

 <CoordinationType>

 http://schemas.xmlsoap.org/ws/2004/10/wsat

 </CoordinationType>

 <RegistrationService>

 <wsa:Address>

 http://Business456.com/tm/registration

 </wsa:Address>

 <wsa:ReferenceProperties>

 <myapp:PrivateInstance>

 1234

 </myapp:PrivateInstance>

 </wsa:ReferenceProperties>

 </RegistrationService>

 </CoordinationContext>

</CreateCoordinationContextResponse>

3.2 Registration Service
Once an application has a coordination context from its chosen coordinator, it can
register for the activity. The interface provided to an application registering for an
activity and for an interposed coordinator registering for an activity is the same.

The requester sends:

Register
The syntax and semantics of this message are defined in Section 3.2.1.

11 of 23

The coordinator's registration service responds with:

Registration Response
The syntax and semantics of this message are defined in Section 3.2.2.

Figure 3: The usage of Endpoint References during registration

In Figure 3, the coordinator provides the Registration Endpoint Reference in the
CoordinationContext during the CreateCoordinationContext operation. The requesting
service receives the Registration service Endpoint Reference in the CoordinationContext
in an application message.

1.) The Register message targets this Endpoint Reference and includes the participant
protocol service Endpoint Reference as a parameter.

2.) The RegisterResponse includes the coordinator's protocol service Endpoint Reference.

3. & 4.) At this point, both sides have the Endpoint References of the other's protocol
service, so the protocol messages can target the other side.

These Endpoint References may contain (opaque) wsa:ReferenceProperties to fully
qualify the target protocol service endpoint. According to the mapping rules defined in
the WS-Addressing specification, all such reference properties must be copied literally as
headers in any message targeting the endpoint.

3.2.1 Register Message

The Register request is used to do the following:

• Participant selection and registration in a particular Coordination protocol under the
current coordination type supported by the Coordination Service.

• Exchange Endpoint References. Each side of the coordination protocol (participant
and coordinator) supplies an Endpoint Reference.

Participants can register for multiple Coordination protocols by issuing multiple Register
operations. WS-Coordination assumes that transport protocols provide for message
batching if required.

12 of 23

The following pseudo schema defines this element:

<Register ...>

 <ProtocolIdentifier> ... </ProtocolIdentifier>

 <ParticipantProtocolService> ... </ParticipantProtocolService>

 ...

</Register>

/Register/ProtocolIdentifier
This URI provides the identifier of the coordination protocol selected for registration.

/Register/ParticipantProtocolService
The Endpoint Reference that the registering participant wants the coordinator to use
for the Coordination protocol (See WS-Addressing [WSADDR]).

/Register/{any}
Extensibility elements may be used to convey additional information.

/ Register/@{any}
Extensibility attributes may be used to convey additional information.

The following is an example registration message:

<Register>

 <ProtocolIdentifier>

 http://schemas.xmlsoap.org/ws/2004/10/wsat/Volatile2PC

 </ProtocolIdentifier>

 <ParticipantProtocolService>

 <wsa:Address>

 http://Adventure456.com/participant2PCservice

 </wsa:Address>

 <wsa:ReferenceProperties>

 <BetaMark> AlphaBetaGamma </BetaMark>

 </wsa:ReferenceProperties>

 </ParticipantProtocolService>

</Register>

3.2.2 RegistrationResponse Message

The response to the registration message contains the coordinators Endpoint Reference.

The following pseudo schema defines this element:

<RegisterResponse ...>

 <CoordinatorProtocolService> ... </CoordinatorProtocolService>

 ...

</RegisterResponse>

/RegisterResponse/CoordinatorProtocolService

13 of 23

The Endpoint Reference that the Coordination service wants the registered
participant to use for the Coordination protocol.

/RegisterResponse/{any}
Extensibility elements may be used to convey additional information.

/RegisterResponse /@{any}
Extensibility attributes may be used to convey additional information.

