
Web Services Business Activity Framework
(WS-BusinessActivity)
Version 1.0

August 2005

Authors

Luis Felipe Cabrera, Microsoft
George Copeland, Microsoft
Max Feingold, Microsoft
Robert W Freund, Hitachi
Tom Freund, IBM
Sean Joyce, IONA
Johannes Klein, Microsoft
David Langworthy, Microsoft
Mark Little, Arjuna Technologies
Frank Leymann, IBM
Eric Newcomer, IONA
David Orchard, BEA Systems
Ian Robinson, IBM
Tony Storey, IBM
Satish Thatte, Microsoft

Copyright Notice
(c) 2001-2005 Arjuna Technologies, Ltd., BEA Systems Inc, Hitachi, Ltd., IBM Corporation,
IONA Technologies, Microsoft Corporation. All rights reserved.

Permission to copy and display the “Web Services Business Activity Framework”
Specification (the “Specification”, which includes WSDL and schema documents), in any
medium without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the “Web Services Business Activity Framework” Specification that you make:

1. A link or URL to the “Web Services Business Activity Framework” Specification at
one of the Authors’ websites

2. The copyright notice as shown in the “Web Services Business Activity Framework”
Specification.

Arjuna, BEA, Hitachi, IBM, IONA and Microsoft (collectively, the “Authors”) each agree to
grant you a license, under royalty-free and otherwise reasonable, non-discriminatory terms
and conditions, to their respective essential patent claims that they deem necessary to
implement the “Web Services Business Activity Framework” Specification.

THE “WEB SERVICES BUSINESS ACTIVITY FRAMEWORK” SPECIFICATION IS PROVIDED "AS
IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE “WEB SERVICES BUSINESS ACTIVITY FRAMEWORK” SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

Page 1 of 23

http://www.arjuna.com/
http://www.bea.com/
http://www.hitachi.com/
http://www.ibm.com/
http://www.iona.com/
http://www.microsoft.com/

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION
OF THE “WEB SERVICES BUSINESS ACTIVITY FRAMEWORK” SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the “Web Services Business Activity Framework”
Specification or its contents without specific, written prior permission. Title to copyright in
the “Web Services Business Activity Framework” Specification will at all times remain with
the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
This specification provides the definition of the business activity coordination type that is to
be used with the extensible coordination framework described in the WS-Coordination
specification. The specification defines two specific agreement coordination protocols for the
business activity coordination type: BusinessAgreementWithParticipantCompletion, and
BusinessAgreementWithCoordinatorCompletion. Developers can use any or all of these
protocols when building applications that require consistent agreement on the outcome of
long-running distributed activities.

Composable Architecture
By using the SOAP [SOAP] and WSDL [WSDL] extensibility model, SOAP-based and WSDL-
based specifications are designed to work together to define a rich Web services
environment. As such, WS-BusinessActivity by itself does not define all features required
for a complete solution. WS-BusinessActivity is a building block used with other
specifications of web services (e.g., WS-Coordination, WS-Security) and application-specific
protocols that are able to accommodate a wide variety of coordination protocols related to
the coordination actions of distributed applications.

Status
This specification has been developed through the WS-* Workshop process and is offered
for public consideration and/or implementation.

Acknowledgments
The following individuals have provided invaluable input into the design of the WS-
Transaction specification:

Francisco Curbera, IBM
Gert Drapers, Microsoft
Doug Davis, IBM
Don Ferguson, IBM
Kirill Gavrylyuk, Microsoft
Dan House, IBM
Oisin Hurley, IONA
Frank Leymann, IBM
Thomas Mikalsen, IBM
Jagan Peri, Microsoft
John Shewchuk, Microsoft
Stefan Tai, IBM

Page 2 of 23

Gary Tully, IONA
Sanjiva Weerawarana, IBM

We also wish to thank the technical writers and development reviewers who provided
feedback to improve the readability of the specification.

Table of Contents
1 Introduction

1.1 Model
1.2 Notational Conventions
1.3 Namespace
1.4 XSD and WSDL Files

2 Using WS-Coordination
2.1 CoordinationContext

3 Coordination Types and Protocols
3.1 BusinessAgreementWithParticipantCompletion Protocol
3.2 BusinessAgreementWithCoordinatorCompletion Protocol

4. BA Policy Assertions
4.1 Assertion Models
4.2 Normative Outlines
4.3 Assertion Attachment
4.4 Assertion Example

5 Security Considerations
6 Interoperability Considerations
7 Glossary
8 References
Appendix A: State Tables for the Agreement Protocols

A.1 Participant view of BusinessAgreementWithParticipantCompletion
A.2 Coodinator view of BusinessAgreementWithParticipantCompletion
A.3 Participant view of BusinessAgreementWithCoordinatorCompletion
A.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion

1 Introduction
The current set of Web service specifications [WSDL] [SOAP] defines protocols for Web
service interoperability. Web services increasingly tie together a number of participants
forming large distributed applications. The resulting activities may have complex structure
and relationships.

