WS-Business Activity Interop Scenarios
November 12, 2004

Authors

Thomas Freund, IBM

Kirill Gavrylyuk, Microsoft

Max Feingold, Microsoft

Dave Langworthy, Microsoft
Thomas Mikalsen, IBM

Stefan Tai, IBM

Ian Robinson, IBM

Tony Storey, IBM

Table Of Contents

1WS-Business Activity Interop Scenarios

Authors
1
Table Of Contents
1
Introduction
2
Scope
2
Test Approach
3
Namespaces
3
Asynchronous Messaging
3
Test Application
3
General Flow
3
Roles used in Test Scenarios
5
Test Scenarios for Participant Completion
5
Scenario #1.1. ParticipantClosed
5
Initialization
5
Message Exchange
5
Scenario #1.2. ParticipantCompensated
5
Initialization
5
Message Exchange
5
Scenario #1.3. ParticipantCanceled
6
Initialization
6
Message Exchange
6
Scenario #1.4. ParticipantExit
6
Initialization
6
Message Exchange
6
Scenario #1.5. ParticipantFault
6
Initialization
6
Message Exchange
6
Scenario #1.6. ParticipantCompensationFault
6
Initialization
7
Message Exchange
7
Use of WS-Addressing Headers
7
Message Snapshots
9
Application Messages
9
Message Request
9
Message Response
9
WS-Coordination Messages
9
Message Register
9
Message RegisterResponse
9
WS-BusinessActivity ParticipantCompletion protocol Messages
9
Message Completed
9
Message Close
9
Message Closed
9
Message Cancel
9
Message Canceled
9
Message Compensate
9
Message Compensated
9
Message Fault
9
Message Faulted
9
Message Exit
9
Message Exited
9
A1.
Test Application WSDL
9

Introduction

Scope

This document defines message flows and formats designed to test interoperability between implementations of the WS-Business Activity specification. Several coordination scenarios have been defined that exercise the critical message exchanges defined in this specification.

Protocol Interoperability testing includes any message exchange that leverages the protocol. Following the workshop model, there are two concurrent mechanisms vendors can use to achieve interoperability: workshops and online interop testing. Given the time constraints for test execution during the workshop and the number of participants, it is important to prioritize tests to select only those focused on mainline scenarios and which most heavily exercise the protocol. The rest of the protocol testing can be left for online interoperability and in-house QA by each vendor.

We propose the following principles for test selection for face-to-face BA interop workshop:

1. Positive tests only. The failure scenarios used in testing MUST not include invalid states/invalid messages by implementations.
2. Target Interaction. Test Scenarios should verify the interaction between two parties according to the protocol.

3. Target Protocol. Target scenarios described by WS-BA and WS-Coordination specifications.
Test Approach
The goal of the interop tests in this document is to

· Exercise each type of message that is sent or received (excluding faults), as described by WS-BA and WS-Coordination.

· Cover the positive paths on the state diagram for Participant
Namespaces

The following namespaces are used in this document

	Prefix
	Namespace
	Description

	wsa
	http://schemas.xmlsoap.org/ws/2004/08/addressing
	WS-Addressing

	wscoor
	http://schemas.xmlsoap.org/ws/2004/10/wscoor
	WS-Coordination

	wsba
	http://schemas.xmlsoap.org/ws/2004/10/wsba
	WS-BA

	tns
	http://fabrikam123.com/wsba
	Test Application

	fooba
	urn:foo-ba-extension
	Sample BA extensions URI

Asynchronous Messaging

All messages used in the interop workshop scenarios below correspond to the asynchronous port types described in the WSDL provided in the specifications.

Test Application
To facilitate interoperability testing, and drive the scenarios, a Test Application is defined. The application comprises a Initiator Application (IA) role and a Participant Application (PA) role, each implemented using different implementations. WSDL for application-level interactions between an IA and PA is defined below.

An interoperability test of two (or more) implementations can be defined by assigning the role of IA to one implementation and the role of PA to all other implementations. Each implementation should support both roles.

General Flow

This section describes the detailed message flow common for all scenarios in this document. In the test scenarios descriptions such common details will be omitted for brevity.

Implementation A should accept as input the URL of implementation B. Implementation A then initiates a Business Activity, using an internal/private Activation service to create a CoordinationContext (external Activation services are not required and are not tested.) The CoordinationContext includes the EPR of implementation A’s Registration Service and a unique coordination identifier (the optional expiration time of the activity should not be specified.) From this point forward, the implementations should interact as follows:

[image: image1.emf]Implementation B Implementation A

InitiatorApp (IA)

CoordinatorProtocolService

(CS)

ParticipantApp (PA)

tns:Request()

ParticipantProtocolService

(PS)

tns:Response()

wscoor:RegisterRequest()

wscoor:RegisterResponse()

wsba:Protocol()

In the first phase, the two implementations agree on the scenario being tested and exchange EPRs for the coordination services being tested.