The following is an example of a RegisterResponse message:

<RegisterResponse>

 <CoordinatorProtocolService>

 <wsa:Address>

 http://Business456.com/mycoordinationservice/coordinator

 </wsa:Address>

 <wsa:ReferenceProperties>

 <myapp:MarkKey> %%F03CA2B%% </myapp:MarkKey>

 </wsa:ReferenceProperties>

 </CoordinatorProtocolService>

</RegisterResponse>

4. Coordination Faults
WS-Coordination faults MUST include as the [action] property the following fault action
URI:

http://schemas.xmlsoap.org/ws/2004/10/wscoor/fault

The faults defined in this section are generated if the condition stated in the preamble is
met. Faults are targeted at a destination endpoint according to the fault handling rules
defined in [WSADDR].

The definitions of faults in this section use the following properties:

[Code] The fault code.

[Subcode] The fault subcode.

[Reason] The English language reason element.

[Detail] The detail element. If absent, no detail element is defined for the fault.

For SOAP 1.2, the [Code] property MUST be either "Sender" or "Receiver". These
properties are serialized into text XML as follows:

SOAP Version Sender Receiver

SOAP 1.2 S:Sender S:Receiver

The properties above bind to a SOAP 1.2 fault as follows:

14 of 23

<S:Envelope>

 <S:Header>

 <wsa:Action>

 http://schemas.xmlsoap.org/ws/2004/10/wscoor/fault

 </wsa:Action>

 <!-- Headers elided for clarity. -->

 </S:Header>

 <S:Body>

 <S:Fault>

 <S:Code>

 <S:Value>[Code]</S:Value>

 <S:Subcode>

 <S:Value>[Subcode]</S:Value>

 </S:Subcode>

 </S:Code>

 <S:Reason>

 <S:Text xml:lang="en">[Reason]</S:Text>

 </S:Reason>

 <S:Detail>

 [Detail]

 ...

 </S:Detail>

 </S:Fault>

 </S:Body>

</S:Envelope>

The properties bind to a SOAP 1.1 fault as follows:

<S11:Envelope>

 <S11:Body>

 <S11:Fault>

 <faultcode>[Subcode]</faultcode>

 <faultstring xml:lang="en">[Reason]</faultstring>

 </S11:Fault>

 </S11:Body>

</S11:Envelope>

15 of 23

4.1. Invalid State
This fault is sent by either the coordinator or a participant to indicate that the endpoint
that generates the fault has received a message that is not valid for its current state.
This is an unrecoverable condition.

Properties:

[Code] Sender

[Subcode] wscoor:InvalidState

[Reason] The message was invalid for the current state of the activity.

[Detail] unspecified

4.2. Invalid Protocol
This fault is sent by either the coordinator or a participant to indicate that the endpoint
that generates the fault received a message from an invalid protocol. This is an
unrecoverable condition.

Properties:

[Code] Sender

[Subcode] wscoor:InvalidProtocol

[Reason] The protocol is invalid or is not supported by the coordinator.

[Detail] unspecified

4.3. Invalid Parameters
This fault is sent by either the coordinator or a participant to indicate that the endpoint
that generated the fault received invalid parameters on or within a message. This is an
unrecoverable condition.

Properties:

[Code] Sender

[Subcode] wscoor:InvalidParameters

[Reason] The message contained invalid parameters and could not be processed.

[Detail] unspecified

4.4. No Activity
This fault is sent by the coordinator if the participant has been quiet for too long and is
presumed to have ended.

Properties:

[Code] Sender

[Subcode] wscoor:NoActivity

[Reason] The participant is not responding and is presumed to have ended.

[Detail] unspecified

16 of 23

4.5. Context Refused
This fault is sent to a coordinator to indicate that the endpoint cannot accept a context
which it was passed:

Properties:

[Code] Sender

[Subcode] wscoor:ContextRefused

[Reason] The coordination context that was provided could not be accepted.