The WS-Coordination specification defines an extensible framework for defining coordination
types. A coordination type can have multiple coordination protocols, each intended to
coordinate a different role that a Web service plays in the activity.

To establish the necessary relationships between participants, messages exchanged
between participants carry a CoordinationContext. The CoordinationContext includes a
Registration service Endpoint Reference of a Coordination service. Participants use that
Registration service to register for one or more of the protocols supported by that activity.

Page 3 of 23

To understand the protocol described in this specification, the following assumptions are
made:

• The reader is familiar with the WS-Coordination [WSCOOR] specification that defines the
framework for the WS-BusinessActivity coordination protocols.

• The reader is familiar with WS-Addressing [WSADDR] and WS-Policy [WSPOLICY].

This specification provides the definition of a business activity coordination type used to
coordinate activities that apply business logic to handle exceptions that occur during the
execution of activities of a business process. Actions are applied immediately and are
permanent. Compensating actions may be invoked in the event of an error. The Business
Activity specification defines protocols that enable existing business process and work flow
systems to wrap their proprietary mechanisms and interoperate across trust boundaries and
different vendor implementations.

Business Activities have the following characteristics:

• A business activity may consume many resources over a long duration.

• There may be a significant number of atomic transactions involved.

• Individual tasks within a business activity can be seen prior to the completion of the
business activity, their results may have an impact outside of the computer system.

• Responding to a request may take a very long time. Human approval, assembly,
manufacturing, or delivery may have to take place before a response can be sent.

• In the case where a business exception requires an Activity to be logically undone, abort
is typically not sufficient. Exception handling mechanisms may require business logic, for
example in the form of a compensation task, to reverse the effects of a previously
completed task.

• Participants in a business activity may be in different domains of trust where all trust
relationships are established explicitly.

These characteristics lead to a design point, with the following assumptions:

• All state transitions are reliably recorded, including application state and coordination
metadata.

• All notifications are acknowledged in the protocol to ensure a consistent view of state
between the coordinator and participant.

• Each notification is defined as an individual message. Transport level request/response
retry and time out are not sufficient mechanisms to achieve end-to-end agreement
coordination for long-running activities.

This specification leverages WS-Coordination by extending it to support business activities.
It does this by adding constraints to the protocols defined in WS-Coordination and by
defining its own Coordination protocols.

The constraints that Business Activity puts on WS-Coordination protocols are described in
Section 2. The Business Activity Coordination protocols are defined in Section 3.

Terms introduced in this specification are explained in the body of the specification and
summarized in the Glossary.

1.1 Model
Business Activity Coordination protocols provide the following flexibility:

• A business application may be partitioned into business activity scopes. A business
activity scope is a business task consisting of a general-purpose computation carried out

Page 4 of 23

as a bounded set of operations on a collection of Web services that require a mutually
agreed outcome. There can be any number of hierarchical nesting levels. Nested
scopes:

• Allow a business application to select which child tasks are included in the overall
outcome processing. For example, a business application might solicit an estimate
from a number of suppliers and choose a quote or bid based on lowest-cost.

• Allow a business application to catch an exception thrown by a child task, apply an
exception handler, and continue processing even if something goes wrong. When a
child completes its work, it may be associated with a compensation that is registered
with the parent activity.

• A participant task within a business activity may specify that it is leaving a business
activity. This provides the ability to exit a business activity and allows business
programs to delegate processing to other scopes. In contrast to atomic transactions,
the participant list is dynamic and a participant may exit the protocol at any time
without waiting for the outcome of the protocol.

• It allows a participant task within a business activity to specify its outcome directly
without waiting for solicitation. Such a feature is generally useful when a task fails so
that the notification can be used by a business activity exception handler to modify the
goals and drive processing in a timely manner.

• It allows participants in a coordinated business activity to perform "tentative" operations
as a normal part of the activity. The result of such "tentative" operations may become
visible before the activity is complete and may require business logic to run in the event
that the operation needs to be compensated. Such a feature is critical when the joint
work of a business activity requires many operations performed by independent services
over a long period of time.

1.2 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC2119 [Keywords].

