Choreology Ltd. Contribution to the OASIS WS-TX Technical Committee

Peter Furniss and Alastair Green. 15 November 2005.

 Copyright 2005 © Choreology Ltd.

Choreology Ltd. Contribution

to the OASIS WS-TX Technical Committee

relating to WS-Coordination, 

WS-AtomicTransaction

and WS-BusinessActivity

16 November 2005

This document is submitted to the OASIS WS-TX Technical Committee as a Contribution under the terms of applicable OASIS by-laws and processes relating to intellectual property in contributions made by Members of an OASIS TC. 
Peter Furniss (Choreology Ltd, Chief Scientist)

www.choreology.com/company/management_furniss.htm
peter.furniss@choreology.com
Alastair Green (Choreology Ltd, Chief Technical Officer)

www.choreology.com/company/management_green.htm
alastair.green@choreology.com
1st edition: 16 November 2005
Copyright 2005 © Choreology Ltd.

Table of contents

4Introduction to WS-TX TC Contribution (November 2005)


7Change issues enumerated, summarized and categorized


12New issues raised in this Contribution


12TX-5
Orphaned volatile Participants


13TX-15
Provide participant identification information for application use


15TX-17
Registration of sub-coordinator via CreateCoordinatorContext under-specified


16TX-18
Remove presumed nothing requirement


16TX-19
Remove faults 4.4, 4.5 and 4.6


17TX-20
Enable duplicate registration exchange messages


18May 2004 Choreology Ltd. Feedback to the original three authors of WS-Coordination, WS-AtomicTransaction and WS-BusinessActivity


19Introduction to original feedback (May 2004)


20Our commitment to the Workshop process


21Choreology’s history and perspective


21Proximate origins of our feedback


23The key to our proposals


25Part I: Issues and change proposals for WS-BA, WS-AT and WS-C


25Modified State Tables


25An Ur Question: Should WS-BA protocol promises state business promises?


26WS-BusinessActivity


26CH-1
Fault on close


27CH-2
Continue to allow selective outcome


28CH-3
Coordinator to be informed immediately of autonomous Participant decisons


29CH-4
Timeouts and directions of expected autonomous decisions


29CH-5
Add Refuse message (Early and late Fault should be distinct)


31CH-6
BA state table curiosities


32CH-7
Interoperable control protocol


32CH-8
Allow transmission of Complete by Coordinator to any Participant


33CH-9
Allow Compensate in Active state (optimizing unconditional cancellations)


33CH-10
Migration of decision maker


34CH-11
Reliable terminator


35CH-12
Notification sub-protocol


35CH-13
Message definitions


36CH-14
Clarify relationship to Reliable Messaging


36WS-AtomicTransaction


36CH-15
AT messages and state table simplifications


38WS-Coordination


38CH-16
Use of context id in addition to reference properties in registration


38CH-17
Efficient registration of multiple protocols


39CH-18
Context on application message; defined use of WS-Policy


41Proposed revisions to state tables for WS-BA


42Coordinator view of revised BusinessAgreement protocol


43Participant view of revised BusinessAgreement protocol


44Part II: Use cases for BTM which motivate our proposals


44A. Consistent intranet and extranet view of service provisioning


44B. Guaranteed time-lapse quote-driven multi-leg security trades


45C. Negotiated purchasing of goods or services


45D. Structured Trade composition


45E. Reference data creation, amendment and deletion


46F: Collateral management / Repo trading interaction


46G: Credit line drawdown and amendment


46H: Residential property conveyancing


47I: Routing across grid of network elements


47J: Payment by mobile device against delivery of services


48K: Guaranteed delivery and processing of trade confirmation


49Part III. WS-BA: Model and scope


50Definition of a business transaction


50How can a service be capable of coordinated behaviour?


53Types of constrained contingent operation set


54The protocol that stimulates the contingent operation set


55Impact of confirmation/cancellation


56Impact of preparation


57Coordinators and participants


58Business messages and protocol messages


59Should business promises be protocol promises?


60Should WS-BA outcomes be uniform?


61The modular approach: can one size fit all?


61How important is the global view?


62Can “one size” fit all needs?


63WS-BPEL LRT: a limited transaction model




Introduction to WS-TX TC Contribution (November 2005)

The format of this document is slightly unusual. It consists of two main sections: material relating to our current Contribution to the OASIS WS-TX Technical Committee, to be submitted formally at the inaugural meeting of the committee on 16 November 2005; and an annotated reproduction of our May 2004 feedback to the original three author companies of the WS-Coordination, WS‑AtomicTransaction and WS-BusinessActivity specifications (BEA, IBM and Microsoft). 
Our current contribution refers to the latest (August 2005) versions of these three specs, co-authored by Arjuna, BEA, Hitachi, IBM, IONA and Microsoft. The original feedback referred to the September 2003/January 2004 editions of these specifications. The historical editions of these specifications back to September 2003 (but not including the first August 2002) versions can be conveniently found at

http://www-128.ibm.com/developerworks/library/specification/ws-tx
For those with colour screens and printers: the type in the first section (our current TC Contribution) is in blue; the type in the second section (our original feedback) is in black, and annotations to the second section relating to our current TC Contribution are in red. In addition we have made some minor editorial changes and corrections to the second feedback section, which do not affect its sense. 
Those who wish to consult the original feedback document can find it at


http://www.choreology.com/resources/
(Choreology.WS-C+T.Detailed.Feedback.Revised.Edition.2004-05-04.pdf
The first section lists all of the change issues that we have raised, either in the original May 2004 feedback, or which we are raising for the first time in this document, and categorizes them as follows:
	Out-of-scope
	Outside the scope specified by the WS-TX Technical Committee charter.

	Applied
	Proposed change substantively included in the input specifications. 

	Editorial
	Improvements to wording, which do not alter the design intent. 

	Bug fix
	Changes which correct the implementation of what we perceive as a valid design intent. 

	Charter conformance
	Changes which align a feature or mechanism with the design intent expressed in the charter, which we believe is currently wrongly reflected in the specifications themselves. 

	Enhancements/ simplifications
	Changes which would enhance the power and economy of the specifications in line with the scope of the charter.


The new section also lists new issues which were not raised in the original feedback, which result from experimentation and thinking with our product in customer environments, and from participation in the February 2005 interop workshop in Raleigh, NC.
Both authors and Choreology Ltd (the legal person to whom all rights in this document are assigned) declare that they hold no patents relating to the contents of this document.
Change issues enumerated, summarized and categorized
	Current  issue #
	Feedback issue #
	Category
	Protocol
	Sub-protocol
	Summary

	
	CH-7
	Out-of-scope
	WS-BA
	
	Interoperable control protocol

	
	CH-10
	Out-of-scope
	WS-BA
	
	Migration of decision maker

	
	CH-11
	Out-of-scope
	WS-BA
	
	Reliable terminator

	
	CH-12
	Out-of-scope
	WS-BA
	
	Notification sub-protocol

	TX-1
	CH-2
	Applied/
Editorial/
Enhancement

/simplification

Bug fix
	WS-C
WS-BA
	C complete

P complete
	Allow selective outcome (see also CH-18, “Use of WS-Policy in WS-Coordination” contexts). 
The November 2004 and August 2005 editions of WS-BA allow coordinator types which enable a Coordinator to state that the delivered outcome will be mixed or “atomic”. 
However, service policy assertions unnecessarily distinguishing mixed and atomic outcome create artificial constraints on service capability and create excessive coupling between service and consumer. These distinctions should be dropped. 
MUST and MAY statements about coordinator support of atomic or mixed outcomes are out of scope, as these refer to multi-party behaviours that are the property of an API or control protocol. Besides, no coordinator can be forced to utter contexts for a particular coordination type: such statements have little or no meaning for an interoperable protocol. 

The term “coordinator” in WS-BA is used (in the course of defining atomic and mixed outcome) to mean something other than the entity to which the state tables refer, as they are purely concerned with a bilateral relationship. This relates to the lack of clarity on the identity of a transaction (see TX-16, meaning of context identifier).

Successful use of the mixed outcome context element requires additional work on participant identification: see new issue TX-15.

	TX-2
	CH-14
	Applied/
Editorial
	WS-C
WS-AT

WS-BA
	
	Relationship to reliable messaging should be clarified. Previous references to RM have been removed. The fact that the coordination protocols incorporate reliable, exactly-once delivery through persistence and retries (and therefore do not require standalone RM transports―as is stated in the TC charter) could be specifically stated in specifications themselves, as this may be a source of “broad-brush confusion” among commentators.

	
	CH-18
	Applied
	
	
	Use of WS-Policy to define use of  WS-Coordination contexts on application services.

	TX-3
	CH-1
	Charter conformance
	WS-BA
	C complete

P complete
	Absence of Fault as valid response to Close message makes service-oriented compensation transactions unworkable. Workable compensation transactions are a charter goal. WS-BA spec states several functional goals, e.g. quote-to-order, and “tentative” operations, whose achievement is not helped by the protocol as presently specified, thereby engendering unnecessary and fragile application programming effort.

	TX-4
	CH-5
	Bug fix
	
	
	Add Refuse/d message to avoid inappropriate overloading of Exit/Exited. See original feedback comments and proposed rework which still hold.

	TX-5
	New
	Bug fix
	WS-AT
	Vol. 2PC
	Response to volatile participant prepared message after coordinator completion and crash recovery should be specific signal or fault.

	TX-6
	CH-13
	Editorial/
Bug fix
	WS-BA
	C complete

P complete
	Some tightening of wording to create greater consistency between the main text and the glossary would be useful. 
Definition of Compensated in §3.1 passim, is bugged: “Upon receipt of this notification, the coordinator knows that the participant has recorded a compensation request for a protocol.” Should read “… has processed a …” 

	TX-7
	CH-6
	Editorial
	WS-BA

WS-AT
	
	Align WS-AT and WS-BA state tables (so both present event and state on the same axes) for consistency and ease of comparison.

	TX-8
	CH-9
	Bug fix
	WS-BA
	C complete

P complete
	Allow Compensate in Active state. This signal would be accepted by incomplete participants as being equivalent to Cancel. For completed participants it would have its normal meaning. Failure to permit this leads to completely unwonted endpoint complexity and unnecessary network communication.

	TX-9
	CH-3
	Enhancement /simplification
	WS-BA
	C complete

P complete
	Allow immediate transmission of autonomous Participant decisions to the Coordinator. Optimization.

	TX-10
	CH-4
	Enhancement /simplification
	WS-BA
	C complete
P complete
	Specify timeout and direction for autonomous Participant decisions. Optimization.

	TX-11
	CH-8
	Enhancement /simplification
	WS-BA
	C complete
P complete
	Allow transmission of Complete to any Participant. Simplification and optimization of the protocol by eliminating rigid distinction between coordinator- and participant-completion. 

	TX-12
	CH-15
	Enhancement /simplification
Editorial
	WS-AT
	
	Clarify and simplify WS-AT state tables/message set. Replacement of  Replay message by a replay of Prepared would simplify. The fact that the Coordinator tables only refer to bilateral interactions with a single Participant should be made clearer, judging by discussion at the interop workshop.

	TX-13
	CH-16
	Enhancement /simplification
	WS-C
	
	Use of context id in addition to reference properties. The context <Identifier/>, which is transmitted in the CoordinationContext, has no protocol function at present. Its explicit return in Register would allow implementations to provide trackable exchanges, and would permit greater flexibility in identification of transactions and EPR generation. Not required to make protocols function.  

	TX-14
	CH-17
	Enhancement /simplification
	WS-C
	
	Efficient registration of multiple protocols. There are no standardized or authoritative industry proposals for achieving message concatenation or grouping for performance reasons, despite statement suggesting the contrary in WS-C input document §3.2.1. “WS-Coordination assumes that transport protocols provide for message batching if required.” 

	TX-15
	New
	Bug fix/

Enhancement /simplification
	WS-C

WS-BA
	C-complete

P-complete
	Provide participant identification information for application use.

Checking of presence of required participants, and mixed outcome participant selection both require inferior-end authored identification of participants on registration. Cf. WS-BPEL scope identifiers. Use of EPR comparison to determine identity of participants is excluded by WS-Addressing Core Candidate Recommendation 2005-08-17.

	TX-16
	New
	Bug fix/

Enhancement /simplification
	WS-C

WS-AT
WS-BA
	C-complete
P-complete
	Explicit statement needed in WS-AT and WS-BA needed that CoordinationContext/Identifier is a unambiguous identity of the transaction whose context is being made available. Remove ability to duplicate identifier in event of sub-coordination (WS-C).

