Requirements on Abstract Business Process Execution Language (BPEL)
Editor: Tony Fletcher, Choreology Ltd

Contents

1Introduction

1Target Audience

1Uses of Abstract BPEL

2Requirements on Abstract BPEL

Introduction

The intent of this document is to capture various ideas that various people have put forward on how something which has become know as abstract BPEL could be used. It should be noted that these potential different uses are different in intent. The differences do not necessarily imply differences in the language feature set. Thus it may be possible to have a description that conforms to the executable BPEL schema and language rules that is used for an abstract BPEL purpose listed below.

Thus the aim of this document is to act as vehicle for gaining agreement on the audiences, uses and requirements on ‘abstract BPEL’. It is intended to be neutral on how the uses and requirements are satisfied and in particular on whether abstract BPEL is a different language from executable BPEL (and if so exactly how different), or just a different way of thinking.

Target Audience

enterprise architect

application architect

tools architect

tools developer
application developer
customers

potential partners

Uses of Abstract BPEL

Abstract BPEL can be used:

To describe the interactions
with a single partner. A description that can be used by the originator and the partner as a specification for what each needs to do to collaborate
. (An aim of the BPEL abstract process definition language is to enable the description of the allowed ordering of messages sent and received by a single party (/participant) to its immediate partners
with a minimum of complexity.)
To describe the interactions with several partners. A description that can be used by the originator and all these partners as a specification for what each needs to do to collaborate with the originator
.

To describe the publicly visible behaviour plus some information about the internal processing - an intermediate form
.
As an aid to simulation
 of a process at a single entity.

To aid the policing of the interaction
between a single entity and one or more of its partners
.

A mechanism for communicating among developers. and perhaps particularly between the application architect and the application developer
– as a specification for the development of the business process application / system.
As a step in capturing customer requirements
.

To act as the public behaviour
contract between two parties.

As a means of describing a business protocol
between two, or more, parties (with the constraint that the exchanges described are all with a single party i.e. one party is the focus or ‘hub’).

The dynamic part of an interface
described in WSDL.

To act as a template for another abstract process that is effectively a variant of the first with the parts that can be changed constrained.

To act as a template for an executable process with the parts that can be changed constrained.

To act as a process modelling tool XML language

To act as the XML interchange language for process modelling tools

Requirements on Abstract BPEL

1)
It should be possible to use an abstract BPEL process description as a step in the design process such as:
graphical description (BPMN or other)
--> abstract BPEL process -->
 executable BPEL process (--> BPEL engine or code)

message sequence charts (/ state diagrams / charts)
--> abstract BPEL process --> executable BPEL process (--> BPEL engine or code)

2)
It should be possible to use an abstract BPEL process description as a step in 'reverse engineering a process perhaps for the purpose of discussing with other parties while hiding certain details from those other parties. For instance:
executable BPEL process (--> BPEL engine
or code) --> abstract BPEL process -->
graphical description (BPMN or other)

executable BPEL process (--> BPEL engine or code)--> abstract BPEL process --> message sequence charts (/ state diagrams / charts)

Requirement 2) is obviously requires the ability to move in the reverse direction from that envisaged in 'requirement' 1).

3)
It is a requirement not to have to produce WSDL descriptions
for each link with a partner.
4)
It is a requirement to be able to have WSDL descriptions for each link with a partner that describes the portType
s, operations and messages but not the bindings.

5)
It is a requirement to be able to have WSDL descriptions for each link with a partner that describes the portTypes
s, operations and messages, and also the bindings to an underlying transport.

6)
It must be possible to take an executable BPEL process, and hide and or remove detail
to make it into an abstract process.

7)
It must be possible to take an abstract BPEL process, and add detail
to make it into an executable process.

8)
It must be possible to have an abstract BPEL process that only uses some, or none, of the optional language features.
An abstract BPEL process designer is able to add or omit detail as they please, limited only by the features of the language.

9)
It must be possible to have semantic abstraction as well as syntactic abstraction
.
10)
An abstract process only needs to describe the allowed sequencing of messages
exchanged with one, or more, partners. It is not required to describe the detail of how messages are constructed or synchronised at a ‘node’
, though it may do so to a lesser or greater extent.
11)
An abstract process needs to be able to show the sending of a message as the first externally observable action.
(Note that currently executable BPEL can only show the receipt sending of a message as the first externally observable action.)

12)
An abstract process needs to be able to describe data dependent behaviour
(but does not have to).

13)
An abstract process needs to be amenable to static correctness analysis.

14)
An abstract process needs to be able to show what timeouts
 are applicable, when the come into effect, what needs to happen for them to be cancelled or reset, and what happens
when they expire.

15)
An abstract process needs to be able to describe what happens when an unexpected message is received.

16)
An abstract process needs to be able to describe what happens when an unexpected internal event occurs.

17)
It shall be possible to store, search for locate and retrieve abstract process descriptions in a registry
(such as UDDI or a registry/repository as specified in the ebXML suite of specifications. This requirement may place requirements on the naming of abstract process and the ability to associate metadata with them.

17)
It shall be possible to show that an abstract process
and an executable process are compatible, or that they are not compatible. That is that the two processes do allow identical externally observable behaviour, or that they do not.

�Monica Martin

�These terms require a bit more definition in order to make sure everyone is thinking about the same thing.

�I suspect that a large portion of the issues related to Abstract BPEL are based on what exactly the term 'interactions' means. Does it just mean the syntax of messages exchanged on the wire? Does it mean the ordering? Is there a semantic element?