Namespace URIs of the general form "some-URI" represent some application-dependent or
context-dependent URI as defined in RFC2396 [URI].

1.3 Namespace
The XML namespace [XML-ns] URI that MUST be used by implementations of this
specification is:

 http://schemas.xmlsoap.org/ws/2004/10/wsba

This URI is the business coordination type identifier.

The following namespaces are used in this document:

Prefix Namespace

S http://www.w3.org/2003/05/soap-envelope

wscoor http://schemas.xmlsoap.org/ws/2004/10/wscoor

wsba http://schemas.xmlsoap.org/ws/2004/10/wsba

If an action URI is used then the action URI MUST consist of the wsba namespace URI
concatenated with the "/" character and the element name. For example:

Page 5 of 23

http://www.w3.org/2003/05/soap-envelope
http://schemas.xmlsoap.org/ws/2004/10/wscoor
http://schemas.xmlsoap.org/ws/2004/10/wsba

 http://schemas.xmlsoap.org/ws/2004/10/wsba/Complete

1.4 XSD and WSDL Files
The following links hold the XML schema and the WSDL declarations defined in this
document.

http://schemas.xmlsoap.org/ws/2004/10/wsba/wsba.xsd

http://schemas.xmlsoap.org/ws/2004/10/wsba/wsba.wsdl

Soap bindings for the WSDL documents defined in this specification MUST use "document"
for the style attribute.

2 Using WS-Coordination
This section describes the Business Activity usage of WS-Coordination protocols.

2.1 CoordinationContext
A business activity uses the WS-Coordination CoordinationContext with the
CoordinationType set to one of the following URIs:

http://schemas.xmlsoap.org/ws/2004/10/wsba/AtomicOutcome

http://schemas.xmlsoap.org/ws/2004/10/wsba/MixedOutcome

A coordination context may have an Expires attribute. This attribute specifies the earliest
point in time at which a long-running activity may be terminated solely due to its length of
operation. A participant could terminate its participation in the long running activity using
the Exit protocol message.

A CoordinationContext can have additional elements for extensibility.

Due to the extensibility of WS-Coordination it is also possible to define a coordination
protocol type that, in addition to specifying the agreement protocol between a coordinator
and a participant, also specifies the behavior of the coordination logic. For example, it may
specify that the coordinator will act in an all-or-nothing manner to determine its outcome
based on the outcomes communicated by its participants, or that it will use a specific
majority rule when determining its final outcome based on the outcomes of its participants.

3 Coordination Types and Protocols
Business activities support two coordination types and two protocol types. Either protocol
type may be used with either coordination type.

The coordination types are atomic and mixed as identified by the following URIs:

http://schemas.xmlsoap.org/ws/2004/10/wsba/AtomicOutcome

http://schemas.xmlsoap.org/ws/2004/10/wsba/MixedOutcome

A coordinator for an AtomicOutcome coordination type must direct all participants to close or
all participants to compensate. A coordinator for a MixedOutcome coordination type may
direct each individual participant to close or compensate. All coordinators MUST implement
the AtomicOutcome coordination type. Any coordinator MAY implement the MixedOutcome
coordination type.

The Coordination protocols for business activities are summarized below with names relative
to the wsba base name:

Page 6 of 23

http://schemas.xmlsoap.org/ws/2004/10/wsba/wsba.xsd
http://schemas.xmlsoap.org/ws/2004/10/wsba/wsba.wsdl

• BusinessAgreementWithParticipantCompletion: A participant registers for this
protocol with its coordinator, so that its coordinator can manage it. A participant must
know when it has completed all work for a business activity.

• BusinessAgreementWithCoordinatorCompletion: A participant registers for this
protocol with its coordinator, so that its coordinator can manage it. A participant relies
on its coordinator to tell it when it has received all requests to perform work within the
business activity.

3.1 BusinessAgreementWithParticipantCompletion Protocol
The state diagram in Figure 1 specifies the behavior of the protocol between a coordinator
and a participant. The agreement coordination state reflects what each participant knows of
their relationship at a given point in time. As messages take time to be delivered, the views
of the coordinator and a participant may temporarily differ. Omitted are details such as
resending of messages or the exchange of error messages due to protocol error.

Participants register for this protocol using the following protocol identifier:

 http://schemas.xmlsoap.org/ws/2004/10/wsba/ParticipantCompletion

The coordinator accepts:

Completed
Upon receipt of this notification, the coordinator knows that the participant has
completed all processing related to the protocol instance. For the next protocol message
the coordinator should send a Close or Compensate notification to indicate the final
outcome of the protocol instance.