Statements with respect to atomic outcome are meaningless unless they refer to a defined transaction identity. Use of EPR comparison to determine identity of participants is excluded by WS-Addressing Core Candidate Recommendation 2005-08-17.

	TX-17
	New
	Bug fix
	WS-C
	
	Registration of subordinate coordinator via CreateCoordinatorContext is under-specified. Text describing example diagram is confusing. 

	TX-18
	New
	Enhancement /simplification
	WS-BA
	
	Remove “presumed nothing” requirement.

Requirement that “All state transitions are reliably recorded, including application state and coordination metadata” imposes unnecessary overhead. WS-BA can perform all of its design goals using presumed abort. Implementation can conform with state tables using presumed abort without observing above requirement.

	TX-19
	New
	Enhancement /simplification
Bug fix
	WS-C
	
	Faults 4.4, 4.5 and 4.6 should be removed. 

Fault 4.4 contradicts the specific behaviour of coordination protocol specifications: layer violation. It’s meaning is wholly unclear.

Fault 4.5 should not be sent to the coordinator: the original context was not emitted by the coordinator to the service. This is an application protocol concern.

Fault 4.6 prevents replay of messages to achieve reliable registration, see TX-20.

	TX-20
	New
	Bug fix
	WS-C
	
	Registration exchange should tolerate duplicates to enable reliable registration to be implemented over unreliable transports, in the same manner as subsequent WS-AT and WS-BA protocol exchanges.


New issues raised in this Contribution

TX-5
Orphaned volatile Participants
Spec.
WS-AT, Volatile 2PC
Category
Bug fix
Rationale
After a Coordinator crash there is no log record for a pre-existing transaction. This implies either, that the transaction committed, and its log record has been deleted; or that the transaction has aborted, perhaps as a result of a crash in Active state. Participants may seek to address messages to such a Coordinator. If they succeed in contacting an agent which can process such messages, it becomes a kind of executor for the dead Coordinator’s will. 

For durable participants, this is straightforward. If a Participant has not received an outcome message, then it will replay the Prepared semantic. Arriving at a successor Coordinator in the state “None”, this will receive the presumed abort reply: Rollback. No other message should be sent; if the Participant does send another message then it is committing a protocol error, and will receive the reply: InvalidState. If the transaction has committed then the durable Participant will have sent Committed, and has no business reverting to sending Prepared.
Volatile participants, however, have a different relationship to their Coordinator. It is legitimate for an aggressive implementation to delete its commit log record after receiving Committed from the last durable participant. If there is a crash in this circumstance then the successor coordinator cannot work out whether the outcome was commit or rollback – it could be either.  

The possibility of this special state arising cannot easily be avoided. The crash of a volatile participant could prevent a Coordinator from ever receiving a Committed message, which would present a garbage collection problem. Lenient implementations may wait for a long time before logically deleting the record; very lenient ones may keep eternal logs, but these are implementation choices than the protocol should not impose. 

The issue then comes up: how should a successor, post-crash Coordinator react to a Prepared message from a volatile Participant when it is in the state “None” with respect to that message? At present the WS-Coordination message InvalidState must be sent.  

The defined meaning of InvalidState in WS-Coordination is “This fault is sent by either the coordinator or a participant to indicate that the endpoint that generates the fault has received a message that is not valid for its current state. This is an unrecoverable condition.” 

This is an inappropriate message. In this case the meaning of the message is: “Legitimate message received, but transaction outcome is unknown: I can’t help you”.  
Change
Define new message UnknownTransactionOutcome to be returned in situation where message arrives for transaction in state “None”. Reserve InvalidState for circumstances where the recipient reasonably believes that the message received can not have been sent legimitately (i.e. that the sender implementation is bugged). 

Amend state table for Coordinator to ensure that the new message is emitted. Amend state table for Volatile 2PC Participant to define new state “UnknownTransactionOutcome,” to be entered on receipt of message,.

TX-15
Provide participant identification information for application use

Spec.
WS-C, WS-BA
Category
Bug fix
Rationale
Protocol must carry participant identification information to enable two facilities, without which WS-BA is unworkable for intended use cases:

· Identification of registered and completed Participants, for “checking” purposes

· Identification of Participants for selective cancellation/confirmation when using mixed outcome. 
A [ParticipantIdentifier] element is required in the WS-C Register message whose value is Participant-defined and which allows the application driving the Coordinator to identify participants from an application standpoint. Typically, this identifier will be returned in an application response, and will also be present in the Register message. This allows the application to correlate application responses (e.g. quote details) and Participants.

This feature is required, to take one concrete example, by applications using a WS-BPEL or XLANG-like API, where inner scopes may be compensated selectively, and each such scope is named: <compensate scope="foo"/> .

The alternative to using an explicit identifier element is to rely on opaque information specified in WS-Addressing reference properties or parameters, which involves their consumption by the receiving processor, in violation of the WS-Addressing specification. 

Let us illustrate this point. The consuming application and the service require the protocol to provide support for defining a relationship between a Register message, and a service-generated message. An example would be: an application message carrying a quote from car rental company A, which is associated with a participant P(A). How does the consuming application (which, we assume, has control over the Coordinator) correlate the messages Quote (A) and Register (P(A)), in order to choose service A’s quote over that of rival service B? 

One potential answer (superior authorship) is to issue a registration EPR in the transaction’s CoordinationContext as shipped to service A, which contains a reference parameter with value “A”. The service could cut this value A, and paste it into the Quote application message as an element [Quoter], or some such. It would then paste the same value into a reference parameter of the participant address of Register. The expectation would be that the registration service would evince this opaque datum to the application, and that the application would be able to figure out that it was of the same type and purpose as the [Quoter] element received in the Quote application message.
It should be clear that this is neither an interoperable solution, nor one that conforms to WS-Addressing. The type of the reference parameter (and the processing rules for it) are a matter for private agreement between any consumer-service pair, but that specific agreement cannot be expressed in the general contract of the Register operation on the registration service. The consumption of a reference parameter by a receiving processor for purposes other than generating a message to the endpoint reference, and its handoff for use by a third party processor, are both violations of the opaque, non-consumable nature of reference properties and parameters. 

The same fundamental objection applies to the technique of the service inserting a correlation identifier as a reference parameter of the reply-to endpoint reference of the Register message (inferior authorship). This identifier would be repeated in the associated application message (Quote, in our example). The registration service would be expected, once again, to extract and handoff this element, despite the fact that it cannot be assumed to have a priori knowledge of its type or indeed of its possible existence.  
This type of consumption is a violation of the WS-Addressing specification: both reference properties and parameters are intended to be meaningful only to their original issuer, in respect of messages targeted upon that issuer or its delegates or confreres, in order to correctly establish the processor’s behaviour and state applicable to subsequent inbound messages which relate to the issued endpoint reference. 

As we interpret the WS-Addressing specification, the only legitimate actions of a receiver of an endpoint reference are to copy the values of the reference into the elements or fields in a protocol message targeted upon the endpoint, according to the binding rules for that protocol, where “protocol” is generally taken to mean a lower-layer encoding or carrier protocol (e.g. SOAP).

It is not permitted to compare EPRs for equality. 

Any solution to participant identification that relies on use of WS-Addressing constructs, and does not define a new WS-Addressing binding and/or extensions,  will violate these constraints. In our view there is no cause to artificially depress coordination protocol message properties into an addressing scheme: better to let them see the light of day as independent first-class elements of messages.

Note also that solutions that depend on superior authorship (coordinator identification) are insufficient. Inferior authorship (self-identification by the service/participant) is required to support use cases where the context is broadcast (e.g. auctions), or published for subscription on a message bus. 

Change
Define new element 

[ParticipantIdentifier] : xs:any (0..1) 

in Register message, whose use is mandatory when registering with a WS-BA Coordinator. 

This element’s contents are defined by the agent that registers the Participant, and their meaning for the purposes of correlation with application messages that travel between the service and the consuming application is defined by agreement of those two parties, and is not a matter of further concern for the WS-BA specification. 

(Note that this definition is silent on the question of whether the value is application-generated or middleware-generated—this is an implementation issue.)

TX-17
Registration of sub-coordinator via CreateCoordinatorContext under-specified
Spec.
WS-C
Category
Bug fix
Rationale
There is a clear need for coordination protocols to be able to manage trees of services. WS-BPEL is but one example among many.

The design intent of the specification, as reflected in the “two applications” example in section 3 appears to be one of the following:


Possible design intent A

That CreateCoordinatorContext can be used to create a subcoordinator. To achieve this, a <CurrentContext/> element is contained in the message. The optional ActivationService, on receiving this message, will a) register a Participant EPR with the Coordinator of the current context, and b) generate a new CoordinationContext for a new Coordinator, containing a Coordinator EPR, with the same <Identifier/> as the current context. Referencing specifications like WS-AT and WS-BA will ensure that coordination protocol messages that hit Participants created in this way will be appropriately translated into protocol messages that pass out of Coordinators that are created in this way. This type of subcoordinator registration can only occur if the new and current contexts are of the same protocol type.


Possible design intent B
That CreateCoordinatorContext can be used to help create a subcoordinator. To achieve this, a <CurrentContext/> element is contained in the message. The optional ActivationService, on receiving this message, will generate a new CoordinationContext for a new Coordinator, containing a Coordinator EPR, with the same <Identifier/> as the current context. The current context information will be stored somewhere (by the activation service? by the Coordinator EPR implementation?). When a Participant is registered with the new Coordinator, the Coordinator is responsible for creating a new Participant EPR and registering it with the (old) current context’s Coordinator. Referencing specifications like WS-AT and WS-BA will ensure that coordination protocol messages that hit Participants created in this way will be appropriately translated into protocol messages that pass out of Coordinators that are created in this way. This type of subcoordinator registration can only occur if the new and current contexts are of the same protocol type.

The design intent is not well expressed.

The text preceding Figure 2 points at design intent B. However, this is an unworkable approach. Late registration of a subordinate coordinator is a dangerous game. If the intent was approach A, then the text mis-speaks in step 5. It is not the registration that induces the root-subordinate link, but the creation of the new context in a previous step. 

There are sub-issues, the largest of which is the seeming requirement that the root and the sub-coordinator share the same identity, which seems arbitrary.

Change
Clearly define the broad behaviour described in Possible design intent A, removing the reference to copying “activity identifiers”. 


Review WS-AT and WS-BA for issues relating to sub-coordination.
TX-18
Remove presumed nothing requirement

Spec.
WS-BA
Category
Enhancement/simplification

Rationale
See summary table.

Change
See summary table.
TX-19
Remove faults 4.4, 4.5 and 4.6

Spec.
WS-C
Category
Enhancement/simplification, bug fix

Rationale
See summary table.

Change
See summary table.
TX-20
Enable duplicate registration exchange messages

Spec.
WS-C
Category
Enhancement/simplification

Rationale
See summary table.

Change
See summary table.
 [Ability to place WS-Tx messages in headers (register on response)
absence of checking]
May 2004 Choreology Ltd. Feedback to the original three authors of WS-Coordination, WS-AtomicTransaction and WS-BusinessActivity

Revised edition, 4 May 2004
Provided as “Comments” under the terms of the Web Services Protocols Workshop Feedback agreement between the authors of this document and the “Authors” of the above-mentioned specifications. 
Peter Furniss (Choreology Ltd, Chief Scientist)

www.choreology.com/company/management_furniss.htm
peter.furniss@choreology.com
Alastair Green (Choreology Ltd, Chief Technical Officer)

www.choreology.com/company/management_green.htm
alastair.green@choreology.com
1st edition: 20 April 2004

2nd ediion: 4 May 2004

Our thanks to the members of Choreology’s staff and our Technical Advisory Panel, for helping to shape our whole line of argument over the the last three years. Robert Clarke, Tony Fletcher and Bob Haugen have played a particularly direct role. Mark Hemsley has provided defining use cases that have helped convince us that Business Transaction Management is a hugely valuable new technology.
We would also like thank the staff of end-user and partner companies, as well as colleagues in various standards bodies, who have contributed a great deal to our understanding of the requirements for Business Transaction Management.

