Abstract & Executable BPEL Processes Unified

 August 12, 2004
1 Introduction

The primary requirement for unifying the Abstract and Executable forms of BPEL processes arises when introspecting into the different usage scenarios needed to be modeled by a process designer. It appears that the two forms of BPEL processes need to share the same expressive power, while one form is required to allow specifying partial process definitions that is abstracting away operational details.

In this note we will try to provide a clear definition of what an Abstract BPEL process is and then we will establish its relationship with an Executable BPEL process.

2 Usage of Abstract BPEL

Abstract BPEL can be used to specify the stateful behavioral offerings and requirements of a single process to and from other Web Services based programs, a business process code snippet or a process template.

Unifying the Abstract and Executable forms of BPEL processes results in a single language possessing Turing-complete expressive power, which can be used for writing programs with different degrees of operational details specified as required by the usage scenarios described above.

The only distinction between Abstract BPEL and Executable BPEL would then be that programs are partial and cannot execute when written with the former but are fully concretized and thus can be executed when written with the latter.

3 Definition of Abstract BPEL

An Abstract process is a partially specified Executable process, missing operational details that are required to be concretized when mapping the partial specification to a fully executable program.

Examples of the missing operational details of an Abstract process are:

· Expressions- as used in assign, switch
· Attributes- as used in receive for input variables

· One or more Activities- as used for hiding the lifecycle (receivestart/terminate) activities, other activities or sub-processes (a set of two or more activities)

The implicitly missing operational details may be added anywhere, when mapping the partial specification to a fully executable program.

In addition, if the points of the missing operational details are specified using explicit placeholders, then these placeholders must be replaced with other concrete expressions, attributes or activities.

There should be a process level switch to denote that a process is Abstract, thus partial. We can use the existing abstractProcess Boolean switch:

 <process abstractProcess="yes">
4 The need of Opaque placeholders
Opaque placeholders are explicit designators used by a process designer for specifying the points where the missing operational details are required to be concretized, when mapping a partial specification to a fully executable program.

Opaque placeholders are a BPEL language feature whose functions are showcased below:

· Opaque expressions are needed in

· Opaque assignment-for capturing variable creation/modification in a yet-to-be-concretized mechanism/fashion.

· Opaque attributes are needed

· In a receive activity for defining input variables. If we omit an input variable in an Abstract BPEL process definition then it means that there is no inputVariable in this receive. If an Opaque placeholder is used for the input variable, then it means that the process designer has to specify this variable. Hence there is no ambiguity of deliberate omission because the attribute is not needed versus implicit missing of details that need to be filled in.

· In a BPEL activity with an optional attribute, which has a default value, if we omit that attribute in an Abstract BPEL process definition then it means the default value of that attribute will be used. If an Opaque placeholder is used for the attribute, then it means that the process designer has to specify this value. Hence there is no ambiguityof whether the default value should be used or an explicit value needs to be specified.

· Opaque activities

· Can hide a concrete activity

· receivestart lifecycle activity (thus also resolving issue 99)

· terminate lifecycle activity

· other concrete activities, such as throw, empty, etc.

· May be used as

· a source or a target of control links

· Can hide a concrete sub-process, a set of two or more activities, such as a checkInventory sub-process

5 Conclusion

In summary, Abstract processes have full expressive power, and can be used for specifying processes with varying degrees of operational details. When mapping these partial specifications to fully executable programs, new concrete operational details can be added anywhere and additionally the explicitly hidden details must be concretized at the points designated by the opaque placeholders.

