BPEL Abstract Processes

Editors: Satish Thatte, Rania Khalaf

With input/comments from:
Ivana Trickovic,

Dieter Koenig, Dieter Roller, Frank Leymann, Francisco Curbera, Axel Martens, Additional Acknowledgment:

Used text and ideas from the rest of the Abstract Process Working Group.
Definition: BPEL abstract processes are partially specified processes that are typically not intended to be executed. They are partially specified in that they are capable of abstracting away operational details. An abstract BPEL process must be declared abstract by setting the abstractProcess attribute to “yes”. Operational details may be abstracted away either through the omission of specific BPEL elements or attributes listed in the specification, or through the use of opaque tokens.

Semantics of Abstract Processes

The very statement that abstract processes are partially specified processes provides the basis for the semantics of abstract processes. In particular there are a few assertions that are implied and they guide us to the unfinished aspects:
A. An abstract process is a publicly visible behavior of the services exposed by the process. Although it might contain complete information that would render it executable if the abstractProcess=”yes” attribute were changed to “no” for executable BPEL, its abstract status states that any concrete realizations of it may perform additional processing steps that are not relevant to the audience to which it has been given.
B. Abstract processes permit the use of nearly all of the constructs of executable processes. Thus there is no fundamental expressive power distinction between abstract and executable processes.

C. An abstract process may omit certain details that are mandatory for BPEL executable processes. However, the semantics of the constructs used in such a process is exactly the same as their semantics in the executable context. An abstract process must comply with the syntax and semantics of the specification. The syntactic elements that can be omitted in abstract processes where this would not be permitted in executable processes are currently:
· Those listed in the “extensions for executable processes” section of the specification.

· inputVariable/outputVariable/variable on invoke, receive, onMessage, and reply.

· An initiating receive activity (pending resolution of issue 99).
D. Abstract processes may include special syntactic extensions (“opaque” entities of various kinds) that should be replaced with concrete entities in any executable artifact that complies with an abstract process using such opaque entities. Opaque entities include expressions and activities.
Syntactic extensions for abstract processes

The syntactic extensions consist of opaque placeholders for explicit hiding. Opaque placeholders are a BPEL language feature whose functions are explained below:

A. Opaque expressions: needed in particular for opaque assignment and opaque transition conditions. Opaque assignment is used for capturing variable creation/modification in a yet-to-be-concretized mechanism/fashion. An example of usage is to express non-determinism: the obvious case being a process that needs to show a decision point with alternative outcomes without specifying how the decision is reached. In this case the expressions that constrain each branch may need to be left unspecified, but it may also be convenient to make a specific value or quantity such as a price threshold unspecified, so that explicitly specified conditions relative to the threshold become non-deterministic as a result of the threshold value being unknown. This may need to be generalized to allow opaque expressions in other constructs.

B. Opaque activities: Hide a concrete BPEL activity, such as a structured activity, or even just an “empty”. They may be used as a source or a target of control links. Examples of using opaque activities include, but are not restricted to, creating process templates, marking the points of necessary extension in a process, and in edge cases where simple omission of an activity creates a syntactic problem, e.g., if the omitted activity is a join point for several links.

The expected uses of abstract processes

There have been many questions regarding the use of abstract processes. To illustrate, we present the three high-level patterns that cover main expected usages of abstract processes. These patterns make use of going back and forth from abstract processes through various levels of granularity to executable processes or artifacts. In realizing the more advanced concrete use cases that result from these patterns, tooling support that can restrict/guide this process will be required. However, the problems inherent in doing so, relating mainly to conformance, are not specific to BPEL but exist in the practical usage of any abstract protocol definition (RosettaNet PIPs, DAML-S processes etc). BPEL in fact is a step ahead in that it provides an executable variant with overlapping constructs as those in the abstract variant, making these tasks actually less complex. The BPEL specification itself should provide syntactic means to relate abstract and excecutable variants with respect to conformance but it should not restrict the definition of conformance itself (see separate section below).
Export Pattern: This is the case where one starts with an executable process and projects an abstract process from it. The abstract process may hide operational details in a variety of ways. One interesting variant is projecting an abstract process along a partnerLink, i.e., showing only activities relevant to a certain partnerLink. The projected abstract process may be used to specify the externally visible behavior of a web service or a collection of web services. Alternatively, it may be used as an abstract process “template” that captures some essential process logic while leaving out irrelevant details.
Import Pattern: This is the case where one starts with an abstract process and constructs either another abstract process or an executable process, in both cases as a conformant extension. In other words, the constructed extensions should be in a conformance relationship to the original abstract process. The template use case mentioned in the export pattern is one way in which the abstract process used as a starting point may be created. Alternatively, the abstract process may have been created directly by a third party such as a vertical industry standards body.
Protocol Matching Pattern: This case is more sophisticated than the previous two, but is nonetheless valuable. Here, one constructs an abstract or executable process that matches the expected partner behavior for a partner relationship relative to an abstract process describing the external behavior of a business process. The created process is therefore a “mirror image” rather than an extension of the original abstract process. A related usage is searching for an artifact that complies with behavioral requirements expressed using a BPEL abstract process.
Note on conformance, and relation to executable processes:

Every use case for an abstract process envisions the existence of one or more corresponding executable artifacts (BPEL or otherwise) that are related to or derived from an abstract process.
As with any abstract business specification, there are many different types of relations between the abstract specification (abstract processes) and any concrete realizations of it (executable processes). Each type of relation comes with its own compliance/conformance requirements. This statement is supported by a large body of related theory work defining different kinds of conformance relations between processes. BPEL must make sure that abstract and executable processes can be specified but should not cope with or restrict these conformance/compliance statements. BPEL must make sure that abstract and executable processes can be specified but should not restrict the relationships that may be used.

