BPEL Abstract Processes

 Satish Thatte
with ideas from Nick Kavantzas, Rania Khalaf and Ivana Trickovic

There is now a consensus that BPEL abstract processes are partially specified executable processes. In order to take this further and make abstract processes a clearly defined aspect of the BPEL specification, we need to be clear on several specifics

1. What exactly is a partially specified executable process? This is answered by clearly defining the semantics of partially specified executable processes and their relationship to truly executable processes.

2. What are the expected uses of abstract processes? This is answered by providing a list that should capture expected uses without claiming to be exhaustive.

3. What are the syntactic features needed to enable abstract processes? This is answered with a list of syntactic extensions and their usage guidelines.

This note provides brief (and in some cases partial) answers to these questions as a milestone towards more detailed consensus and leaves the much bigger job of providing detailed language for the specification for a later effort.
Semantics of Abstract Processes

The very statement that abstract processes are partially specified executable processes provides the basis for the semantics of abstract processes. In particular there are a few assertions that are implied and they guide us to the unfinished aspects:
A. Abstract processes permit the use of all of the constructs of executable processes. Thus there is no fundamental expressive power distinction between abstract and executable processes.

B. An abstract process may omit details and as such become unqualified to be considered executable, but the semantics of the constructs used in such a process is exactly the same as their semantics in the executable context.

C. Abstract processes permit the use of certain special syntactic extensions (“opaque” entities of various kinds) whose semantics must be defined. Moreover we must be precise about which syntactic elements can be omitted in abstract processes where this would not be permitted in executable processes.
Issue for discussion: a specific related issue we have discussed is whether there are any attribute values that can be opaque. Most of us believe that the createInstance attribute on receive like activities and the isolated scope attribute are not optional. Note that both have defaults and therefore their syntactic omission is not ambiguous.

D. There is a conformant completion relation between abstract and executable processes that is also essential for the semantics of abstract processes, since every use case for an abstract process envisions the existence of one or more corresponding executable processes that conform to the behavior specified by the abstract process.
Issue for discussion: Nick has rightly pointed out that the “tracing semantics” of abstract processes is a very interesting issue that deserves a thorough discussion in the group.

The expected uses of abstract processes

Most of us felt that the least controversial way to express these uses was in the form of abstract patterns rather than concrete use cases.

There are two abstract usage patterns for abstract processes

Export Pattern: This is the case where one starts with an executable process and projects an abstract process from it. The abstract process may hide operational details identified in a variety of ways. One interesting variant is projecting an abstract process along a partnerLink, i.e., showing only activities relevant to a certain partnerLink. The projected abstract process should be “conformant by construction” to the original executable process if the algorithm for projection is correctly implemented. The projected abstract process may be used to specify the externally visible behavior of a web service or a collection of web services. Alternatively, it may be used as an abstract process “template” that captures some essential process logic while leaving out irrelevant details.
Import Pattern: This is the case where one starts with an abstract process and constructs either another abstract process or an executable process, in both cases as a conformant extension. In other words, given that we have defined the expected conformance semantics discussed above, the constructed extensions should be in a conformance relationship to the original abstract process. The template use case mentioned in the export pattern is one way in which the abstract process used as a starting point may be created. Alternatively, the abstract process may have been created directly by a third party such as a vertical industry standards body.
Protocol Matching Pattern: This is the case where one constructs an abstract or executable process that matches the expected partner behavior for a partner relationship relative to an abstract process describing the external behavior of a business process. In other words, the conformance in this case is a “mirror image” or “protocol compatibility” conformance rather than conformance for completion.
Syntactic extensions for abstract processes

There are several distinct requirements that lead to syntactic extensions for abstract processes. The salient ones are enumerated below.

A. Non-determinism: the obvious case being a process that needs to show a decision point with alternative outcomes without specifying how the decision is reached. In this case the expressions that constrain each branch may need to be left unspecified, but it may also be convenient to make a specific value or quantity such as a price threshold unspecified, so that explicitly specified conditions relative to the threshold become non-deterministic as a result of the threshold value being unknown. This is the kind of scenario (there are others) that the current opaque assignment feature in BPEL is meant to address, and it may need to be generalized to allow opaque expressions in other constructs.

B. In cases where an abstract process is a process template it may be necessary to mark the points of mandatory extension, specifically as opaque activities that must be replaced by real ones. There are also edge cases where simple omission of an activity creates a syntactic problem, e.g., if the omitted activity is a join point for several links.
Opaque placeholders such as opaque expressions and activities are explicit designators used by a process designer for specifying the points where the missing operational details are required to be concretized, when completing an abstract process to a fully executable one. However it must be clarified that opaque expressions and especially activities are not the only points of extension allowable in completing an abstract process to become an executable process. Any extension is permitted so long as the (hopefully sufficiently abstract) notion of conformant completion is satisfied.