Fault
Upon receipt of this notification, the coordinator knows that the participant has failed
from the active or compensating state. For the next protocol message the coordinator
should send a Faulted notification. This notification carries a QName defined in schema
indicating the cause of the fault.

Compensated
Upon receipt of this notification, the coordinator knows that the participant has recorded
a compensation request for a protocol.

Closed
Upon receipt of this notification, the coordinator knows that the participant has finalized
successfully.

Canceled
Upon receipt of this notification, the coordinator knows that the participant has finalized
successfully processing the Cancel notification.

Exit
Upon receipt of this notification, the coordinator knows that the participant will no longer
participate in the business activity. For the next protocol message the coordinator
should send an Exited notification.

The participant accepts:

Close
Upon receipt of this notification, the participant knows the protocol instance is to
complete successfully. For the next protocol message the participant should send a
Closed notification to end the protocol instance.

Cancel

Page 7 of 23

Upon receipt of this notification, the participant knows that the work being done has to
be canceled. For the next protocol message the participant should send a Canceled
notification to end the protocol instance.

Compensate
Upon receipt of this notification, the participant knows that the work being done should
be compensated. For the next protocol message the participant should send a
Compensated notification to end the protocol instance.

Faulted
Upon receipt of this notification, the participant knows that the coordinator is aware of a
fault and no further actions are required of the participant.

Exited
Upon receipt of this notification, the participant knows that the coordinator is aware the
participant will no longer participate in the activity.

Both the coordinator and participant accept:

GetStatus
This message requests the current state of a coordinator or participant. In response the
coordinator or participant returns a Status message containing a QName indicating
which row of the state table [Appendix A: State Tables for the Agreement Protocols] the
coordinator or participant is currently in. GetStatus never provokes a state change.

Status
Upon receipt of this message the target service returns a QName defined in schema
indicating the current state of the coordinator or participant. For example, if a
participant is in the closing state as indicated by the state table, it would return
wsba:Closing.

Figure 1: BusinessAgreementWithParticipantCompletion abstract state diagram.

The coordinator can enter a condition in which it has sent a protocol message and it
receives a protocol message from the participant that is consistent with the former state,
not the current state. In this case, it is the responsibility of the coordinator to revert to the
prior state, accept the notification from the participant, and continue the protocol from that

Page 8 of 23

point. If the participant detects this condition, it must discard the inconsistent protocol
message from the coordinator.

A party should be prepared to receive duplicate notifications. If a duplicate message is
received it should be treated as specified in the state tables described in this document.

3.2 BusinessAgreementWithCoordinatorCompletion Protocol
The BusinessAgreementWithCoordinatorCompletion protocol is the same as the
BusinessAgreementWithParticipantCompletion protocol, except that a participant relies on
its coordinator to tell it when it has received all requests to do work within the business
activity.

Participants register for this protocol using the following protocol identifier:

 http://schemas.xmlsoap.org/ws/2004/10/wsba/CoordinatorCompletion

In addition to the notifications in Section 3.1, Business agreement with coordinator
completion supports the following:

The participant accepts:

Complete
Upon receipt of this notification the participant knows that it will receive no new requests
for work within the business activity. It should complete application processing and
transmit the Completed notification.

Figure 2: BusinessAgreementWithCoordinatorCompletion abstract state diagram.

4. BA Policy Assertions
WS-Policy Framework [WS-Policy] and WS-Policy Attachment [WSPOLICYATTACH]
collectively define a framework, model and grammar for expressing the capabilities,
requirements, and general characteristics of entities in an XML Web services-based system.
To enable a web service to describe business activity-related capabilities and requirements
of a service and its operations, this specification defines a pair of Business Agreement policy
assertions that leverage the WS-Policy framework.

Page 9 of 23

4.1 Assertion Models
The BA policy assertions are provided by a web service to qualify the business activity-
related processing of messages associated with the particular operation to which the
assertions are scoped. The BA policy assertions indicate:

1. whether the sender of an input message MAY, MUST or SHOULD NOT include an
AtomicOutcome coordination context flowed with the message. The coordination type of
such a context MUST be the following:

http://schemas.xmlsoap.org/ws/2004/10/wsba/AtomicOutcome

2. whether the sender of an input message MAY, MUST or SHOULD NOT include a
MixedOutcome coordination context flowed with the message. The coordination type of
such a context MUST be the following:

http://schemas.xmlsoap.org/ws/2004/10/wsba/MixedOutcome

4.2 Normative Outlines
The normative outlines for the BA policy assertions are:

<wsba:BAAtomicOutcomeAssertion [wsp:Optional="true"]? ... >

 ...