[Detail] unspecified

4.6 Already Registered
This fault is sent to a participant if the coordinator detects that the participant attempted
to register for the same protocol of the same activity more than once.

Properties:

[Code] Sender

[Subcode] wscoor:AlreadyRegistered

[Reason] The participant has already registered for the same protocol.

[Detail] unspecified

5. Security Model
The primary goals of security with respect to WS-Coordination are to:

1. ensure only authorized principals can create coordination contexts

2. ensure only authorized principals can register with an activity

3. ensure only legitimate coordination contexts are used to register

4. enable existing security infrastructures to be leveraged

5. allow principal authorization to be based on federated identities

These goals build on the general security requirements for integrity, confidentiality, and
authentication, each of which is provided by the foundations built using the Web service
security specifications such as WS-Security [WSSec] and WS-Trust [WSTrust].

The following figure illustrates a fairly common usage scenario:

17 of 23

In the figure above, step 1 involves the creation and subsequent communication
between the creator of the context and the coordinator A (root). It should be noted that
this may be a private or local communication. Step 2 involves the delegation of the
right to register with the activity using the information from the coordination context
and subsequent application messages between two applications (and may include
middleware involvement) which are participants in the activity. Step 3 involves
delegation of the right to register with the activity to coordinator B (subordinate) that
manages all access to the activity on behalf of the second, and possibly other parties.
Again note that this may also be a private or local communication. Step 4 involves
registration with the coordinator A by the coordinator B and proof that registration rights
were delegated.

It should be noted that many different coordination topologies may exist which may
leverage different security technologies, infrastructures, and token formats.
Consequently an appropriate security model must allow for different topologies, usage
scenarios, delegation requirements, and security configurations.

To achieve these goals, the security model for WS-Coordination leverages the
infrastructure provided by WS-Security [WSSec], WS-Trust [WSTrust], WS-Policy
[WSPOLICY], and WS-SecureConversation [WSSecConv]: Services have policies
specifying their requirements and requestors provide claims (either implicit or explicit)
and the requisite proof of those claims.

There are a number of different mechanisms which can be used to affect the previously
identified goals. However, this specification RECOMMENDS a simple mechanism, which
is described here, for use in interoperability scenarios.

5.1. CoordinationContext Creation
When a coordination context is created (step 1 above) the message is secured using the
mechanisms described in WS-Security. If the required claims are proven, as described
by WS-Policy [WSPOLICY], then the coordination context is created.

A set of claims, bound to the identity of the coordination context’s creator, and
maintained by the coordinator, are associated with the creation of the coordination
context. The creator of the context must obtain these claims from the coordinator.
Before responding with the claims, the coordinator requires proof of the requestor’s
identity.

18 of 23

Additionally, the coordinator provides a shared secret which is used to indicate
authorization to register with the coordination context by other parties. The secret is
communicated using a security token and a <wst:RequestSecurityTokenResponse>
element inside a <wst:IssuedTokens> header. The security token and hence the secret
is scoped to a particular coordination context using the textual value of a
<wscoor:Identifier> element in a <wsp:AppliesTo> element in the
<wst:RequestSecurityTokenResponse> using the mechanisms described in WS-Trust
[WSTrust]. This secret may be delegated to other parties as described in the next
section.

5.2. Registration Rights Delegation
Secret delegation is performed by propagation of the security token that was created by
the root Coordinator. This involves using the <wst:IssuedTokens> header containing a
<wst:RequestSecurityTokenResponse> element. The entire header SHOULD be
encrypted for the new participant.

The participants can then use the shared secret using WS-Security by providing a
signature based on the key/secret to authenticate and authorize the right to register
with the activity that created the coordination context.