Copyright 2004 © Choreology Ltd.
This revised edition incorporates some minor typographical and editorial corrections, and a prefatory summary entitled The key to our proposals. 
The term “intentional-final” has been replaced by “provisional-final” to align with other Choreology documentation.
Introduction to original feedback (May 2004)
Choreology is primarily interested in the WS-BusinessActivity specification, which we view as the best candidate for becoming the vanguard specification for Business Transaction Management (BTM). 
With some extension, congruent with the stated goals and model of the existing specification, WS-BA will provide a good minimum, interoperable platform for a wide range of business transaction management problems, including its original use-case, the extension of WS-BPEL scoped compensations across processes and services.
To achieve this status, we believe that WS-BA should reflect requirements drawn from industrial experience, including those we have encountered from end-users and ISVs in the course of our own company’s three-year history. 
In this feedback document we aim to motivate, with sample use-cases, a modest but critical enlargement of WS-BA’s capability. We have shown the required changes in detail for our most significant proposals, and have sketched solutions for the remainder. 

We also comment on detailed aspects of WS-Coordination and WS-AtomicTransaction. We believe that the motivation for, and design intent of, these specifications is also sound. 

(
The remainder of this document, after some introductory material on Choreology’s history, perspective and motivation in providing this detailed feedback, falls into three main parts: 

· Part I. 
Issues and change proposals for WS-BA, WS-AT and WS-C
· Part II. Use cases for BTM which motivate our proposals
· Part III. WS-BA: Model and scope
preceded by a very short summary of our most important arguments

· The key to our proposals
We recommend that readers start by reading the summary, and may then wish to continue with any leg of the tripod, depending on their interests or approach. 
Our commitment to the Workshop process

While Choreology has historically been closely identified with OASIS BTP, we have always held that BTM standardization cannot succeed without the active backing and sponsorship of the WS Transactions author companies. This is true simply by virtue of their size and their historical role in the field of transactional technology. These attributes are reflected in the standing of their technical staffs in the field. 

We strongly welcome the move of these specifications into the workshop process, en route to ultimate standardization. We orient to constructive criticism of the current specifications, with the aim that WS-BA, in particular, should become the supervening standard for interoperable application coordination. It would be a great pity if the current opportunity for consolidation around an improved WS-BA, as a usable minimum specification for BTM, were to be missed.

We are prepared to put detailed writing/editorial work, alongside the current authors, to incarnate any proposed change in concrete amendments to the specification, if this seems appropriate to the author group. 

We are also prepared to present in person or by phone to any of the original author companies, and other companies planning implementation; or to a collective feedback audience, to explain and motivate our proposals.  

In anticipation of a productive, collaborative and open-minded feedback environment, we intend to participate actively in interoperability testing. We also intend to participate in a viable open standardization process, when the time comes.

Our commercial view is that the BTM market must be made, before it can be divided. We therefore contribute our ideas and experiences with a commitment that Choreology will not seek in any way to control or impede their adoption in any open standard that may result.

Choreology’s history and perspective
Choreology Ltd is a privately-held, venture-funded software product company, headquartered in London, with a small North American staff. Our company’s goal is to play a leading role in the development of the market for application coordination, through the medium of BTM technology. We aim to provide software that assists the processing of economic transactions, as part of business processes that span multiple application services, within and across the firewall. 
Our company’s senior technical staff have been involved in the design, production, marketing and deployment of four transactional products prior to the formation of Choreology, within companies such as Digital, Unisys and Transarc. Collectively, we have been closely involved in writing, editing or implementing the following pre-WS standards initiatives: CCR, OSI/TP, OTS and JTA/JTS. 
These experiences underpin our conviction that the central problems addressed by all transactional technology: inconsistency and uncertainty of outcome, still beset the computerization of all industries. In our view the key to reducing the colossal cost and inefficiencies generated by those problems is to elevate structured coordination to the level of application services and business processes. Applied at that level, business transaction management can usefully touch a very wide market, where manual operational procedures for reconciliation and repair currently reign near-unchallenged. Equally, new and more efficient processes can be automated, if application services can become truly composable.
In our view, the successful automation of transactional business processes will fuse BTM technology with recoverable execution and orchestration engines, communicating through well-defined application-level protocols, and will incorporate reliable messaging as a key supporting technology. 
Without the simplifying transaction abstraction, transactional business processes are practically (economically) infeasible: to conceive, to write, to test or to maintain. 
Proximate origins of our feedback
During the three years of Choreology’s existence we have played a leading role in the design, writing and editing of the first public specification addressing the needs of application-level coordination: OASIS Business Transaction Protocol (BTP). We have implemented both BTP and WS-Coordination+Transaction (August 2002 edition) in our product, Choreology Cohesions. 
We have actively marketed that product in the past year. Over a similar span we have also participated closely in the OASIS WS-BPEL Technical Committee, with a particular interest in the BPEL scoped-compensation Long-running Transaction (LRT) model, and its relationship to the wider arena of application coordination or BTM. Our staff are also involved as active members in OASIS WS-CAF (Composite Application Framework).
Throughout these experiences we have sought to critically examine our own work, and that of other practitioners, in the light of customer requirements and feedback. We believe that the shape of the necessary elements of interoperable business transaction management, in this first phase of utilization, is reasonably clear, and that the WS Transaction family of specifications is timely and useful.
The key to our proposals
The diagram below illustrates the minimal effect of allowing the WS-BA Close message to be faulted. This is our most critical and fundamental proposal to the authors. Without this change WS-BA can only support the “do-compensate” pattern for participants.


[image: image1]
We consider “do-compensate” to be a model too limited for many natural use cases of WS-BA. 
If a participant cannot change a quote to an order, or cause a credit reserve to go firm, then it cannot model common business realities. This problem becomes acute in business-to-business interactions, where transaction conclusion indicates contractual commitment. Across all such cases—within and without the firewall—it is necessary to support the alteration of tentative, intentional or provisional work by a participant, either to be finally done; or to be countered. 

Allowing symmetrical treatment of Close and Compensate in the fashion shown by the red line is all that is needed to allow participant service designers to choose between the “do-compensate” pattern of contingent behaviour (exclusively favoured by WS-BPEL), or additionally to permit the  “provisional-final” and “validate-do” patterns.

All other changes we propose in this document rank behind this change in significance. 
In our view failure to support provisional-final participant behaviours will prove a very serious flaw in WS-BusinessActivity. 
We wish to see WS-BA succeed, and therefore wish it to change in this critical respect.
We will continue to implement WS-BA in our product, if this proposed change is not accepted, but the utility to customers of the protocol will be then be limited to the special case of BPEL-style, compensations-only Long–running Transactions. 

Very many of the concrete cases we are encountering in the market are not best solved by a compensations approach, owing to the complexity of countering cascading effects (including physical actions) as time passes after the initial action.. Our use cases illustrate this experience.
We do not consider that this small but pivotal and liberating change justifies the creation of a new WS-Coordination coordination protocol, or a new WS-BA sub-protocol. 
The reaction of a participant to Close or Compensate is essentially an encapsulated, private matter, and may include a null operation. It is unnecessary to force a participant to register a new protocol simply to indicate its implementation choice (operation or no-operation). This would  violate the minimum coupling rule that should govern service-orientated interactions. It would be “more information than we need”.
From a procedural standpoint, we believe that support for provisional-final behaviours should not and need not be put on the long finger. As the diagram shows it is a very easy change to introduce. Its impact on the normative state tables is equally trivial.
Part I: Issues and change proposals for WS-BA, WS-AT and WS-C
Proposals have been categorized as:
· Critical—Those that we believe would significantly enhance (or avoid limitations to) the specification (these only concern WS-BA)
· Correction—where the existing specification appears to be wrong or confusing

· Useful—Technical changes that we believe are worth considering
· Editorial—Editorial and explanatory issues that would not, in themselves, affect implementations
The issues on the whiteboard at Bellevue that we were explicitly requested to enlarge upon were Bellevue 5, 8, 10 and 12. Some of the other workshop issues (e.g. Bellevue 6, 9, 13), and other items mentioned in the minutes were raised by us and are expanded here. We have addressed issue 12 (“Business promises and protocol promises”) in Part III of this document, WS-BA Model and scope.
Some of the other issues here were included in our presentation but we didn’t have time to explain them. In some cases, the rationale section of individual issues summarizes points explained more fully in Part III.
Modified State Tables

The key changes we propose for WS-BA, plus corrections and simplifications in line with CH-6 below, have been reflected in revised and simplified state tables, which follow the issues list. Changes consequent on CH-3 have not yet been included, through lack of time. 

Less critical changes proposed might also create further changes in these tables. 
We have only revised the informative transition graph to reflect CH-1: this graph is presented in the summary section above, The key to our proposals.
An Ur Question: Should WS-BA protocol promises state business promises?

At the Feedback Workshop, scenarios were described for the use of WS-BA which mandated the use of application-specific messages to make contingent business promises. We believe that any “callable or cancellable” service promise (representing tentative interim state) should be capable of statement by the protocol message Completed.

The interactions and application state changes in a Business Transaction involve changes to the state of the business relationship between the parties. To achieve consistent change in the perception of a business relationship between the parties involved, it is invariably necessary for one side or the other to make a promise that it will change the state definitively if and only if it receives an appropriate instruction from the other side. 

The side receiving that promise can then make the decision as to whether the change is to be made, and then communicate the decision to the promiser – calling the promise and being sure of its application on both sides. The main advantage of a business transaction protocol, such as WS-BusinessActivity, is to communicate that promise and ensure that the decision is transmitted to the parties.

It is implicit in this description that the promise in WS-BusinessActivity, which is communicated by the Completed message, should therefore be a business promise – the participant is promising that its perception of the business state has been tentatively changed, and that the change will be reverted (if Compensate is received) and made irrevocable (if Close is received).

The problem with WS-BA is that it has too limited a repertoire of deliverable participant promises. Specifically, without the ability to fault a Close, it is not possible to use the protocol to make a very natural promise of the following kind: that the service has provisionally reserved inventory, subject to order, enabling the Quote-to-Order pattern which is so typical of much commerce.

WS-BusinessActivity
CH-1
Fault on close

(aka “Contingent service operations”, Bellevue #8 “Provisional” do vs “real” do)

TX-3




Comments
We intend to bring new material relating to this discussion into the WS-TX TC. Section III of the original feedback document provides useful background..

Spec.
WS-BA
Category
Critical
Rationale
See Part III, WS-BA Model and scope.

The specification as it stands assumes that all services can only ever respond to a service request by performing the complete and full work and then, if reversal is required, by applying a compensating counter action. This “compensation-only” model is unnecessarily limiting. 
Very minor change to the protocol will allow protocol implementations to be decoupled from the particulars of how a service works. This will permit the full range of participant models to be supported, critically including “provisional-final”−an approach which requires supplementary service work to transit to any final state. This supplementary work may fail, just as compensatory work may fail.
This requirement undermines the current assumption: that an error on processing Close is an externally insignificant failure (of no interest to the Coordinator). The logic of this assumption is that deleting a log entry is simply housekeeping, and a failure to so delete is a harmless lapse which can be rectified by background garbage collection of some kind.
The requirement to support failure-prone supplementary application work in reaction to Close is not just a desirable widening of WS-BA’s capacity. 
It is very difficult to precisely word a definition of the sending of Completed with the thrust: “no other activity than dropping memory of the transaction is permitted on the subsequent receipt of Close”. Without such tricky (and artificial) wording, the specification writer tends to get bound into protocol endpoint implementation assumptions. 
It is safer, and easier, to permit free behaviour behind Close, and therefore to allow either the implementation, or the application client to the implementation, to define any restrictions or constraints. An example of a constraining application might be a BPEL execution engine, which is not permitted to go beyond the “do-compensate” model, and which offers no opportunity for additional application work to be defined at the closing of a scope.

The only technical change required to the protocol is to allow for the possibility that a close operation might fail, in the same way as a compensate operation can. 

Change
Allow Fault as a possible response to Close.

The detailed changes (given here independently of any other changes) are:

In the description of Fault in 3.1, change “active or compensating state” to “active, closing or compensating state”

In both state diagrams, add a participant-generated transition from Closing to Faulting, with a Fault message.

In the state tables, for both WS-BA sub-protocols:

Participant view

Faulting-compensating/Close cell becomes “Resend Fault, Faulting”

Closing/Fault cell becomes “Faulting-compensating”.

Coordinator view

   Closing/Fault becomes “Faulting”

It would probably be useful to rename the Participant’s “Faulting (Compensating)” state to “Faulting-finishing”, but this affected by the resolution of CH-5 and CH-6)

CH-2
Continue to allow selective outcome

(Bellevue #10 – BA Common outcome)

TX-1




Comments
See summary table. 

Spec.
WS-BA

Category
Critical
Rationale
The existing specification makes no definite rule about which decision is applied to each registered participants. Utility of WS-BA would be inhibited by a rule that required that any participant that reached completed status could not be deliberately and selectively cancelled by the controlling application.