</wsba:BAAtomicOutcomeAssertion>

The following describes additional, normative constraints on the outline listed above:

/wsba:BAAtomicOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a
coordination context for a business activity with AtomicOutcome coordination type flowed
with the message.

/wsba: BAAtomicOutcomeAssertion/@wsp:Optional="true"

Per WS-Policy [WS-Policy], this is compact notation for two policy alternatives, one with and
one without the assertion. Presence of both policy alternatives indicates that the behavior
indicated by the assertion is optional, such that an AtomicOutcome coordination context
MAY be flowed inside an input message. The absence of the assertion is interpreted to mean
that an AtomicOutcome coordination context SHOULD NOT be flowed inside an input
message.

<wsba:BAMixedOutcomeAssertion [wsp:Optional="true"]? ... >

 ...

</wsba:BAMixedOutcomeAssertion>

The following describes additional, normative constraints on the outline listed above:

/wsba:BAMixedOutcomeAssertion

A policy assertion that specifies that the sender of an input message MUST include a
coordination context for a business activity with MixedOutcome coordination type flowed
with the message.

/wsba: BAMixedOutcomeAssertion/@wsp:Optional="true"

Page 10 of 23

Per WS-Policy [WS-Policy], this is compact notation for two policy alternatives, one with and
one without the assertion. Presence of both policy alternatives indicates that the behavior
indicated by the assertion is optional, such that a MixedOutcome coordination context MAY
be flowed inside an input message. The absence of the assertion is interpreted to mean that
an MixedOutcome coordination context SHOULD NOT be flowed inside an input message.

4.3 Assertion Attachment
Because the BA policy assertions indicate business activity-related behavior for a single
operation, the assertions have Operation Policy Subject.

WS-PolicyAttachment [WSPOLICYATTACH] defines two [WSDL] policy attachment points
with Operation Policy Subject:

• wsdl:portType/wsdl:operation – A policy expression containing a BA policy assertion
MUST NOT be attached to a wsdl:portType; the BA policy assertions specify a concrete
behavior whereas the wsdl:portType is an abstract construct.

• wsdl:binding/wsdl:operation – A policy expression containing a BA policy assertion
SHOULD be attached to a wsdl:binding.

4.4 Assertion Example
An example use of the BA policy assertion follows:

(01) <wsdl:definitions

(02) targetNamespace="hotel.example.com"

(03) xmlns:tns="hotel.example.com"

(04) xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

(05) xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

(06) xmlns:wsat="http://schemas.xmlsoap.org/ws/2004/10/wsba"

(07) xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

(08) wssecurity-utility-1.0.xsd" >

(09) <wsp:Policy wsu:Id="BAAtomicPolicy" >

(10) <wsba:BAAtomicOutcomeAssertion/>

(11) <!-- omitted assertions -->

(12) </wsp:Policy>

(13) <!-- omitted elements -->

(14) <wsdl:binding name="HotelBinding" type="tns:HotelPortType" >

(15) <!-- omitted elements -->

(16) <wsdl:operation name="ReserveRoom" >

(17) <wsp:PolicyReference URI="#BAAtomicPolicy"

(18) wsdl:required="true" />

(19) <!-- omitted elements -->

(20) </wsdl:operation>

(21) </wsdl:binding>

Page 11 of 23

(22) </wsdl:definitions>

Lines (9-12) are a policy expression that includes a BA policy assertion (Line 10) to indicate
that a coordination context for a business activity with an AtomicOutcome, expressed in
WS-Coordination [WS-Coordination], format MUST be used.

Lines (16-20) are a WSDL [WSDL 1.1] binding. Line (17) indicates that the policy in Lines
(9-12) applies to this binding, specifically indicating that a coordination context for a
business activity with an AtomicOutcome MUST flow inside “ReserveRoom” messages.

5 Security Considerations
It is strongly RECOMMENDED that the communication between services be secured using
the mechanisms described in WS-Security [WSSec]. In order to properly secure messages,
the body and all relevant headers need to be included in the signature. Specifically, the
<wscoor:CoordinationContext> header needs to be signed with the body and other key
message headers in order to "bind" the two together.

In the event that a participant communicates frequently with a coordinator, it is
RECOMMENDED that a security context be established using the mechanisms described in
WS-Trust [WSTrust] and WS-SecureConversation [WSSecConv] allowing for potentially
more efficient means of authentication.

