WS-Coordination

x. Use of WS-Addressing Headers

The messages defined in WS-Coordination can be classified into two types:

· Request messages:  CreateCoordinationContext and Register.
· Reply messages: CreateCoordinationContextResponse and RegisterResponse and 
· 
· faults
Request and reply messages follow the standard "Request Reply" pattern as defined in WS-Addressing. 
· 
· 
The following statements define addressing interoperability requirements for the respective WS-Coordination message types:

Request messages

· MUST include a wsa:MessageID header.

· MUST include a wsa:ReplyTo header.
Reply messages

· MUST include a wsa:RelatesTo header, specifying the MessageID from the corresponding Request message.

· MUST include the reference parameter elements from the request’s wsa:ReplyTo header in their header blocks.

· 

· 

· 


All messages are delivered using connections initiated by the sender.  Endpoint References MUST contain physical addresses and MUST NOT use the well-known "anonymous" endpoint defined in WS-Addressing.
WS-AT

x. Use of WS-Addressing Headers

The messages defined in WS-AtomicTransaction can be classified into two types:

· 
· 
· Notification messages: Commit, Rollback, Committed, Aborted, Prepare, Prepared, ReadOnly and Replay.
· Fault messages
Notification messages follow the standard "one way" pattern as defined in WS-Addressing.  There are two types of notification messages:

· A notification message is a terminal message when it indicates the end of a coordinator/participant relationship.  Committed, Aborted and ReadOnly are terminal messages.
· A notification message is not a terminal message when it does not indicate the end of a coordinator/participant relationship.  Commit, Rollback, Prepare, Prepared and Replay are not terminal messages.
The following statements define addressing interoperability requirements for the respective WS-AtomicTransaction message types:


· 
· 

· 
Non-terminal notification messages

· MUST include a wsa:ReplyTo header
Terminal notification messages

· SHOULD NOT include a wsa:ReplyTo header

Fault messages

· MUST include a wsa:RelatesTo header, specifying the MessageID from the Notification message that generated the fault condition.

Notification messages are addressed by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange.  If a wsa:ReplyTo header is present in a notification message, it MAY be used by the recipient, for example in cases where a Coordinator or Participant has forgotten a transaction that is completed and needs to respond to a resent protocol message. Permanent loss of connectivity between a coordinator and a participant in an in-doubt state can result in data corruption.

If a wsa:FaultTo header is present on a message that generates a fault condition, then it MUST be used by the recipient as the destination for any fault. Otherwise, fault messages MAY be addressed by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange.
All messages are delivered using connections initiated by the sender.  Endpoint References MUST contain physical addresses and MUST NOT use the well-known "anonymous" endpoint defined in WS-Addressing.

Rollback


Decision





N/A





N/A





Send Aborted


Aborting





N/A





N/A





N/A





N/A





Write


Done





N/A





N/A





N/A





Send Prepared�PreparedSuccess





N/A





N/A





N/A





Write


Failed





N/A





N/A





N/A





Initiate Rollback, Send Aborted, and Forget


Aborting





N/A





N/A





N/A





All


Forgotten





None





N/A





Send ReadOnly


None





N/A





N/A





None





None





Atomic Transaction 2PC protocol


(Participant View)





Inbound


Events





States





None





Active





Preparing





Prepared





PreparedSuccess





Committing





Aborting





Register


Response





Register Subordinate


Active





IgnoreInvalid State


Active





IgnoreInvalid State


AbortingPreparing





IgnoreInvalid State


Prepared





IgnoreInvalid State


PreparedSuccess





IgnoreInvalid State


Committing





IgnoreInvalid State


Aborting





Prepare





Send Aborted


None





Gather Vote Decision


Preparing





Ignore


Preparing





Ignore


Prepared





Resend Prepared


PreparedSuccess





Ignore


Committing





Resend Aborted, and forget


Aborting





Commit





Send Committed


None





Invalid State


Aborting





Invalid State


Aborting





Invalid State


Aborting





Initiate commit decision


Committing





Ignore


Committing





InconsistentInternalState


Aborting





Rollback





Send Aborted


None





Initiate Rollback,


Send Aborted, and Forget


Aborting





Initiate Rollback,


Send Aborted, and Forget


Aborting





Initiate Rollback,


Send Aborted, and Forget


Aborting





Initiate Rollback,


Send Aborted, and Forget


Aborting





InconsistentInternalState


Committing





Send Aborted, and Forget


Aborting





Internal


Events











 





Expires


Times out





N/A





Send Aborted


Aborting





Send Aborted


Aborting





Ignore


Prepared





Ignore


PrepareSuccess





Ignore


Committing





Ignore


Aborting





Comms


Times out





N/A





N/A





N/A





N/A





Resend Prepared


PreparedSuccess





N/A





N/A





Commit


Decision





N/A





N/A





Record Commit


Prepared





N/A





N/A





Send Committed and Forget�Committing





N/A