In practice, this is a question for the control API/protocol (c.f. WS-AT’s completion sub-protocol), and actually enforcing the rule in a conformance testable manner with the WS-BA protocol itself is quite difficult.

A control API (or control protocol) may provide a means for the controlling application to “hand-over” control to the coordinator, requiring a consistent (i.e. uniform) decision to the remaining participants.

Change
None. Alternatively, include a specific statement that any rules about outcome relationships between different participants in the same business transaction are application determined.
CH-3
Coordinator to be informed immediately of autonomous Participant decisons
TX-9




Comments
See summary table. 

Spec.
WS-BA

Category
Critical

Rationale
Services involved in loosely-coupled business activities, of the sort targeted by WS-BA are commonly more-or-less autonomous. They are cooperating in the Business Activity, but there are other drivers and requirements on their behaviour. This applies whether the systems involved in the Business Activity are from different organizations (where the autonomy is obvious) or are just different applications in one organization (where legacy applications, for example, often have other, primary goals, and the Business Activity is an integration)

Consequently, it must be expected that services will reserve the right to make and apply their own decision to the work they are responsible for, despite their promise to await the decision of the controlling application. This is analogous to a heuristic decision in a classic ACID transaction, but is likely to be more common.

Since such an autonomous decision will threaten, and may (like a heuristic decision) destroy the consistency target that led to use of WS-BA, it is important that it can be signalled as soon as possible. If the warning arrives in time, it is possible (given that Business Activities may be long-running) that the controller can cope with the decision – either cancelling/compensating the whole activity, or ensuring that the rebellious participant is accommodated somehow.

At present, WS-BA does not give a chance for the participant to report an autonomous decision, until it is informed of the coordinator’s decision. 
Since WS-BA is based on one-way messages it would seem fairly straightforward to allow the participant to reply before it is asked.

Change
Allow Closed and Compensated to be sent before Close or Compensate are received. If the decision for that participant is in line with the autonomous decision, the corresponding Coordinator to Participant messages closes the relationship. Otherwise the relationship enters Faulted state, and will require a Faulted message to reach final termination.

CH-4
Timeouts and directions of expected autonomous decisions
TX-4




Comments
See summary table. 

Spec.
WS-BA

Category
Critical

Rationale
Given the autonomy described in CH-3, there is considerable benefit in having a standard way for participants to warn that there are limits to their patience, and that they expect to make an autonomous decision at some point. The controlling application can use this information to avoid contrary decisions – perhaps by canceling the impatient participant before the time runs out, or making its own final decision in time.

Change
Define elements (perhaps WS-Policy assertions) that allow a participant to declare that it expects to make an autonomous decision after a stated time, and which way that decision will run (cancel or confirm).
CH-5
Add Refuse message (Early and late Fault should be distinct)

(alternatively: “Exit with and without work done should be distinct”)


(Bellevue #9)

TX-4




Comments
See summary table. 

Spec.
WS-BA

Category
Correction

Rationale
The present specification uses the Faulted message sent from the Participant to mean both “I have not done any of the work you asked me” and “I have failed to undo the work I was told to compensate”. The coordinator can in fact distinguish these completely opposite application semantics by whether Compensate has been sent, but this distinction would become difficult given relatively minor variations, options or enhancements in the protocol. It would be better to have a single semantic for each message.


There is also a related ambiguity in the use of the Exit message – the text suggests that this could be used to mean both “The application work you asked me to do has no effect” (perhaps because it has already been done) and “I have not done any of the work you asked me to” – which latter is also one of the meanings of Faulted. In this case, these could be distinguished by the application messages, but that seems to be placing a burden on the application protocol.

Change
Both these ambiguities could be resolved by adding an additional message, perhaps “Refuse”. 

The semantics, including the impact of CH-1 would then be:

	Exit
	The application work you asked me to do has no effect
Close, Cancel and Compensate would all leave our business relationship in the same state.

	Refuse
	I have not done any of the work you asked me to 
Spontaneous statement of unwillingness to be part of this activity.

	Faulted
	I have failed to reach the requested final state 
i.e. failed to undo if told to compensate, failed to finalize if told to close


In line with the pattern for Exit/Exited and the current early Fault/Faulted, there should be a Refused message in response.

In detail, the changes would be:

Delete “active” [state] in the definition of Fault in 3.1

Add definitions in 3.1

Refuse

Upon receipt of this notification, the coordinator knows that the participant has failed in the active state. For the next protocol message the coordinator should send a Refused notification. The Refuse notification carries a QName defined in schema indicating the cause of the failure.

Refused

Upon receipt of this notification, the participant knows that the coordinator is aware of the refusal and no further actions are required of the participant.

In the state diagrams, remove the Active – Fault ( Faulting and Completing – Fault ( Faulting paths. Add a new state Refusing, with transitions from Active and Completing with Refuse, and to Ended with Refused.

In the Glossary, add definition

Refuse

A message from a participant telling a coordinator that it refuses to perform any of the work for that business activity.

Change the definition of Fault to

Fault

A message from a participant telling a coordinator that it could not successfully apply a Close or a Compensate instruction.

In the state tables, add new state Refusing, and new messages Refuse and Refused. Most cells are as for Exiting, Exit and Exited, with appropriate substitutions. Following the existing pattern for Exit, a Cancel/Refuse collision is resolved in favour of Refuse, which is resent if a Cancel message arrives in Refusing state.

(Note that the changes proposed are modelled on the existing text, but there are editorial comments on the 3.1 definitions, the glossary and the state tables)

CH-6
BA state table curiosities 


(~ Bellevue #13)

TX-7




Comments
See summary table. 

Spec.
WS-BA

Category
Correction/Editorial

Rationale
The WS-BA state tables are the other way round to WS-AT which is rather confusing. They also contain transitions to states that are called something else in the tables.


The entries for invalid interactions are not well explained. “Invalid State” could be taken to mean that the WS-C InvalidState fault is sent. However, this is defined in WS-Coordination 4.1 as meaning the endpoint has entered an invalid (and unrecoverable) state, whereas the state diagram shows the state as unchanged. As a response to an out-of-sequence message, replying with a wscoor:InvalidState fault and either otherwise ignoring the erroneous message or terminating the state machine (with appropriate management signals) would be reasonable. However, an attempt to send a message out of sequence should just be rejected by local means – this is a matter for the implementation and its API. In any case, the state tables are much easier to read if the invalid interactions are just represented by blank cells, with a separate explanation of the actions to be taken.
Change
Alternative state tables, with accompanying text are attached. These include the effects of CH-1, CH-5 and CH-8 only. Other changes could be provided.

CH-7
Interoperable control protocol
Issue dropped.  No TX number.


Comments
Out of scope of WS-TX TC charter.

Spec.
WS-BA

Category
Useful

Rationale
The normative parts of the present specification cover only the two-party coordinator-participant protocol and, with reference to WS-C, the registration exchange required to establish the two-party relationship. However, the overall function and purpose of WS-BusinessActivity requires some agreement and understanding on how to control and drive the activity. This could be regarded as merely a question for the model and proprietary APIs, but, given the two-party protocol, there is advantage in also defining an interoperable control protocol, allowing the coordinator to be remote from the initiating and controlling client. Such a control protocol is present in WS-AtomicTransaction in its Completion sub-protocol.


In a given implementation it would be possible to usefully support the bilateral coordinator:participant protocol, but to not support the proposed control protocol. However, defining it will assist considerably in understanding and specifying WS‑BusinessActivity. This will be especially true for specifying the details and constraints concerning the selective outcome capability.

Change
Define a control protocol capable of driving a Business Activity to completion, including the acceptance or rejection of individual prepared participants.

CH-8
Allow transmission of Complete by Coordinator to any Participant
TX-11




Comments
See summary table. 

Spec.
WS-BA

Category
Useful/Correction
Rationale
WS-BA currently has two sub-protocols distinguished by whether the Complete message is permitted. The Complete message can be used to inform a service that it will receive no further messages inducing interim states. It therefore encourages Participants to “go prepared”. It may also be used by a Coordinator to “ping” or “hurry up” Participants which are not communicative. This latter function is disallowed by use of the withParticipantCompletion sub-protocol.


It seems easier and simpler to remove the distinction between the two sub-protocols, allowing a Coordinator to send Complete to any Participant.

This permits the two sub-protocol specific variants of the state tables to be folded into one, by simple dint of allowing Completed to be sent from Active state (as it is currently in withParticipantCompletion) and Complete to be sent by the Coordinator. This will substantially simplify implementation and testing.


It should be noted that this change affects the protocol, but might well leave the APIs driving the protocol unchanged. The knowledge that is currently used in a Participant implementation to determine which sub-protocol is used can be used to determine whether the Complete signal is to be reflected to the application.

Change
Simplify the WS-BA specification by merging the sub-protocols, making Complete optional (“optional” in the sense that is allowed, but not required by the WS-BA protocol machines, in all cases)
CH-9
Allow Compensate in Active state (optimizing unconditional cancellations)
TX-8




Comments
See summary table. 

Spec.
WS-BA

Category
Useful

Rationale
The present spec resolves a cancel/completed collision in favour of the completed, and if the coordinator and its application then determine the participant’s work should really be undone, a subsequent compensate is sent. It is possible to imagine use-cases where this pattern is important in an application (for example, if the compensation will involve some penalty charges, which pre-completion cancellation would not). However, in many other cases the intent of the coordinator and its application will be merely to stop and undo if necessary without delay or reconsideration. This could be accommodated without losing the flexibility of the current behaviour if Compensate were allowed to be sent from the Active state, and the receipt by an uncompleted Participant were treated as equivalent to Cancel.

Change
Allow Compensate from Active state, treated as equivalent to Cancel if received in Active state.

CH-10
Migration of decision maker
Issue dropped.  No TX number.


Comments
Out of scope of WS-TX TC charter.

Spec.
WS-BA

Category
Useful

Rationale
From customer usage and requirements, we have found that loosely-coupled applications frequently involve a pattern where one system initiates some distributed work and then needs to make a promise that it will follow the decision of another system that is recruited later. A request for provisioning some external service, for example, may involve contingent changes on the requesting and billing systems, which will become definite when the provisioning succeeds, cancelled if it fails. In another case, a request for inventory may be aborted by the inability to book an order. 

A straightforward way of doing this is to allow the registration of a new WS-BA coordinator, as the parent of the existing root-coordinator, taking over control of the outcome decision for the transaction tree.
It is worth noting that the functionality is analogous to the last-subordinate or last-agent optimization of some classic transaction systems. We note also that this simple and powerful capability, which has been found to be essential in particular user environments, is not available in any of the currently published XML/Web-Service transaction protocols.

Change
Allow registration as coordinator to an existing participant, as well as normal pattern. An attempt to register with a node that is already a participant to some other coordinator will fail.

CH-11
Reliable terminator
Issue dropped.  No TX number.


Comments
Out of scope of WS-TX TC charter.

Spec.
WS-BA

Category
Useful

Rationale
There are known use cases where a “client” application element (initiating and controlling the progress of the application) needs to be reliably informed of the result of the business activity, but where the coordination is performed by another system. (The first edition of WS-AtomicTransaction had such a capability in its “CompletionWithAck” protocol).


Conveniently, the inter-party exchanges necessary to achieve such a reliable notification turn out to be the same as those necessary to accept the “vote” of a participant and to reliably inform it of the decision. The API that drives the protocol signals is likely to be different from that used by a participant, but the same protocol can be used.


The same solution as for CH-10 can be used, with the client creating an initial node to which the real coordinator registers, the client’s node becoming a participant. The client’s instruction to confirm appears in the protocol as a Completed message from its participant, and the decision is reported to that participant via Close or Compensate as appropriate.


(This approach minimizes the impact on the protocol – other approaches, with greater complexity, would be necessary if it were required to get reliable notification of faults to the client.)

Change
Allow registration as coordinator to an existing participant, as well as normal pattern. An attempt to register with a node that is already a participant to some other coordinator will fail.

CH-12
Notification sub-protocol
Issue dropped.  No TX number.


Comments
Out of scope of WS-TX TC charter.

Spec.
WS-BA

Category
Useful

Rationale
There are cases where application elements require to be informed of the final outcome (canceled, closed, compensated, faults received) of a Business Activity but are not otherwise directly involved – they are not the initiator of the Business Activity, the initiator of its completion nor do they control resources subject to its decision. 