It is common for communication with coordinators to exchange multiple messages. As a
result, the usage profile is such that it is susceptible to key attacks. For this reason it is
strongly RECOMMENDED that the keys be changed frequently. This "re-keying" can be
effected a number of ways. The following list outlines four common techniques:

• Attaching a nonce to each message and using it in a derived key function with the
shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context (not possible for delegated keys)

• Exchanging new secrets between the parties (not possible for delegated keys)

It should be noted that the mechanisms listed above are independent of the SCT and secret
returned when the coordination context is created. That is, the keys used to secure the
channel may be independent of the key used to prove the right to register with the activity.

The security context MAY be re-established using the mechanisms described in WS-Trust
[WSTrust] and WS-SecureConversation [WSSecConv]. Similarly, secrets can be exchanged
using the mechanisms described in WS-Trust. Note, however, that the current shared
secret SHOULD NOT be used to encrypt the new shared secret. Derived keys, the preferred
solution from this list, can be specified using the mechanisms described in WS-
SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol and
identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the message
information using WS-Security [WSSec].

• Message disclosure – Confidentiality is preserved by encrypting sensitive data using
WS-Security.

Page 12 of 23

• Key integrity – Key integrity is maintained by using the strongest algorithms possible
(by comparing secured policies – see WS-Policy [WSPOLICY] and WS-SecurityPolicy
[WSSecPolicy]).

• Authentication – Authentication is established using the mechanisms described in WS-
Security and WS-Trust [WSTrust]. Each message is authenticated using the
mechanisms described in WS-Security [WSSec].

• Accountability – Accountability is a function of the type of and string of the key and
algorithms being used. In many cases, a strong symmetric key provides sufficient
accountability. However, in some environments, strong PKI signatures are required.

• Availability – Many services are subject to a variety of availability attacks. Replay is a
common attack and it is RECOMMENDED that this be addressed as described in the next
bullet. Other attacks, such as network-level denial of service attacks are harder to avoid
and are outside the scope of this specification. That said, care should be taken to
ensure that minimal processing be performed prior to any authenticating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and eliminate
this attack, mechanisms should be used to identify replayed messages such as the
timestamp/nonce outlined in WS-Security [WSSec]. Alternatively, and optionally, other
technologies, such as sequencing, can also be used to prevent replay of application
messages.

6 Interoperability Considerations
In order for two parties to communicate, both parties will need to agree on the protocols
provided. This specification facilitates this agreement and thus interoperability.

7 Glossary
Cancel – Back out of a business activity.

Close – Terminate a business activity with a favorable outcome.

Compensate – A message to a Completed participant from a coordinator to execute its
compensation. This message is part of both the
BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion protocols.

Complete – A message to a participant from a coordinator telling it that it has been given
all of the work for that business activity. This message is part of the
BusinessAgreementWithCoordinatorCompletion protocol.

Completed – A message from a participant telling a coordinator that the participant has
successfully executed everything asked of it and needs to continue participating in the
protocol. This message is part of both the BusinessAgreementWithParticipantCompletion
and BusinessAgreementWithCoordinatorCompletion protocols.

Exit – A message from a participant telling a coordinator that the participant does not need
to continue participating in the protocol. This message is part of both the
BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion protocols.

Fault – A message from a participant telling a coordinator that the participant could not
execute successfully.

BusinessAgreementWithParticipantCompletion protocol – A business activity
coordination protocol that supports long-lived business processes and allows business logic

Page 13 of 23

to handle business logic exceptions. A participant in this protocol must know when it has
completed with its tasks in a business activity.

BusinessAgreementWithCoordinatorCompletion protocol – A business activity
coordination protocol that supports long-lived business processes and allows business logic
to handle business logic exceptions. A participant in this protocol relies on its coordinator to
tell it when it has received all requests to do work within a business activity.

Scope – A business activity instance. A scope integrates coordinator and application logic.
A web services application can be partitioned into a hierarchy of scopes, where the
application understands the relationship between the parent scope and its child scopes.

8 References
[BPEL]

Web Services Business Process Execution Language, Microsoft, BEA and IBM.

[KEYWORDS]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
Harvard University, March 1997.

[SOAP]
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000.

[URI]
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998.

[XML-ns]
W3C Recommendation, "Namespaces in XML," 14 January 1999.

[XML-Schema1]
W3C Recommendation, "XML Schema Part 1: Structures," 2 May 2001.

[XML-Schema2]
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001.