The figure below illustrates this simple key delegation model:

As illustrated in the figure above, the coordinator A, root in this case, (or its delegate)
creates a security context token (cordID) representing the right to register and returns
(using the mechanisms defined in WS-Trust [WSTrust]) that token to Application 1 (or
its delegate) (defined in WS-SecureConversation [WSSecConv]) and a session key (Sk)
encrypted for Application 1 inside of a proof token. This key allows Application 1 (or its
delegate) to prove it is authorized to use the SCT. Application 1 (or its delegate)

19 of 23

decrypts the session key (Sk) and encrypts it for Application 2 its delgate. Application 2
(or its delegate) performs the same act encrypting the key for the subordinate. Finally,
coordinator B, subordinate in this case, proves its right to the SCT by including a
signature using Sk.

It is RECOMMENDED by this specification that the key/secret never actually be used to
secure a message. Instead, keys derived from this secret SHOULD be used to secure a
message, as described in WS-SecureConversation [WSSecConv]. This technique is used
to maximize the strength of the key/secret as illustrated in the figure below:

6. Security Considerations
It is strongly RECOMMENDED that the communication between services be secured
using the mechanisms described in WS-Security [WSSec]. In order to properly secure
messages, the body and all relevant headers need to be included in the signature.
Specifically, the <wscoor:CoordinationContext> header needs to be signed with the
body and other key message headers in order to "bind" the two together. This will
ensure that the coordination context is not tampered. In addition the reference
properties within an Endpoint Reference may be encrypted to ensure their privacy.

In the event that a participant communicates frequently with a coordinator, it is
RECOMMENDED that a security context be established using the mechanisms described
in WS-Trust [WSTrust] and WS-SecureConversation [WSSecConv] allowing for
potentially more efficient means of authentication.

It is common for communication with coordinators to exchange multiple messages. As a
result, the usage profile is such that it is susceptible to key attacks. For this reason it is
strongly RECOMMENDED that the keys used to secure the channel be changed
frequently. This "re-keying" can be effected a number of ways. The following list
outlines four common techniques:

• Attaching a nonce to each message and using it in a derived key function with the
shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context

• Exchanging new secrets between the parties

It should be noted that the mechanisms listed above are independent of the SCT and
secret returned when the coordination context is created. That is, the keys used to

20 of 23

secure the channel may be independent of the key used to prove the right to register
with the coordination context.

The security context MAY be re-established using the mechanisms described in WS-Trust
[WSTrust] and WS-SecureConversation [WSSecConv]. Similarly, secrets can be
exchanged using the mechanisms described in WS-Trust. Note, however, that the
current shared secret SHOULD NOT be used to encrypt the new shared secret. Derived
keys, the preferred solution from this list, can be specified using the mechanisms
described in WS-SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy [WSPOLICY] and WS-
SecurityPolicy [WSSecPolicy]).

• Authentication – Authentication is established using the mechanisms described in
WS-Security [WSSec] and WS-Trust [WSTrust]. Each message is authenticated
using the mechanisms described in WS-Security.

• Accountability – Accountability is a function of the type of and string of the key and
algorithms being used. In many cases, a strong symmetric key provides sufficient
accountability. However, in some environments, strong PKI signatures are required.

• Availability – Many services are subject to a variety of availability attacks. Replay
is a common attack and it is RECOMMENDED that this be addressed as described in
the next bullet. Other attacks, such as network-level denial of service attacks are
harder to avoid and are outside the scope of this specification. That said, care
should be taken to ensure that minimal processing be performed prior to any
authenticating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and
eliminate this attack, mechanisms should be used to identify replayed messages
such as the timestamp/nonce outlined in WS-Security [WSSec]. Alternatively, and
optionally, other technologies, such as sequencing, can also be used to prevent
replay of application messages.

7. Glossary
The following definitions are used throughout this specification:

Activation service: This supports a CreateCoordinationContext operation that is used
by participants to create a CoordinationContext.

CoordinationContext: Contains the activity identifier, its coordination type that
represents the collection of behaviors supported by the activity and a Registration
service Endpoint Reference that participants can use to register for one or more of the
protocols supported by that activity's coordination type.