Change
Include a sub-protocol that reports the final outcome (canceled, closed, compensated, faults received) for a Business Activity.

CH-13
Message definitions
TX-6




Comments
See summary table. 

Spec.
WS-BA

Category
Editorial

Rationale
The message definitions in 3.1 are given from the perspective of the receiver. Although is appropriate in terms of describing a (one-way) WSDL interface, it really the wrong way round to describe the semantics of the messages. The meaning of a message is usually better understood in terms of what it implies about the sender.


Some of the messages are also defined in the glossary – however, cancel and close are there defined as actions, and the others as messages in terms of the sender (as suggested for 3.1).


In 3.1, Compensated is defined as meaning only that the participant has recorded the compensation request, whereas other *-ed messages refer to the completion of the processing implied. Since Fault will signal the unsuccessful application of Compensate, this is particularly odd.

Change
Standardize the description of the messages, and in 3.1 express this primarily from the perspective of the sender.

CH-14
Clarify relationship to Reliable Messaging
TX-2



Comments
See summary table.
Spec.
WS-BA

Category
Editorial

Rationale
The specification occasionally (and misleadingly) implies that it requires underlying use of reliable messaging (e.g. first line of 4.1). 

Change
Clarify relationship to RM . 
WS-BA as written does not require RM for its own messages, though of course should work with applications that use RM for their messages, and could itself be implemented over a reliable transport.

WS-AtomicTransaction
CH-15
AT messages and state table simplifications

(~ Bellevue #6)

TX-12



Comments
See summary table.

Spec.
WS-AT

Category
Corrections/useful

Rationale
There are some features of the WS-AT state tables that are not wrong, but are not explained. It is possible these are carry-overs from other transaction protocols that may not be necessarily applicable in the web-service environment. In particular, the change from request/response protocols over a single transport connection (whose failure is thus bilaterally visible) to one-way messages that can use separate connections relaxes some historic requirements.

Why does receipt of Readonly not cause a state transition at the Coordinator? 
Since the “Forget” action is defined as removing the subordinate’s participation from the coordinator, the coordinator view state engine should transit to None or, better a new state that returns Committed to User Commit and Aborted to User Rollback.

Why does Replay cause rollback in active or preparing 

Why is Replay distinguished from Prepared ?
These would appear to be carry-overs from cases where the underlying carrier protocol is request/response, and the Prepared semantic can only be received as a vote on a response. With the possibility of asynchronous carriers, there is no need to distinguish Replay and Prepared and no need to force any indication of (recovered) communication failure to trigger an abort. (It would still be legitimate for a coordinator to treat such as an indication as trigger for an abort, just there is no interoperable or conformance requirement to make everyone do it). The action on “Comms Times out” is “Resend Vote”, which would seem to mean Prepared (but see below)

Why do the Rollback/Active and Rollback/Preparing cells in the Participant view have actions of Initiate Rollback, Send Aborted, Forget but the Expires Times Out cells only have Send Aborted?
The expiry (of the context, presumably) needs to trigger the same internal processing as receipt of a rollback would.

The Internal Events and some of the actions need explaining. This is especially the case for the log-writing events and for “Send Vote”.

The protocol follows the common presume-abort pattern – distinguishable by the absence of a reply to Aborted. Consequently, it is assumed that “Send Vote” means send Prepared, in which case the Participant view shows only the sequence for a positive (Prepared) decision. There must be internal events that trigger ReadOnly and Aborted from Preparing but these aren’t shown. Without these, any validation of the protocol is questionable.

Change
Receipt of ReadOnly should transit out of Active.

Drop Replay – resend “Prepared” in case of comms timeout in Participant’s PreparedSuccess state.

Add the internal events and resulting actions in the Participant that lead to Readonly and Aborted being sent.

Provide explanation of the internal events and actions.

WS-Coordination
CH-16
Use of context id in addition to reference properties in registration


(Bellevue #1)

TX-13



Comments
See summary table.
Spec.
WS-C

Category
Useful

Rationale
The WS-C Register message does not carry the transaction (context) identifier, but relies on the ws-addressing reference properties exclusively to identify which transaction the registration is for. This is effective, but requires the implementation to follow a particular pattern for identifying/internally routing the registration requests. If the transaction identifier were included in the Register message, in addition to the having the WS-Addressing reference properties, implementations could choose which internal mechanisms to use. Some might omit the reference properties altogether, using only the transaction/context identifier. Others might fully disambiguate using the reference properties, ignoring the identifier. Others might use both. All these implementation options would appear the same to the other end (which receives the WS-Address and uses it to send the Register message – in the first case, the reference properties would be empty, and no headers would be added, but that is allowed in WS-Addressing).

Explicitly including the transaction identifier may make some coordination protocol constructs (beyond those currently being considered) easier to specify. 
Change
Add the context identifier as a required field of the Register message.

CH-17
Efficient registration of multiple protocols

(Bellevue #5)

TX-14




Comments
See summary table. 

Spec.
WS-C

Category
Useful

Rationale
WS-C requires a separate  registration exchange for each sub-protocol, and asserts that boxcarring efficiencies are available from the transport. But WS‑I basic profile makes this impossible, and it would seem rather easy for WS‑C to allow a list of protocols rather than just one.

Change
Allow multiple Protocol Identifiers in Register message.


(Is more needed – would there have to be different CoordinatorProtocolService elements for each protocol ? )

CH-18
Context on application message; defined use of WS-Policy

(Bellevue #14)
Issue applied.  No TX number.


Comments
Already applied in its important essentials. 
Spec.
WS-C, WS-BA, WS-AT
Category
Critical
Rationale
Web-service applications that support coordination protocols using WS-C need to have a means of declaring that support. Such an application will typically require a WS-C Context containing the particular CoordinationType, and needs to declare that requirement.


One way to do this within the community of specifications would be to define WS-PolicyAssertions that could be included in WSDL definitions, for example. It would seem to be in scope to the WS-T specifications to define the assertions which an application service would express their WS-T requirements. 
The descriptions in the Policy sections of the current specifications say these assertions “enable participants and coordinators to describe their capabilities”. 
In fact, it would seem that the three possible uses of such assertions are:

· To describe the capability of the CreateCoordinationContext operation on the Activation Service in WS-Coordination.
· To describe the capability of the Register operation on the Activation Service in WS-Coordination.

· To indicate that an application operation must be prepared to receive and process  a WS-AT or WS-BA context

The third use could be an extension (or possibly clarification) of the assertions currently defined, or could use new assertions to be included in the documents.

The full and complete definition of what including such a context in the headers implies is a matter for the application – e.g. a service might treat orders below $5 as unconditional, but register as a participant for larger orders. However, it should be explicitly stated that using the WS-Tx policy assertions in WSDL means that the service may register participants in that Business Activity, when it sees fit. 

Change
Amend WS-C, WS-AT and WS-BA to explicitly state that assertions of sub-protocol capability adhere to CreateCoordinationContext and Register.
Add or resuse policy assertions with the meaning that an application operation will carry a WS-AT or WS-BA context, and that its reception will enable the service to register participants of that coordination protocol, subject to the advertised capabilities of the Activation Service.
Proposed revisions to state tables for WS-BA

The following changes have been made to the state tables 

Editorial

· The tables have been transposed, with state for the column, event for the row (as with the WS-AT tables)

· The sending and receiving tables have been merged for each view

· Each state has only one name 

· Transitions that are invalid are represented as blank

· Where the new state is the same as the old, this is represented by “#”

· The stimulus to send a message is stated as “request <message>”, and where this is valid, the action “Send <message>” appears – this makes all the cells the same, and allows dropping of the distinction between “Send” and “Resend”

· The “Ignore” event has been omitted – it is implicit that any cell which has no action and a legal identity transition is effectively ignoring the received message.

We propose that these stylistic revisions be made, irrespective of any substantive changes.

Technical
· Change CH-1 has been applied – Fault is an allowed response to Close

· Change CH-5 has been applied – A Refuse/Refused exchange is included

· Change CH-8 has been applied – There is one pair of state machines, with Complete allowed in all cases
The editorial and technical changes are mostly independent, but the addition of the Refuse message makes it easier to define simple names for the different states (Faulting (active) is now Refusing), and of course allowing Complete in all cases halves the number of tables. (If kept separate, the “ParticipantCompletion” tables would just omit the send/request Complete rows and the Completing column, and “CoordinatorCompletion” table would have an empty (invalid) cell for Completed received/Active.)

The other proposals would have further impact on the tables.

Coordinator view of revised BusinessAgreement protocol

	 
	Active
	Canceling
	Completing
	Completed
	Closing
	Compensating
	Faulting
	Refusing
	Exiting
	Ended

	Refuse received
	
Refusing
	
Refusing
	
Refusing
	 
	 
	 
	 
	
#
	 
	Send Refused
#

	Exit received
	
Exiting
	
Exiting
	
Exiting
	 
	 
	 
	 
	 
	
#
	Send Exited
#

	Completed received
	
Completed
	
Completed
	
Completed
	
#
	Send Close
#
	Send Compensate
#
	
#
	 
	 
	
#

	Fault received
	 
	 
	 
	 
	Faulting 
	
Faulting
	
#
	 
	 
	Send Faulted
#

	Canceled received
	 
	Ended
	 
	 
	 
	 
	 
	 
	 
	
#

	Closed received
	 
	 
	 
	 
	
Ended
	 
	 
	 
	 
	
#

	Compensated received
	 
	 
	 
	 
	 
	
Ended
	 
	 
	 
	
#

	request Cancel
	Send Cancel
Canceling
	Send Cancel
#
	Send Cancel
Canceling
	 
	 
	 
	 
	 
	 
	 

	request Complete
	Send Complete
Completing
	 
	Send Complete
#
	 
	 
	 
	 
	 
	 
	 

	request Close
	 
	 
	 
	Send Close
Closing
	Send Close
#
	 
	 
	 
	 
	 

	request Compensate
	 
	 
	 
	Send Compensate
Compensating
	 
	Send Compensate
#
	 
	 
	 
	 

	request Faulted
	 
	 
	 
	 
	 
	 
	Send Faulted
Ended
	 
	 
	Send Faulted
#

	request Refused
	 
	 
	 
	 
	 
	 
	 
	Send Refused
Ended
	 
	Send Refused
#

	request Exited
	 
	 
	 
	 
	 
	 
	 
	 
	Send Exited
Ended
	Send Exited
#


Participant view of revised BusinessAgreement protocol

	 
	Active
	Canceling
	Completing
	Completed
	Closing
	Compensating
	Faulting
	Refusing
	Exiting
	Ended

	Cancel received
	
Cancelling
	
#
	
Cancelling
	Send Completed
#
	
#
	
#
	
#
	Send Refuse
#
	Send Exit
#
	Send Canceled
#

	Complete received
	
Completing
	
#
	
#
	Send Completed
#
	
#
	
#
	
#
	Send Refuse
#
	Send Exit
#
	
#

	Close received
	 
	 
	 
	
Closing
	
#
	 
	Send Fault
#
	 
	 
	Send Closed
#

	Compensate received
	 
	 
	 
	
Compensating
	 
	
#
	Send Fault
#
	 
	 
	Send Compensated
#

	Faulted received
	 
	 
	 
	 
	 
	 
	
Ended
	 
	 
	
#

	Refused received
	 
	 
	 
	 
	 
	 
	 
	
Ended
	 
	
#

	Exited received
	 
	 
	 
	 
	 
	 
	 
	 
	
Ended
	
#

	request Refuse
	Send Refuse
Refusing
	 
	Send Refuse
Refusing
	 
	 
	 
	 
	Send Refuse
#
	 
	 

	request Exit
	Send Exit
Exiting
	 
	Send Exit
Exiting
	 
	 
	 
	 
	 
	Send Exit
#
	 

	request Completed
	Send Completed
Completed
	 
	Send Completed
Completed
	Send Completed
#
	 
	 
	 
	 
	 
	 

	request Fault
	 
	 
	 
	 
	Send Fault
Faulting
	Send Fault
Faulting
	Send Fault
#
	 
	 
	 

	request Canceled
	 
	Send Canceled
Ended
	 
	 
	 
	 
	 
	 
	 
	Send Canceled
#

	request Closed
	 
	 
	 
	 
	Send Closed
Ended
	 
	 
	 
	 
	Send Closed
#

	request Compensated
	 
	 
	 
	 
	 
	Send Compensated
Ended
	 
	 
	 
	Send Compensated
#


Part II: Use cases for BTM which motivate our proposals
For reasons of customer confidentiality, and to avoid giving unwonted competitive advantage, these use cases have been simplified, generalized, and sketched. Terms like “provisional-final” are explained in the Appendix on principles of BTM.
A. Consistent intranet and extranet view of service provisioning

Companies introducing self-care service management portals (e.g. telephony service creation and amendment, subscription portfolio management), may expose internal inconsistencies that have previously been managed by intermediaries such as call-centre agents.