�This is the same problem as discussed in my previous comment. 'what each needs to do to collaborate'? What exactly does that mean? Only when we have a firm definition can we set up a consistent set of requirements.

�But I suspect this list is not complete.

�Why must it be focused on just the originator? Why not take the tiny extra step of allowing N-N instead of 1-N? I'm not suggesting we go this far but if we aren't then we need to clearly explain why.

�A use case should have a motivation. What is the motivation for this use case? What does 'some information' mean? Rather than being an intermediate form this sounds like a completely separate thing than what is described in the previous use cases.

�Simulating what? Without stricter definitions of these terms we can't be sure we are thinking about the same thing.

�See previous comments on interaction.

�Again, this begs the question of N-N versus just 1-N.

�I certainly have some ideas of who these folks are but does everyone else share the same ideas? Again, we need definitions.

�What kind of requirements?

�What is included in public behavior?

�What is included in the term business protocol? E.g. what behaviors and functionality have to be defined such that one can say 'I have successfully defined a business protocol?' Which of those behaviors is in-scope for abstract BPEL and which are expected to be dealt with through other means?

�I'm not sure what this means. Do you mean the actual choreography or something else?

�Why not also expanded? This was a major screw up in XML Schema's design. It only allows one to take an existing schema and with a few hard to use exceptions, derive a new version via restriction. What we really need is a way to say 'I'm basing my new process on this other process and here is how I expanded and restricted it'. In other words I would think of this as being more an issue of generating a 'diff' from one process to another than trying to model language inheritence.

�Isn't this the other way around? That the template identifies what cannot be changed and everything else is left open?

�Holy Endless Mandate Batman! Can we just stick to things having to do with messages on the wire and leave out issues like higher level tools? I realize that folks will do things like this but there are some uses we just have to stay away from or we will go wacky. Perhaps we want to set up a liason with the OMG business process modeling folks?

�I intend to put forward a formal motion to have this stricken from the use cases. I firmly believe that this needs to be completely out of scope. This is different from the previous requirement in that this is explicitly something we should not be trying to do or enable.

�Phil Rossomundo and Prasad Yendluri

�Are we now expected to go out and pick a list of possible candidates such as BPMN or the OMG work and then do the work to make sure that they properly map to abstract BPEL? Are we supposed to create what we think of as a universal graphical description that could cover everything and then try to map that? Exactly what requirement does this requirement place on us? What specifically do we have to do in order to meet it? This seems too open ended to me.

�The requirement I can see us actually meeting is this one, that there MUST be a way to map between abstract BPELs and executable BPELs.

�How is this different than graphical descriptions?

�By including the BPEL engine and not just the executable process definition are you implying that we will have some kind of standard byte code or binary format that we can reverse engineer? Why is the engine here at all?

�I can see us defining the previous link between executable and abstract but what exactly is required of us for this link?

�This requirement confounds me. Whatever a business process is I am sure it involves sending and receiving messages. The only way to specify anything about messages that are sent or received in BPEL is to use a WSDL. So how can it be possible to make a meaningful statement in abstract BPEL about the relationship with a partner if no WSDL, even if only partially completed, is provided?

�Ugo Corda

�Now this requirement makes sense to me!

�Ugo Corda

�To the best of my recollection BPEL has made no statements or requirements regarding bindings to date, why would we start now? I think the previous requirement is sufficient for our needs and this one can be struck.

�This presumes that one cannot just take an executable process and declare it to be an abstract process. While this presumption is true in today's BPEL since there are certain commands in executable BPEL that aren't available in abstract BPEL, is there a reason to continue with this distinction? This issue is especially important if we are serious about the templating use case.

�I would just say 'transform' and leave it at that. The issue of adding and removing detail makes presumptions about the models that may not apply. For example, abstract BPEL may end up with the ability to express things that executable BPEL cannot express. In which case going from abstract to executable may actually involve removing data.

�Isn't this a tautology? If the feature is optional then one doesn't need to use it.

�What is a semantic/syntactic abstraction?

�What requirements are there regarding describing how the allowed sequencing is defined? E.g. can an abstract process only state that after message A is received then either Message B or C can be sent to partners A or B or does it mean being able to say things like "if the state of Message A is foo then...". In other words, what kind of control logic do we expect to need to provide?

�What does it mean to synchronize at a node?

�I think this is a great requirement!

�I think this is related to my questions on issue 10 but the term 'data dependent behavior' needs a lot more definition before we can all be sure we are agreeing on the same thing.

�Um... what does this mean? What are we checking is correct?

�In BPEL we allow timeouts to be specified based on incoming messaging data. E.g. if the purchaseID is above 100 then the timeout can be set to one hour otherwise set to 5 minutes. Will we need to be able to capture that level of detail in an abstract process?

�The key term here is 'happens'. What are the pallet of functionality we intend to provide to abstract processes so that they can express themselves?

�Why? BPEL doesn't say anything about this.

�Does this mean a fault for which there is no catch?

� This is an open ended vocabulary exercise. I'm sure we can find other areas to apply our very limited resources.

�Requirements need to be shown to be possible before being requirements. Without a lot more flesh put on the bones of the previous requirements we can't be sure this one is even theoretically possible.

�Monica Martin and others (requirement derived by Tony Fletcher passed on the implication of several emails and points made in meetings.

Page 4 of 3