21 of 23

Coordination protocol: The definition of the coordination behavior and the messages
exchanged between the coordinator and a participant playing a specific role within a
coordination type. WSDL definitions are provided, along with sequencing rules for the
messages. The definition of coordination protocols are provided in additional
specification (e.g., WS-AtomicTransaction).

Coordination type: A defined set of coordination behaviors, including how the service
accepts context creations and coordination protocol registrations, and drives the
coordination protocols associated with the activity.

Coordination service (or Coordinator): This service consists of an activation service,
a registration service, and a set of coordination protocol services.

Participant: A service that is carrying out a computation within the activity. A
participant receives the CoordinationContext and can use it to register for coordination
protocols.

Registration service: This supports a Register operation that is used by participants to
register for any of the coordination protocols supported by a coordination type, such as
Atomic Transaction 2PC or Business Agreement NestedScope.

Web service: A Web service is a computational service, accessible via messages of
definite, programming-language-neutral and platform-neutral format, and which has no
special presumption that the results of the computation are used primarily for display by
a user-agent.

8. References
[KEYWORDS]

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997

[SOAP]
W3C Note, "Simple Object Access Protocol (SOAP) 1.1," 08 May 2000

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001

[WSADDR]
Web Services Addressing (WS-Addressing), Microsoft, IBM, Sun, BEA Systems, SAP,
Sun, August 2004

[WSPOLICY]
Web Services Policy Framework (WS-Policy) VeriSign, Microsoft, Sonic Software,
IBM, BEA Systems, SAP, September 2004

[WSSec]

22 of 23

http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2004/09/policy

OASIS Standard 200401, March 2004, "Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004)"

[WSSecPolicy]
Web Services Security Policy Language (WS-SecurityPolicy), Microsoft, VeriSign,
IBM, and RSA Security Inc., July 2005

[WSSecConv]
Web Services Secure Conversation Language (WS-SecureConversation),
OpenNetwork, Layer7, Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA Systems,
Oblix, RSA Security, Ping Identity, Westbridge, Computer Associates, February 2005

[WSTrust]
Web Services Trust Language (WS-Trust), OpenNetwork, Layer7, Netegrity,
Microsoft, Reactivity, VeriSign, IBM, BEA Systems, Oblix, RSA Security, Ping Identity,
Westbridge, Computer Associates, February 2005

[WSAT]
Web Services Atomic Transaction (WS-AtomicTransaction), Arjuna Technologies Ltd.,
BEA Systems, Hitachi Ltd., IBM, IONA Technologies and Microsoft, August 2005

[WSDL]
Web Services Description Language (WSDL) 1.1 "http://www.w3.org/TR/2001/NOTE-
wsdl-20010315"

23 of 23

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/02/sc
http://schemas.xmlsoap.org/ws/2005/02/trust
http://schemas.xmlsoap.org/ws/2004/10/at
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

	Web Services Coordination (WS-Coordination)
	Version 1.0
	August 2005
	Authors
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Acknowledgments
	Table of Contents
	1. Introduction
	1.1 The Model
	1.2 Extensibility
	1.3 Notational Conventions
	1.4 Namespace
	1.5 XSD and WSDL Files
	1.6 Coordination Protocol Elements

	2. CoordinationContext
	3. Coordination Service
	3.1 Activation Service
	3.1.1 CreateCoordinationContext
	3.1.2 CreateCoordinationContextResponse

	3.2 Registration Service
	3.2.1 Register Message
	3.2.2 RegistrationResponse Message

	4. Coordination Faults
	4.1. Invalid State
	4.2. Invalid Protocol
	4.3. Invalid Parameters
	4.4. No Activity
	4.5. Context Refused
	4.6 Already Registered

	5. Security Model
	5.1. CoordinationContext Creation
	5.2. Registration Rights Delegation

	6. Security Considerations
	7. Glossary
	8. References