A fulfillment system may be required to dictate final update of a putative service action or actions in service activation, CRM, accounting and billing systems. Service action groups may require sub-transactional consistency. Legacy systems that cannot accommodate provisional state may be updated in a last “burst”, if BTM software supports preparation and finalization ordering. Fulfillment may be dependent on system availability and manual overrides, and may stall completion of the transaction, requiring customer-facing systems to see pending state. Billing without provisioning, and provisioning without billing, are painful to one party or the other. 
Intra-company. Provisional-final model with internal and external visibility, combined with Do-compensate. Decision migration. Interrupted long-lived behaviour.
B. Guaranteed time-lapse quote-driven multi-leg security trades

A hedge fund or arbitrage desk seeks guaranteed time-lapse two-way (bid or ask) quotes for underlying securities and associated derivatives contracts, in order to construct a multi-leg trade where all legs should be executed (removing “legging risk”). Trade direction (buy-sell) is indicated on confirm by qualification. Allows price comparison, while retaining ultimate atomicity of the multi-leg trade. Quoters can monitor potential inventory consumption against actual consumption.
Quotations are time-lapsed (preparation is qualified by time, with a default cancel operation on time-out). Time-lapse is notified to the hedge fund by the counterparty, to allow avoidance of inconsistent (heuristic) outcomes resulting from unwillingness of quoters to hold inventory across significant market movements. If a promise-violation does occur, through lapse of time or participant application technical failure, then a parallel sub-transaction (assuming a governing parent transaction) can be invoked to carry out alternative path processing.

If the functionality of the hedge-fund is offered as a service to buy-side clients, the client applications need to be reliably informed of the outcome of the transactions they initiate.
Inter-company. Provisional-final model, with controlled visibility. Autonomous participant decision. Announced timeout before autonomous decision. Application information on finalization message.Reliable terminator.
C. Negotiated purchasing of goods or services
Trading companies who negotiate on a bilateral basis with suppliers can cycle through a sequence of sub-transactions, where each cycle constitutes a possible conclusion to an overall purchase transaction with a particular supplier.
An iterative use of the Expression-of-Interest, Request-For-Quote, Order-Order Acknowledgement cycle, which maps closely to the business transaction lifecycle.
Inter-company. Provisional-final model, with controlled visibility.
D. Structured Trade composition
A long-lived intra-company edition of the security trade case, without price comparison. Structured trades are often high-value, and are composed by combining simpler underlying financial products, and maybe relatively slowly formed. A salesman negotiates with a client company, pulling together components of the trade. Each component effects the position of a product-oriented trading desk. A credit check is required to ensure counterparty has credit capacity, if successful resulting in a provisional, possibly time-lapsed reservation of a credit line. Credit capacity may be altered in-flight by manual intervention of controller. Each trading desk, by offering guaranteed internal prices, allows salesman’s system to incrementally compose the structure, and to reverse some or all of the putative trades if the sale falls through, credit capacity is insufficient, or the trade is remodelled/adjusted.
Business transaction creates an identified framework for the whole sale, allowing automatic cancellations to replace manual contra-activities or adjustments. 
Intra-company. Provisional-final model. Selective outcome.
E. Reference data creation, amendment and deletion
Use existing service interface on bespoke legacy applications, ERP or CRM systems to consistently create, update or delete reference data. Failure to obtain consistent publication, amendment or withdrawal will cause business processes to fail validations and stall, or create inconsistent computed results, with consequent reconciliation failures. BTM helps avoid manual repairs, or allows rapid detection of fails, with fast and precise repair indications.
Services which offered a full contingent operation set interface can accept sophisticated instructions, such as “publish at a future time”, by qualifying confirmation, to improve chances of simultaneous revelation. Initiating service may not be “golden source”, in which case its own change may be reversed, or overwritten in “second wave” of enriched data. Special additional access-control participant may be used to indirect access to data-in-flight, to prevent leakage of changes by services which only support unconditional operations, assuming that consuming systems can be modified or redirected.

Intra-company. Do-compensate and Provisional-final model.

F: Collateral management / Repo trading interaction
Securities held by financial institution are mobilized as collateral for own-account trading. Collateral managed by disparate systems by product and geography. Guaranteed reservations of collateral allow virtual product inventories to be constructed. Business rules allow override of reservations, requiring complex interactions between participants and reference to market data. Visibility of potential allocation of collateral allows sophisticated probabilistic inventory management.
Intra-company. Complex provisional-final model where visibility of provisional results is business-critical. Autonomous decisions.
G: Credit line drawdown and amendment
Credit lines provided by a bank to global corporates may be agreed in one geography or by head office, and drawn down in another territory. Drawdowns are subject to multiple authorizations, which may extend over business day boundaries, i.e. are long-lived and subject to admin cycles of varying kinds. Each limit manager (e.g. cross-border, country, industry sector, counterparty) must assent to drawdown to proceed. Knowledge of pending authorization requests from all quarters enhances ability of limit manager to manage available funds, reducing size of on-hand reserves, and thereby increasing capital efficiency of the bank. A form of escrow model (whose simplest form is shown in delivery-versus-payment).
Credit management often involves federated processing of the credit process, where consumption of credit capacity is delegated on an intra-day basis to product or geography-specific applications. Updates (amendments, stops) may require consistent changes to be made to supervising and delegate applications.

Intra-company, cross-geography. Provisional-final model, where visibility of provisional results is business critical.

H: Residential property conveyancing

Complex and critical form of escrow. May involve bespoke conglomerates of interested parties, or use of hubs or escrow agencies. Residential real estate must be paid for from multiple sources, in strict synchrony with contractual completion and creation of securitized debt. Depending on jurisdiction transfer of title may be synchronous or subsequent. Real estate agent fee payments are a necessary but less time-critical element. Division of sales proceeds may constitute a separate sub-transaction. Failure to properly synchronize the key elements of these extremely long-lived, multi-stage transactions can create ruinous reputational damage in an emotional consumer market.

Inter-company or exchange/agency. Escape of provisional effect into physical actions (payment, creation of mortgage debt)  is absolutely forbidden, given the economic value of the transactions, and the non-securitized nature of the market. Must be provisional-final model.
I: Routing across grid of network elements

A grid of network elements provides physical connectivity between n endpoints. A request to create one or more logical paths between two endpoints requires the exploration of routes that may have to conform with certain performance characteristics, e.g. minimum bandwidth. Depending on the capability of the devices the task may trace the routes, and then fix them in element routings, or may create exploratory routings that may have to be partially unwound when a route hits a dead-end. Likewise, the elements may be able to share load, or be wholly dedicated. These considerations are rules that determine the nature of the participant for each type of element.
Inter-company or intra-company. Validate-do, provisional-final or do-compensate models. Provisional-final permits more flexible exploitation of resources.
J: Payment by mobile device against delivery of services
An example of a requirement which arises in other contexts (for example securities movement by custodians in synch with payment by paying agents in settlement of securities trades); generically “delivery-versus-payment” (DVP). The simplest case of the escrow pattern of business transaction. A participant represents the request for service (e.g. a taxi ride), and the request for payment (e.g. a credit card authorization up to some reasonable limit, or confirmation that the phone company holds sufficient credit for the customer to allow payment). The confirmation of delivery (completion of the journey) causes the service participant to go prepared; the availability of credit causes the payment participant to go prepared. The controlling application, which monitors these two participants, will not authorize service delivery to commence until the payment participant has gone prepared; and it will not deliver a CONFIRM to the payment participant until the service participant has gone prepared (e.g. when the meter is switched off). The CONFIRM message to the payment participant delivers the billable amount as a qualification of the message. The parallel message to the service participant acts as a “proof of payment”, or at least of entitlement to payment. 
Other examples of DVP include a potential resolution for a problem that is seen in eBay, where payment is taken without guarantee of delivery of the goods. Signature on delivery of goods as a minimum trigger for payment by e.g. PayPal, would help alleviate this problem. 

Inter-company. Provisional-final model. . Application information on finalization message
K: Guaranteed delivery and processing of trade confirmation

BTM is a tool which enables inter-application communication to go beyond guaranteed delivery (it will be delivered), to achieve guaranteed processing (it has been received, processed, and recorded). If a participant is present at both ends of such communication it is possible for tied or synchronized processing to be achieved, such that both systems or parties have parallel records of an interaction. This can be used to “cement” or “harden” interactions between parties during the phases of processing, allowing recoverable, long-running master transactions to be tracked by each party: supplying “Mutual Assured Knowledge” (MAK). 
An example of this requirement arises in party-counterparty communications that accompany different stages of the downstream processing of a securities trade. The canonical example is trade confirmation: a confirmation is delivered to the counterparty, who checks the trade details and either accepts or rejects (with reasons) the trade, allowing internal processing of the trade to proceed towards clearance/settlement. The send of the trade confirmation and the receipt and processing of the trade confirmation can be recorded as part of preparation by the party’s participant, and the counterparty’s participant, respectively. These interim results will be retained in the two parties’ business records. Under normal circumstances the party will confirm both participants (irrespective of application-level acceptance or rejection), and a synchronized record will be kept of the interaction by each side. If either side fails to record the conclusion of the interaction (fails to process CONFIRM successfully, through some technical failure) then both applications will know that a problem occurred, and can engage in a subsequent repair exchange, using the already persisted provisional records to re-engage. Note the requirement to fault processing of a CONFIRM.
This type of interaction can be useful in almost any B2B environment, where well-recorded interactions can cut down confusion and reconciliation efforts. It is also applicable in inter-company interactions, where ordered, synchronized bilateral processing is required.

Inter- or intra-company. Requires provisional-final to permit recording of the business states on both sides. 
Part III. WS-BA: Model and scope
In our use cases we show situations which the BPEL LRT (compensation-only) model cannot support. We recognize that the constrained use case of superimposing some degree of recoverable coordination on pre-existing, and unmodifiable legacy applications, is a real case. Note that our proposals are permissive: they in no way diminish or complicate the ability of WS-BA to support distributed BPEL LRTs. 

However, by a simple, additive extension, WS-BA can cover the whole spectrum of Business Transaction Management. 


[image: image2]
This will extend its utility for end-users, and will help to foster the construction of genuinely composable (contingent) applications, over time. The shift from the spear of unconditional operations (do it), to the trident of contingency (provisional, cancel, confirm) is an unavoidable progression if the promise of BTM is to be fulfilled. WS-BA can be a useful accelerant for that progression..
Typographical conventions (loosely adhered to)
In the text of this appendix we use italics for defined terms on first use: e.g. participant.

We also use italics to indicate states, e.g. provisional.
We use block capitals to indicate a “generic” or abstract name for a protocol message, e.g. VOTE

We use bold type to indicate a concrete message name used by a particular coordination protocol, e.g. completed. 

Definition of a business transaction
A business transaction is a set of related operation invocations which modify the state of application services, with the goal of aligning all state changes in accordance with an overarching, application-specific contract. (By contract we mean: any rule which compels or binds two or more parties in the course of their interactions.)

Contract-governed services are typically autonomous, and their state-modifying actions are only known to consumers by subsequent external observation. Their service operations must be designed to create observable effects that can contribute to a known collective outcome. (Such service operations are part of what we term a contingent operation set.) 

The outcome must be meaningful to a contract-observing consumer of one or more such operation invocations. (This consumer is termed the controlling application.) 

The most useful kind of meaningful outcome is a consistent outcome, i.e. one which allows subsequent operation invocations to rely upon different parts of a dispersed global state as having values which successfully reflect the demands of the overarching contract. However, it is also meaningful (and sometimes very valuable) to know that the global state reflects a failed attempt to meet the terms of the contract.  

Contracts can govern business relationships between different legal entities, and the agreed interactions of independent services operating within a company’s business processes. In what follows we show examples of business transactions which operate within a company’s firewall, and ones which span two or more legal entities.

How can a service be capable of coordinated behaviour? 