The IA sends an ApplicationRequest message to the PA. This message includes a WS-Addressing “Action” header, which specifies the URI of the scenario being tested, and a WS-Coordination “CoordinationContext” header, which identifies the coordinated activity. The action URI for each scenario is derived from the Test Application WSDL defined below, using the Default Action Pattern defined in WS-Addressing.

The PA joins the Business Activity by sending a Register message to the Requester’s Registration Service. The Register message targets the Registration Service Endpoint Reference specified in the CoordinationContext, and specifies the EPR of PA’s Protocol service. The coordination protocol(s) that the PA registers for is scenario specific.

The IA’s Registration service enlists the PA in the Business Activity, and responds with a RegisterResponse message correlated with the Register message using RelatesTo. The response message includes the EPR of the IA’s Coordinator service.

The PA sends an Application Response message tns:Response to the IA indicating that the first phase has completed.

In the second phase, the IA and PA execute according to the selected scenario. Messages flows for each scenario are defined below. In these flows, coordination protocol messages utilize the endpoint references (as defined in WS-Addressing) exchanged during the registration (Register & RegisterResponse) to direct processing to the coordinator or participant instance.

All messages are delivered according to an asynchronous, one-way message exchange pattern. Detail message descriptions are provided below.

Roles used in Test Scenarios

The test scenarios use the following roles
1. Initiator Application (IA)

2. Participant Application (PA)

3. Coordinator Protocol Service (CS)

4. Participant Protocol Service (PS)

Each implementation participating in the test should be exercised in each role.

Test Scenarios for Participant Completion
Scenario #1.1. ParticipantClosed
The PA successfully completes its work on behalf of the activity, and the activity is closed.
Initialization

1. IA sends application message tns:ParticipantClosed to PA
2. PA registers PS with CS for wsba:ParticipantCompletion protocol
3. PA sends application message tns:Response to IA
Message Exchange

(PA initiates activity completion)
4. PS sends wsba:Completed to CS
(CS decides to close activity)
5. CS sends wsba:Close to PS
6. PS sends wsba:Closed to CS
Scenario #1.2. ParticipantCompensated
The PA successfully completes its work on behalf of the activity, and the PA/PS accepts the request to compensate the activity.
Initialization

1. IA sends application message tns:ParticipantCompensated to PA

2. PA registers PS with CS for wsba:ParticipantCompletion protocol

3. PA sends application message tns:Response to IA

Message Exchange

(PA completes the activity)
4. PS sends Completed to CS
(CS decides to compensate for the activity)
5. CS sends Compensate to PS
(PA/PS accepts request to compensate activity)
6. PS sends Compensated to CS
Scenario #1.3. ParticipantCanceled
The IA cancels the activity before the PA completes its work on behalf of the activity.
Initialization

1. IA sends application message tns:ParticipantCanceled to PA

2. PA registers PS with CS for wsba:ParticipantCompletion protocol

3. PA sends application message tns:Response to IA

Message Exchange

(IA cancels activity)
4. CS sends Cancel to PS
5. PS sends Canceled to CS
Scenario #1.4. ParticipantExit
The PA exits without completing any work on behalf of the activity.
Initialization

1. IA sends application message tns:ParticipantExit to PA

2. PA registers PS with CS for wsba:ParticipantCompletion protocol

3. PA sends application message tns:Response to IA

Message Exchange

(PA exits activity)

4. PS sends Exit to CS
5. CS sends Exited to PS
Scenario #1.5. ParticipantFault
The PA faults before completing its work on behalf of the activity.

Initialization

1. IA sends application message tns:ParticipantFault to PA

2. PA registers PS with CS for wsba:ParticipantCompletion protocol

3. PA sends application message tns:Response to IA

Message Exchange

(PA faults while working on the activity)

4. PS sends Fault to CS
5. CS sends Faulted to PS
Scenario #1.6. ParticipantCompensationFault
The PA successfully completes its work on behalf of the activity, and the PA/PS rejects the request to compensate the activity.

Initialization

1. IA sends application message tns:ParticipantCompensationFault to PA

2. PA registers PS with CS for wsba:ParticipantCompletion protocol

3. PA sends application message tns:Response to IA

Message Exchange

(PA completes the activity)

4. PS sends Completed to CS
(CS decides aborts the activity)

5. CS sends Compensate to PS
(PA/PS rejects request to compensate the activity)
6. PS sends Fault to CS
7. CS sends Faulted to PS
Use of WS-Addressing Headers

The messages defined in WS-Coordination and WS-BusinessActivity can be classified into three types:

 Request messages: Register
 Reply messages: RegisterResponse
 Notification messages: Completed, Close, Closed, etc.