[WSSec]
OASIS Standard 200401, March 2004, "Web Services Security: SOAP Message Security
1.0 (WS-Security 2004)"

 [WSCOOR]
Web Services Coordination (WS-Coordination), Arjuna Technologies Ltd., BEA Systems,
Hitachi Ltd., IBM, IONA Technologies and Microsoft, August 2005

[WSDL]
Web Services Description Language (WSDL) 1.1 "http://www.w3.org/TR/2001/NOTE-
wsdl-20010315"

[WSADDR]
Web Services Addressing (WS-Addressing), Microsoft, IBM, Sun, BEA Systems, SAP,
Sun, August 2004

[WSPOLICY]
Web Services Policy Framework (WS-Policy), VeriSign, Microsoft, Sonic Software, IBM,
BEA Systems, SAP, September 2004

 [WSPOLICYATTACH]
Web Services Policy Attachment (WS-PolicyAttachment), VeriSign, Microsoft, Sonic
Software, IBM, BEA Systems, SAP, September 2004

[WSSecPolicy]

Page 14 of 23

http://msdn.microsoft.com/library/en-us/dnbiz2k2/html/bpel1-1.asp
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2396.txt
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://schemas.xmlsoap.org/ws/2004/10/coord
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2004/09/policy
http://schemas.xmlsoap.org/ws/2004/09/policy/

Web Services Security Policy Language (WS-SecurityPolicy), Microsoft, VeriSign, IBM,
RSA Security, July 2005

[WSSecConv]
Web Services Secure Conversation Language (WS-SecureConversation), OpenNetwork,
Layer7, Netegrity, Microsoft, Reactivity, IBM, VeriSign, BEA Systems, Oblix, RSA
Security, Ping Identity, Westbridge, Computer Associates, February 2005

[WSTrust]

Web Services Trust Language (WS-Trust), OpenNetwork, Layer7, Netegrity, Microsoft,
Reactivity, VeriSign, IBM, BEA Systems, Oblix, RSA Security, Ping Identity, Westbridge,
Computer Associates, February 2005

Appendix A: State Tables for the Agreement Protocols

The following state tables show state transitions that occur in the receiver when a protocol
message is received or in the sender when a protocol message is sent. Each table uses the
following convention:

where the next state refers to the next agreement protocol state. An Action of Invalid State
means the sent or received protocol message cannot occur in the current state.

The following rules need to be applied when reading the state tables in this document:

• For the period of time that a protocol message is in transit the sender and recipient
states will be different.
The sender of a protocol message transitions to the "next state" when the message
is first sent.
The recipient of a protocol message transitions to the "next state" when the message
is first received.

• As described earlier in this document, if the coordinator receives a protocol message
from the participant that is consistent with the former state of the coordinator then
the coordinator reverts to its prior state, accepts the notification from the
participant, and continues the protocol from that point.

The GetStatus and Status protocol messages are not included in the tables as these never
result in a change of state.

Page 15 of 23

http://schemas.xmlsoap.org/ws/2005/07/securitypolicy
http://schemas.xmlsoap.org/ws/2005/02/sc/
http://schemas.xmlsoap.org/ws/2005/02/trust/

A.1 Participant view of
BusinessAgreementWithParticipantCompletion

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCancelingActive

ExitedFaultedCompensateCloseCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithParticipantCompletion protocol

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCancelingActive

ExitedFaultedCompensateCloseCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithParticipantCompletion protocol

Page 16 of 23

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithParticipantCompletion

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithParticipantCompletion

Page 17 of 23

A.2 Coodinator view of
BusinessAgreementWithParticipantCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExitingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator
view of state

BusinessAgreementWithParticipantCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExitingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-ActiveCompletedExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator
view of state

BusinessAgreementWithParticipantCompletion

Page 18 of 23

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCanceling-ActiveActive

ExitedFaultedCompensateCloseCancel

Protocol messages sent by CoordinatorCoordinator
view

of state

BusinessAgreementWithParticipantCompletion
protocol

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
CompletedCompleted

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCanceling-ActiveActive

ExitedFaultedCompensateCloseCancel

Protocol messages sent by CoordinatorCoordinator
view

of state

BusinessAgreementWithParticipantCompletion
protocol

Page 19 of 23

A.3 Participant view of
BusinessAgreementWithCoordinatorCompletion

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Ignore
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
Completed

Resend Completed
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Ignore
CompletingCancelingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCancelingActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithCoordinatorCompletion protocol

Ignore
Ended

Ignore
Ended

Send Compensated
Ended

Send Closed
Ended

Ignore
Ended

Send Canceled
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Resend Exit
Exiting

Resend Exit
ExitingExiting

Invalid State
FaultingEnded

Resend Fault
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Faulting
(Compensating)

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Resend Fault
Faulting

Resend Fault
Faulting

Faulting
(Active, Completed)