The building block of business transaction management is the contingent operation set. (More loosely and concisely, we might speak of a “conditional operation”.)  
A contingent operation set is a deterministic automaton. It is a group of operations within a service, related by their operands, which can create interim states and can convert them to final states. An interim state cannot be relied upon to perdure: at any time a stimulus may arrive to trigger an operation that will transit the automaton to a final state. Its final state is contingent upon its last interim state and its finalizing stimulus. 
If the finalizing stimulus is sent by a program external to the service (and the program is one  which understands the state transitions of the operation set, and the stimuli required to induce them), then that program can decide on the final state that the operation set will result in. 
If the external program is knowledgeable of several contingent operation sets, then it can determine the final state of each of them. This in turn allows the external program to create a set of final states, one per contingent operation set. This set of final states is the outcome of a transaction. 

An outcome set may therefore be aligned or coordinated by the external program, assuming that each final state a) reflects a contract between the external program (the service consumer) and the relevant service, and b) that each contract has a meaningful relationship to the other contracts, in the eyes of the consumer or controlling application.    
The scope and purpose of  a contingent operation set is service- (application-) defined, but always incorporates the possibility of hiding or distinguishing interim or contingent work from operation invocations, whether they be query or update operations. 

Service operations whose effect cannot be aligned or coordinated, create unconditional results. Such operations are termed unconditional operations. Their dispatch generates effects which are always immediately visible with respect to all other operation invocations; and which can have only one final state. To put it another way, they have only two states: initial and final.


[image: image3]
If a service only supports unconditional operations, then the effect of its operations cannot be aligned or synchronized with those of other operations in it, or in other services. In other words, it cannot be coordinated. It is the ability to move into more than one final state that enables coordination.
In principle, a contingent operation set could consist of one initial state, several interim states,and several final states.

[image: image4]
However, the number of state transitions explodes as we multiply interim states and/or final states. And for each state transition implied by the complete scheme just described, there must be a stimulus to instigate the transition. (These stimuli will be described as messages, given that we are describing a service-oriented environment where networking is inherently possible.) The number of messages will therefore explode in strictly equal proportions.
This unrestrained model is complicated to describe and manage. However, the purpose of the transaction abstraction is to simplify infinitely flexible applications. We therefore wish to create a more tractable state machine, which will provide a useful, constrained but general scheme to assist application designers in designing services that can be coordinated. 
This is sketched in the following diagram, in its simple form.

[image: image5]
The  constrained contingent operation set supports at least four states: initial, provisional, cancelled, and confirmed, and may support interim states between initial and provisional. The critical constraint is to allow only one pre-final state, which we have called the provisional state.. 

The form of this model which allows only one cancelled state, and one confirmed state, is the simple form illustrated. As we shall see later, it can be expanded to allow more than two final states (giving its complex form). For expository purposes it is useful to concentrate on the simple form.
In the course of motivating this constrained version of the contingent operation set, we will justify the need for a generic, transactional coordination protocol such as WS-BusinessActivity. (This is of some significance, as the argument has been made, for example in the WS-BPEL committee, that such a protocol is not needed). We shall also lay the basis for our key proposed change to the WS-BA specification. 

Types of constrained contingent operation set

Constrained contingent operation sets are categorized by mandatory equivalences of final states to prior states. In the “do-compensate” model  the confirmed state is equivalent to the provisional state. 
The following diagram shows the most complex state machine for the “do-compensate” model (as assumed in BPEL). The interim states are optional, and the cancelled state could be equivalent to the initial state.

[image: image6]
In the  “validate-do” model the cancelled state is equivalent to the initial state. 

The following diagram shows the most complex state machine for the “validate-do” model (as assumed in BPEL). The interim states are optional.

.

[image: image7]
In the “provisional-final” model there is no mandatory equivalence: this is the general form of the constrained operation set, and has already been illustrated in the diagram titled “Constrained contingent operation set”. 
For example, if an interim state represents a reservation of inventory, then one of the final states is typically the commitment or allocation of inventory. It may also be true that no final state is equivalent to the initial state: for example, if a charge is associated with the reservation of inventory.
This general model subsumes the other two models. “Validate-do” and “do-compensate” are special cases, created by imposing additional constraints (mandatory equivalences), on top of the simplifying constraint of one pre-final state. 
These new constraints are simply application design choices which reduce generality. Such variations should not drive the shape of a protocol which defines the  messages (stimuli) that drive the state transitions in a contingent operation set. 

The protocol that stimulates the contingent operation set

If we assume that one or more “finalize” messages can be transmitted by a controlling application, which has been made aware of the interim state(s), and which is aware of which finalize message will create which final state, then we have created the precondition for the controlling application to dictate the service’s final state with respect to the given contingent operation set.

In the preceding paragraph, we have only assumed that state transitions to interim states are notified to a controlling application. In this most general, unconstrained case the interim states are specific to the service’s contingent operation set; the final states are also specific, and the messages that instigate and notify state transitions are likewise specific.

A general-purpose coordination protocol must reduce the specificity of the inter-party messages (stimuli and notification). Otherwise, we are simply left with a pattern for modelling an infinitude of application interactions, which is little more than descriptive. Our constrained contingent operation set allows us to introduce the beginnings of a generic finalization protocol, where common messages are used to induce cancellation and confirmation.
Implicitly we have already introduced two constraints, to arrive at a useful and manageable (constrained) form of the contingent operation set: 
Constraint 1: The concept of confirmation and cancellation.

Constraint 2: The concept of preparation (one pre-final, provisional, state).

It is worth examining their impact on the formation of a generic finalization protocol..

Impact of confirmation/cancellation

Many real-world business transactions are relatively simple. They require that conditional operation sets only support two final states: confirmed and cancelled. All interim states are precursors to these two states.

Perhaps the purest form of this simple case is the final state repertoire of an ACID RM, e.g a JTA XAResource: {committed | rolledback}. 
Business transaction examples include: {cancel reservation or quote and erase all memory of the transaction | turn quote into order and erase all memory of the transaction}. 

A BPEL LRT example might be: {reverse updated account details to original state and erase all memory of the transaction | erase all memory of the transaction.}
In our experience a very large (major) proportion of business transactions can terminate a contingent operation set with a simple CONFIRM | CANCEL message, without any need to transmit additional application-specific data on such messages. This contention, which relies on evaluating use-cases, is the fundamental justification for creating a generic coordination protocol. 

We therefore introduce transitions which are named after the messages that will stimulate them::

[image: image8]
Of course, there are cases where the number of final states is greater than two:

In such cases, the number of finalize messages must be equal to the  number of final states. Most often the variant final states are closely related, and may differ only because of variant inputs (parameters to the finalization operations). The two-way trade use case, where the confirmation must convey whether the trade is a buy or a sell, is an example.

This type of variation naturally maps to qualification of the basic CANCEL and CONFIRM messages to discriminate between the different types of “cancellation” and “confirmation”. We believe that this approach—which is catered for by WS-BA’s ability to add application-specific child elements to an XML protocol message element—will cover most remaining cases.

[image: image9]
Of course, if an application is so complex that it feels unnatural to extend or qualify generic messages for finalization, then an application designer is always free to create any service-specific finalization message that makes sense, although by so doing s/he will likely forgo other advantages that can be gained by use of a generic protocol.
There is a particular value to having a generic duo of finalization messages, in a service-oriented environment. The use of generic messages makes it easy to build composable services, as the consuming (controlling) application need not build and maintain a map of specific message names, one per contingent operation set. This facilitates maximum loose coupling. 

Finally, it should be noted that the generic concept of CONFIRM | CANCEL can be mapped to any message names. For example, in WS-BA these messages are named Close | Compensate. In our view the WS-BA names are too suggestive of one particular service behaviour (“do-compensate”), but this is a second-order issue.

Impact of preparation

Business transactions are particularly liable to interruption, because they may be long-lived. For this reason it is especially important that the relationship of a service’s contingent operation set and its controlling application should persist across service outages or failures. In other words, the relationship should be recoverable.

Starting once again from the service perspective, it is desirable that the notification to the controlling application of transition to an interim state should be accompanied by a persistent record. This permits a service, on recovery from outage, to recommence its work, including through retransmission of unacknowledged messages (a behaviour typical of recoverable business process execution engines, which is, however, not mandated in any way by BPEL). The completion of a business transaction requires a stronger, mandatory form of this persistently-recorded notification. Conventionally, this message is called something like PREPARED,  READY or VOTE. The transmission of this message indicates that the interim state just entered is the last interim message, i.e. that the service’s contingent operation set is now poised to be entered into a final state. 

Akin to CONFIRM | CANCEL, one can imagine cases where a contingent operation set has several “last” interim states: in other words, that it can be finalized at several stages, assuming a high degree of knowledge in the controlling application. This implies that the service engages in “rolling preparation”: as it progresses through its work it periodically sends a PREPARED message to its controlling application, which is permitted to finalize on receipt of any such message. 
For this behaviour to work correctly there must be some means of communicating which interim state has been reached. Assuming that a PREPARED message can be sent multiple times, this can be modelled in a generic protocol as retransmission of PREPARED, on each occasion ornamenting or qualifying the message with an application element which communicates the specific interim state reached. 

Alternatively, a collection of contingent operations can be created, each one  representing one provisional state which is capable of finalization. An example might be: the provision of two alternative quotations, from which the controlling application can choose, by cancelling one, and confirming the second.

The notion of rolling preparation does not, for the reasons just adduced, undermine the value of a single, generic PREPARED message. This message enables a controlling application to determine which contingent operation sets are ready for finalization, which is critical to determining whether an acceptable composite outcome is feasible.

The generic message PREPARED translates in WS-BA to the message Completed. Once again, this name carries, in our view, too heavy an implication of the “do-compensate” model.

Coordinators and participants

Thus far, we have deliberately avoided the use of the WS-BA terms “coordinator” and “participant”, to emphasize the logical emergence of a distinct, system-level coordination protocol (and its accompanying roles) from the universe of possible application-interaction protocols.

It is now worth stating that if the two-phase PREPARED, CONFIRM | CANCEL exchange is generally valuable in creating a recoverable promise-decide relationship between a service and its controlling application, then it is equally valuable to  distinguish the generic roles adopted by the two application elements, with respect to this special exchange.
To stabilize (fix, across outages) the ability to recover a finalizable relationship, it is necessary for the controlling application to record its decision to confirm or cancel prior to emission of the finalize message. It may wish to record several such decisions with respect to a number of services, concurrently, and prior to emission of any of the finalize messages.

The need to record preparedness (a promise to be finalizable), and the need to record direction of finalization (the decision of the controlling application), are generic needs. It makes sense to describe these behaviours in terms of general roles. The role of a contingent operation set within a service, only with respect to transaction completion, is that of participant; the role of the controlling application, again solely with respect to transaction completion, is that of coordinator. Likely implementations will make objects that play these roles available in libraries to applications such as business process managers or composable services.

(There is another role, typically but not always played by what we have called the controlling application, that of decider. While this can be distinguished, it can also be viewed as a special case of the participant role, where some participant ends up with a “golden” vote. This view, while elegant, and well-fitted to conventional atomic, homogeneous outcome protocols—where any no vote is a veto—is undermined by an important new feature of business transactions. Business transactions often have several valid, successful overall, or global outcomes. A participant may be non-critical, or may be knocked out by competitors, and the decision on who should be part of the final pool which attempts to confirm or cancel in a uniform fashion, is preceded by a decision period when a controlling application applies heterogeneous outcome decisions, canceling some candidates, prior to confirming the remainder. We return to this point later, in examining whether WS-BA should apply a homogeneous outcome rule across all of its prepared participants, as WS-AT is compelled to do.)

Business messages and protocol messages

At the 10 March Feedback Workshop, Choreology was asked to comment on the relationship of business messages to protocol messages. The preceding arguments  may help shape this discussion.

Our first contention is in support of the concept of WS-BA: there is a purpose and a value in specifying a generic coordination protocol. The retry/recovery logic of coordination is complicated, and requires specialist expertise that is not widely available to end-users, nor even to many builders of products such as BPM engines, especially when it is borne in mind that coordination is likely to be required of systems which do not support reliable communication; and where well-formed understanding of end-to-end consistency requirements is thin on the ground.

It is true that such a coordination protocol can only help application builders and business process designers with half of the overall job: it cannot, per se, help them create contingent operation sets, which must, perforce, embody application-specific business logic; and it cannot assist in designing the business rules employed by a controlling application to terminate or finalize a business transaction.

However, the use of such a protocol can not only help with systematizing complex coordination logic: it can help guide the thinking of designers who need to introduce higher levels of consistency and certainty into their processes, by factoring the tasks involved in coordination into more manageable and confined units of work, at both “ends of the wire”. It can also enable the visualization of natural transactional boundaries, by making the transactional abstraction available at a higher, more visible level within and between business processes.