Request and reply messages follow the standard "Request Reply" pattern as defined in WS-Addressing. Notification messages follow the standard "one way" pattern as defined in WS-Addressing. There are two types of notification messages:

 A notification message is a terminal message when it indicates the end of a coordinator/participant relationship. Closed, Compensated, Canceled, Exited, and Faulted are terminal messages.
 A notification message is not a terminal message when it does not indicate the end of a coordinator/participant relationship. Completed, Close, Compensate, Cancel, Exit and Fault are not terminal messages.

The following statements define addressing interoperability requirements for the respective WS-Coordination and WS-BusinessActivity message types:

Request messages
 MUST include a wsa:MessageID header.
 MUST include a wsa:ReplyTo header.

Reply messages
 MUST include a wsa:RelatesTo header, specifying the MessageID from the corresponding Request message.

Non-terminal notification messages
 MUST include a wsa:ReplyTo header

Terminal notification messages
 SHOULD NOT include a wsa:ReplyTo header

Notification messages are addressed by both coordinators and participants using the Endpoint References initially obtained during the Register-RegisterResponse exchange. If a wsa:ReplyTo header is present in a notification message it MAY be used by the recipient, for example in cases where a Coordinator or Participant has forgotten a transaction that is completed and needs to respond to a resent protocol message. Permanent loss of connectivity between a coordinator and a participant in an in-doubt state can result in data corruption.

All messages are delivered using connections initiated by the sender. Endpoint References MUST contain physical addresses and MUST NOT use well-known "anonymous" endpoint defined in WS-Addressing.

Message Snapshots

Application Messages

Message Request

Message Response

WS-Coordination Messages

Message Register

Message RegisterResponse

WS-BusinessActivity ParticipantCompletion protocol Messages

Message Completed

Message Close

Message Closed

Message Cancel

Message Canceled

Message Compensate

Message Compensated

Message Fault

Message Faulted

Message Exit

Message Exited

A1. Test Application WSDL

<?xml version="1.0" encoding="utf-8"?>

<definitions

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://fabrikam123.com/wsba"

targetNamespace="http://fabrikam123.com/wsba"

xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <s:schema elementFormDefault="qualified"

targetNamespace="http://fabrikam123.com/wsba">

 <s:complexType name="TestMessageType">

 <s:sequence />

 </s:complexType>

 <s:element name="Response" type="tns:TestMessageType" />

 <s:element name="ParticipantClosed" type="tns:TestMessageType" />

 <s:element name="ParticipantCompensated" type="tns:TestMessageType" />

 <s:element name="ParticipantCanceled" type="tns:TestMessageType" />

 <s:element name="ParticipantExit" type="tns:TestMessageType" />

 <s:element name="ParticipantFault" type="tns:TestMessageType" />

 <s:element name="ParticipantCompensationFault" type="tns:TestMessageType" />

 </s:schema>

 </types>

 <message name="Response">

 <part name="parameters" element="tns:Response" />

 </message>

 <message name="ParticipantClosed">

 <part name="parameters" element="tns:ParticipantClosed" />

 </message>

 <message name="ParticipantCompensated">

 <part name="parameters" element="tns:ParticipantCompensated" />

 </message>

 <message name="ParticipantCanceled">

 <part name="parameters" element="tns:ParticipantCanceled" />

 </message>

 <message name="ParticipantExit">

 <part name="parameters" element="tns:ParticipantExit" />

 </message>

 <message name="ParticipantFault">

 <part name="parameters" element="tns:ParticipantFault" />

 </message>

 <message name="ParticipantCompensationFault">

 <part name="parameters" element="tns:ParticipantCompensationFault" />

 </message>

 <portType name="InitiatorPortType">

 <operation name="Response">

 <input name="Response" message="tns:Response" />

 </operation>

 </portType>

 <portType name="ParticipantPortType">

 <operation name="ParticipantClosed"> <!-- Scenario 1.1 -->

 <input name="ParticipantClosed" message="tns:ParticipantClosed" />

 </operation>

 <operation name="ParticipantCompensated"><!-- Scenario 1.2 -->

 <input name="ParticipantCompensated" message="tns:ParticipantCompensated" />

 </operation>

 <operation name="ParticipantCanceled"><!-- Scenario 1.3 -->

 <input name="ParticipantCanceled" message="tns:ParticipantCanceled" />

 </operation>

 <operation name="ParticipantExit"><!-- Scenario 1.4 -->

 <input name="ParticipantExit" message="tns:ParticipantExit" />

 </operation>

 <operation name="ParticipantFault"><!-- Scenario 1.5 -->

 <input name="ParticipantFault" message="tns:ParticipantFault" />

 </operation>

 <operation name="ParticipantCompensationFault"><!-- Scenario 1.6 -->

 <input name="ParticipantCompensationFault"

message="tns:ParticipantCompensationFault" />

 </operation>

 </portType>

</definitions>

PAGE
2