Invalid State
Compensating

Invalid State
Compensating

Ignore
Compensating

Invalid State
Compensating

Ignore
Compensating

Ignore
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Ignore
Closing

Ignore
Closing

Ignore
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Resend Completed
Completed

Resend Completed
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Ignore
CompletingCancelingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Ignore
Canceling

Ignore
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCancelingActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages received by ParticipantParticipant view
of state

BusinessAgreementWithCoordinatorCompletion protocol

Page 20 of 23

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithCoordinatorCompletion

EndedEndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEnded

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages sent by ParticipantParticipant
view of state

BusinessAgreementWithCoordinatorCompletion

Page 21 of 23

A.4 Coordinator view of
BusinessAgreementWithCoordinatorCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active, Completing)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExiting

Canceling-
Completing

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-Active

Invalid State
CancelingExiting

Canceling-
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator view
of state

BusinessAgreementWithCoordinatorCompletion

Ignore
Ended

Ignore
Ended

Ignore
Ended

Resend Faulted
Ended

Ignore
Ended

Resend Exited
EndedEnded

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Ignore
ExitingExiting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Invalid State
Faulting

Invalid State
Faulting

Faulting
(Active, Completing)

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Ignore
Faulting

Ignore
Faulting

Invalid State
Faulting

Faulting
(Compensating)

Ended
Invalid State
Compensating

Invalid State
CompensatingFaulting-Compensating

Resend Compensate
Compensating

Invalid State
CompensatingCompensating

Invalid State
ClosingEnded

Invalid State
Closing

Invalid State
Closing

Resend Close
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Invalid State
Completed

Ignore
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingFaulting-ActiveCompletedExitingCompleting

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-ActiveCompletedExiting

Canceling-
Completing

Invalid State
Canceling

Invalid State
CancelingEndedFaulting-Active

Invalid State
CancelingExiting

Canceling-
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveFaulting-Active

Invalid State
ActiveExitingActive

CompensatedClosedCanceledFaultCompletedExit

Protocol messages received by CoordinatorCoordinator view
of state

BusinessAgreementWithCoordinatorCompletion

Page 22 of 23

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingCompletingCanceling-CompletingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCanceling-ActiveActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages Sent by CoordinatorCoordinator
view of state

BusinessAgreementWithCoordinatorCompletion protocol

EndedEnded
Invalid State
Ended

Invalid State
Ended

Invalid State
Ended

Invalid State
EndedEnded

Ended
Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
Exiting

Invalid State
ExitingExiting

Invalid State
FaultingEnded

Invalid State
Faulting

Invalid State
Faulting

Invalid State
Faulting

Invalid State
FaultingFaulting

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Compensating

Invalid State
Compensating

Invalid State
CompensatingCompensating

Invalid State
Closing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Closing

Invalid State
ClosingClosing

Invalid State
Completed

Invalid State
CompletedCompensatingClosing

Invalid State
Completed

Invalid State
CompletedCompleted

Invalid State
Completing

Invalid State
Completing

Invalid State
Completing

Invalid State
CompletingCompletingCanceling-CompletingCompleting

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
Canceling

Invalid State
CancelingCancelingCanceling

Invalid State
Active

Invalid State
Active

Invalid State
Active

Invalid State
ActiveCompletingCanceling-ActiveActive

ExitedFaultedCompensateCloseCompleteCancel

Protocol messages Sent by CoordinatorCoordinator
view of state

BusinessAgreementWithCoordinatorCompletion protocol

Page 23 of 23

	Web Services Business Activity Framework (WS-BusinessActivity)
	Version 1.0
	August 2005
	Authors
	Copyright Notice
	Abstract
	Composable Architecture
	Status
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Model
	1.2 Notational Conventions
	1.3 Namespace
	1.4 XSD and WSDL Files

	2 Using WS-Coordination
	2.1 CoordinationContext

	3 Coordination Types and Protocols
	3.1 BusinessAgreementWithParticipantCompletion Protocol
	3.2 BusinessAgreementWithCoordinatorCompletion Protocol

	4. BA Policy Assertions
	4.1 Assertion Models
	4.2 Normative Outlines
	4.3 Assertion Attachment
	4.4 Assertion Example

	5 Security Considerations
	6 Interoperability Considerations
	7 Glossary
	8 References
	Appendix A: State Tables for the Agreement Protocols
	 A.1 Participant view of BusinessAgreementWithParticipantCompletion
	 A.3 Participant view of BusinessAgreementWithCoordinatorCompletion
	 A.4 Coordinator view of BusinessAgreementWithCoordinatorCompletion