Sample, non-normative proposed definitons of some relations include the following:

Syntactic completion of an abstract process resulting in an executable process. This is straightforward to define and check (replace opaque entities, complete syntactic omissions and add anything you want).

Minimal no-fault syntactic completion as one where the only extensions are replacements of opaque or omitted tokens, new variables, and new *leaf* activities that :

A. Do not interact using the partnerLinks of the base abstract process (may use new partnerLinks).

B. Do not use web services that may return faults.
C. Are not <terminate> or <throw> activities.

This definition is not useful as a practical relationship—it is meant for use in the following definition of oservable conformance.

Observably conformant (not necessarily minimal) syntactic completion is one where the observable interaction sequence along any partner link in the base abstract process is identical to one that can be produced using a minimal no-fault syntactic completion.
Note that we are able to define observable conformance on a base of syntactic completion because we have a common syntactic and semantic base for both abstract and executable processes.

For example, in a scenario where an abstract process is used as a template for creating an executable opaque tokens could be the main, and possibly only, points of extension. The relation here is that of syntactic completion. The same applies for successive refinement of an abstract process.
In a scenario where an abstract process is given to an external company to “implement”, one expects to see all externally visible behavior (receive/invoke/reply/OnMessage) and few to no opaque tokens. The company will most likely extend it using extra processing steps in the form of new activities, partnerLinks with its backend systems, handlers, and so on, and also filling in any explicitly omitted information (variables and instantiating receive(s)). The relation is that of observable conformance.
In a scenario where one wants to expose one’s business logic but does not care to hide any of it, one expects simply toggling the abstractProcess=yes attribute to indicate the intent for use by others as an abstract process for informative purposes or perhaps for the generation of compatible client(s). Note that this can only be done if the process at hand was created using the common subset of the language (w/o extensions for executable and/or abstract process. The relation is an exact match.

The agreement is that:

· An executable process MUST extend any opaque tokens and add any of the omitted information (variables , instantiating receive, etc). Therefore, opaque placeholders are explicit designators specifying normative points of extension in a concrete realization of an abstract process.There is no general restriction as to whether the realization of the opaque activities is observable by the partnerLinks in the abstract process (ie: an additional invoke) or whether it should be silent (ie: assign, invoke to a new partnerLink). This is to be restricted based on the use case at hand, and the relation that one is aiming for. However it must be clarified that opaque expressions and especially activities are not the only points of extension allowable in completing an abstract process to become an executable process.
· An executable process MAY contain additional processing steps (activities, fault handlers, etc) and parterLinks including the extras that may be required to carry these out(correlation sets, variables).
Any restrictions on or definitions of conformance beyond that depend on the use case at hand and will remain out of scope for this effort.
5 Conclusion

In summary, abstract processes are well-formed processes that have full expressive power, and can be used for specifying processes with varying degrees of operational details. Use cases show that they can be used as an integral part of the solution to real problems of varying complexity. They use the core of the BPEL language plus several straightforward syntactic extensions to enable them to abstract away certain pieces of information.
BPEL aims to enable the definition of both, abstract business protocols and executable processes. The difference between the syntax and constructs of abstract processes and executable processes is clearly laid out in the specification (pending updates related to opaque stuff). This results in a clear definition of the semantics of each variant on its own. However, it is out of the scope of the specification to restrict to a single conformance relation between an abstract BPEL process and a candidate corresponding executable or another abstract BPEL process. Conformance, as expected, is non-trivial and context-dependent.
Appendix A:
Issues for Discussion:
· A specific related issue we have discussed is whether there are any attribute values that can be opaque, in particular those that have a default value such that allowing their syntactic omission is different from opacity. Most of us believe that the createInstance attribute on receive-like activities (pending issue 99 in which abstract processes are proposed to alllow omission of an opaque activity), the isolated scope attribute, and suppressJoinFailure are should not be allowed to be opaque. Note that queries are not allowed in abstract processes per spec v1.1

· Nick has rightly pointed out that the “tracing semantics” of abstract processes is a very interesting issue that deserves a thorough discussion in the group.This relates to observable conformance.
· Normativeness/non-normativeness of the conformance definitions .
· Consider the ability to explicitly specify a named/defined conformance relation between two processes, possibly using WS-Policy. Also consider enabling a WSDL to point to an abstract and makes a compliance statement in a binding or a port.