Our second contention is that some major proportion of coordination messages logically reduce to simple, generic messages, reducing the degree of coupling between applications. No generic protocol will resolve all complex application interaction needs: the case need only be made that it will resolve many such cases.

Our third contention is that it is necessary to provide both for piggybacking of protocol messages on application messages, and for inclusion of qualifying application data on protocol messages. 

Piggybacking protocol messages on application messages optimizes network exchanges and simplifies correlation. Piggybacking qualifying application data on protocol messages allows for reuse of those messages, for eased correlation, and for exploitation of the deducible exactly-once delivery guarantee of those messages.

We believe that WS-BA is weakened by the lack of a piggybacking or boxcarring facility to satisfy the first of these two requirements. In an ideal world, such facilities would be provided in a generic way by some intermediate overlay on underlying transport protocols. There are two counters to this argument. As was recognized at the feedback workshop, there is no current effort likely to produce such a facility in a timely way. Alternatively, one could argue that the ability of e.g. SOAP to define multiple headers, designed to be stripped and processed by different consumers, combined with the capabilities of WS-Addressing, already provides a suitable facility which can be used today. In any event, we believe that the WS Transaction family is a suitable proving ground, from which clear requirements for a future generic facility could easily be drawn, and should naturally play that role.

Our fourth contention is that the “difficulty” of mixing business and protocol messages can and should be resolved at the API level by vendors of coordination products. While its engineering presents some challenges, they are superable, as our own product experience demonstrates to us.

Should business promises be protocol promises? 
At the Feedback Workshop we were asked to comment further on the relationship of business promises to protocol promises. Our view is very simple. We should not restrict the capacity of the protocol such that it will only work with existing applications, which have been written without regard to coordination. In other words, we believe that WS-BA should allow (although not mandate) an approach where a business promise by a service is expressed by the protocol promise PREPARED. 

If one takes the travel reserve/cancel/confirm use case described in the OASIS BTP primer, and examines how it is used in the WS-BA presentation at the workshop, one can see that the natural way of writing such an application is tortured to make it fit the Procrustean bed of WS-BA in its current form. Such cruelty is gratuitous.

Many applications, when composed, need to carry out provisional work which can be reversed or countered, and which can be distinguished on examination from final work. One customer case involved re-engineering the database and its access routines to insert a pending status on telephone service provisioning within a customer care and billing application. Without such a pending status it becomes impossible to accurately inform call-centre agents or self-service clients of the progress of an order. If the self-care system could reflect pending operations, but the CCB system could not, then it would be impossible to have a consistent view for all enquiries. This need was not dreamt up to make the business process fit in with an abstract concept of “business transaction management”: it was an organic necessity of the phone service provider’s business.

The provision of a pending status, which must be transited to a completed status, is the same requirement as the ability to move from a quote to an order. Likewise, to move from durable reception of a trade confirmation request, to a final acceptance or rejection. Similarly, the need to hold delivery against payment, and vice-versa. In each of these cases (and there are hundreds of others), when the prepared service is instructed to confirm, it must carry out application work (that may fail), just as it must carry out application work to cancel.

It is natural to these business problems, that the service should promise to the consumer that it is able go forward, as well as back. The most straightforward, and reliable, way of doing this is to make the business promise (“I will pay if you deliver”, “I will hold inventory against your provisional order or enquiry”, “I will definitely return an answer to your request, which I have received and stored”) equate to the protocol promise of going prepared (“I will abide by the controller’s decision on the final outcome”). 

Arriving at such a state in the business relationship of the two parties is an event with external significance. The completion of the transaction is frequently delayed by hours or days from arriving at such an event, and is contingent on actions (e.g. human, or of disconnected systems) that must be recoverably recognizable.

In WS-BPEL (and transitively in current WS-BA) it is assumed that all promises to be capable both of reversal and advancement must be made via unrecoverable application level interactions, whereas promises to be capable solely of reversal can be carried by a protocol message. 
This implies that no reuse of the generic PREPARED message can be made for the first (common) class of promise, tightening the coupling between consumer and service unnecessarily. It further implies that making the relationship recoverable becomes an application-level responsibility. Even if recoverable steps in a reliable execution engine are used, coupled with reliable messaging (two big “ifs”), there is a nest of (repeatable) logic that must be coded at both ends for successful resynchronization. 

We see no good cause to forgo the advantages of a coordination protocol’s features in such cases.

Our prescriptive conclusion for WS-BA is that the Close message can be faulted, just as the Compensate message can be. This small change (which is reflected in one cell in two state tables, and in the addition of an arc to the non-normative state transition diagram), opens up WS-BA for a whole class of use-cases that form a most natural terrain of coordinated application services.
Should WS-BA outcomes be uniform?
It is reasonable that WS-AT should state that the same outcome (either Commit or Rollback) should be delivered to each prepared participant. WS-BA is a different case. We believe that the WS-BA specification should remain silent on the heterogeneity of the outcome delivered to prepared participants.
This point is related to the previous point on business/protocol promises. If the PREPARED message indicates provisional involvement, which may be cancelled or confirmed, then it follows that some participants who have promised to abide by the controlling application’s decision may be cancelled because their promises are not of interest. The case of price improvement (choice among competing quotes) illustrates this.
The notion that a WS-BA participant must receive the same outcome as all other prepared participants is contradictory with the mapping to BPEL compensations expressed in Appendix C of the BPEL 1.1 (input to WS-BPEL) specification. The BPEL compensation model requires that any scope (participant) that has completed its normal forward work (has sent Completed in the terms of Appendix C) must be capable of being selectively compensated for in an explicit compensation handler, which may choose to compensate any sub-set of contained, “completed” scopes. (It should be noted that the term “completed” is something of a misnomer. By definition, a transaction, or a sub-transactional scope in a transaction tree, is not finished until the coordinator and participants have, in a synchronized way, erased all active memory of the transaction. In BPEL terms, this means until the scope has ceased to be compensatable by virtue of the completion of the overall workflow process.)
Our prescriptive conclusion is that WS-BA should remain either remain silent on this matter, or (better) should explicitly state that heterogeneous conclusions may be emitted by a coordinator to its prepared (“completed”) participants.
The modular approach: can one size fit all?

The objection may be raised, that WS-C+T is a modular family of specifications. In the modular scheme each different “transaction model” earns its own coordination protocol that fits the specific bill of requirements. It is sometimes also argued that it is important for the controlling application and the service to explicitly understand which “model” is being used.

These arguments are important, and should be examined critically. This is not an idle intellectual exercise. It is valuable to have simple, common approaches when they can be achieved without artificiality. We should aim to make the life of implementers, evangelists and users easier.

The term “transaction model” is variably defined in the academic literature. Our working definition is 

Transaction model: A defined coordination protocol with defined decider and participant behaviours, which together enable a global observer to predict the states, that are instigated by the coordination protocol’s messages, in all sites of a transaction.

The most important parts of this definition are a) the term “global observer”, and b) the fact that a coordination protocol must be combined with decider and participant behaviours to achieve a predictable global view.

How important is the global view?

The global view is needed to understand the global effect of a transaction. This may be critical if there is data sharing (avoidance of buried updates, deadlocks etc). Without data sharing (systems isolated by company or departmental boundaries) the global view may be only of academic interest.

Different actors (located in the various sites of the transaction) may therefore have no legitimate interest in the global view given by a transaction model. For example, it may not be any concern of a decider how a participant enacts its response to a CONFIRM or CANCEL message. Equally, the finalize message sent to one participant may be of no concern to another participant. This level of legitimate ignorance is typical of business transactions involving autonomous services.

By contrast, in the ACID transaction model it might be important that each participant knows that its actions are serializable (a property which can only be achieved by cooperation of all participants which share a class of resource, through conformance to some isolation protocol). This awareness allows the participant to program more or less defensively. 

For this awareness to be communicated, it is necessary for transaction infection to be accompanied by some kind of policy statement that serializable behaviour is assumed of participants. Protocols such as OMG OTS and WS-AT communicate this statement in their very being. A context policy might be used instead.

(Note that even protocols which assume fully ACIDic behaviour cannot be sure they will be listened to. Use of relaxed isolation levels, or failure to force-write work to durable storage (“noD”), are potentially entirely compatible with use of an ACID-assuming protocol.) 

Need one coordination protocol equate to a single transaction model?

The same coordination protocol can support several transaction models. (It is also important to note that each coordinator-participant pair may, within the scope of a single transaction, be required to support alternate participant behaviours (i.e. that the “global” model may be mixed). The use of multiple coordination protocols in such environments should be avoided if possible, owing to the implementation and configuration complexities that result, for the BTM vendor and the customer respectively.)
To take an extreme example, if the X/Open DTP XA functions are used in a way that was never intended, they are capable of supporting BPEL-style Long Running Transactions with a strict do-compensate model. To make XA behave itself, we need additional rules: that the decider, via the TM, will deliver finalize instructions (xa_commit or xa_rollback) in a uniform fashion; and that the RM will do work serializably, and will persist the results of its work in stable storage.

To take an example closer to perceived reality, there is no bar to WS-BA supporting any one of the three following models: do-compensate, provisional-final with some defined visibility policy for intentional results, validate-do. This spectrum of BTM can and should be supported by WS-BA, a single coordination protocol. The attempt to align model to coordination protocol in these three cases is extremely heavy-handed: a context policy model should be used if an application finds a need to communicate inter-participant interaction policies to provider services.

Can “one size” fit all needs?

Clearly, by definition, different coordination protocols must be distinct. 

A protocol defines three aspects of the interaction between parties: an interface (message set), legitimate sequences, and mandatory behaviours on receiving messages that can create externally observable effect (e.g. instigation of message sends, presence or absence of reactive capability after a crash).

If two transaction models can easily be processed using a single coordination protocol then there is no justification for a separate protocol to join the WS-C+T family. We have already argued that the basic BTM models can all be handled by WS-BA with trivial change.

Clearly, if a coordination protocol involves additional messages or radically different reactions, and these cannot easily be incorporated into a superset of an existing protocol (for technical or market reasons), then it deserves a separate specification. 

Technically driven examples might include the little-used three-phase commit, or the new and very interesting Paxos Commit from Gray and Lamport, or full incorporation of dynamic commit (which would involve significant state table changes to a protocol like WS-BA). 

WS-AT is a case of market necessity: it is obviously useful for existing atomic TMs to be resprayed in Web Service colours with minimum change to well-embedded product lines.

In our view optimizations or ornamentations of the two-phase based BTM protocol should be brought into WS-BA, or left as proprietary extensions. For example, the type of time-based qualification available in BTP on the prepared message is a valuable feature we would like to see in WS-BA. However, if it stays out of WS-BA it can easily be specified or programmed as a non-destructive extension.

WS-BPEL LRT: a limited transaction model

OASIS WS-BPEL 1.0 is designed to accommodate a single transaction model (“do-compensate”). The inability of BPEL processes to support contingent behaviour, even in this simple form, further limits BPEL’s BTM capacity. Choreology favours the evolution of WS-BPEL, after the first version has been adopted, to include full distributed BTM facilities. The core changes required are
a) the introduction of a contingent scope, which possesses a confirm handler, as well as the existing “compensation handler” (better termed a “cancel handler”)

b) the introduction of process-level confirm and cancel handlers.

In addition, some standardized means for marking the propagation of BT contexts from process to service (or process-as-service) would be required. This latter requirement, which extends to all distributed requirements, motivates our advocacy of greater detail in WS-BA on the means by which application messages convey BA contexts, and the demands imposed on application services on reception of such contexts. 

Unconditional operation 





initial





final





cancelled





provisional





confirmed





initial





Simple constrained contingent operation set





Interim2





Example of unconstrained contingent operation set





final1





Interim1





final2





initial





Interim1 … n





Contingent operation set  for “do-compensate”





initial





confirmed





provisional





cancelled





Interim1 … n





Contingent operation set  for “validate-do”





initial





confirmed





provisional





cancelled





Interim1 … n





Fault





WS-BA





CONFIRM (1)





CONFIRM (2)





CANCEL (2)





CANCEL (1)





CONFIRM





CANCEL





Complex constrained contingent operation set





initial





confirmed1





provisional





cancelled1





Interim1 … n





cancelled2





confirmed2





Finalization transitions





initial





confirmed





provisional





cancelled





Interim1 … n





WS-AT








Validate-Do





Provisional-FInal





Do-Compensate





ACID





The BTM spectrum











Page 13 of 63

[image: image10.png]Compensated

Compensating

Coordinator generated, P



