WS-Coordination

x. Use of WS-Addressing Headers

The messages defined in WS-Coordination can be classified into two types:

· Request messages:  CreateCoordinationContext and Register.
· Reply messages: CreateCoordinationContextResponse and RegisterResponse and 
· 
· faults
Request and reply messages follow the standard "Request Reply" pattern as defined in WS-Addressing. 
· 
· 
The following statements define addressing interoperability requirements for the respective WS-Coordination message types:

Request messages

· MUST include a wsa:MessageID header.

· MUST include a wsa:ReplyTo header.
Reply messages

· MUST include a wsa:RelatesTo header, specifying the MessageID from the corresponding Request message.

· MUST include the reference parameter elements from the request’s wsa:ReplyTo header in their header blocks.

· 

· 

· 


All messages are delivered using connections initiated by the sender.  Endpoint References MUST contain physical addresses and MUST NOT use the well-known "anonymous" endpoint defined in WS-Addressing.
WS-AT

x. Use of WS-Addressing Headers

The messages defined in WS-AtomicTransaction can be classified into two types:

· 
· 
· Notification messages: Commit, Rollback, Committed, Aborted, Prepare, Prepared, ReadOnly and Replay.
· Fault messages
Notification messages follow the standard "one way" pattern as defined in WS-Addressing.  There are two types of notification messages:

· A notification message is a terminal message when it indicates the end of a coordinator/participant relationship.  Committed, Aborted and ReadOnly are terminal messages.
· A notification message is not a terminal message when it does not indicate the end of a coordinator/participant relationship.  Commit, Rollback, Prepare, Prepared and Replay are not terminal messages.
The following statements define addressing interoperability requirements for the respective WS-AtomicTransaction message types:


· 
· 

· 
Non-terminal notification messages

· MUST include a wsa:ReplyTo header
Terminal notification messages

· SHOULD NOT include a wsa:ReplyTo header

Fault messages

· MUST include a wsa:RelatesTo header, specifying the MessageID from the Notification message that generated the fault condition.

Notification messages are addressed by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange.  If a wsa:ReplyTo header is present in a notification message, it MAY be used by the recipient, for example in cases where a Coordinator or Participant has forgotten a transaction that is completed and needs to respond to a resent protocol message. Permanent loss of connectivity between a coordinator and a participant in an in-doubt state can result in data corruption.

If a wsa:FaultTo header is present on a message that generates a fault condition, then it MUST be used by the recipient as the destination for any fault. Otherwise, fault messages MAY be addressed by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange.
All messages are delivered using connections initiated by the sender.  Endpoint References MUST contain physical addresses and MUST NOT use the well-known "anonymous" endpoint defined in WS-Addressing.
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