Appendix – Static Analysis

	Static Analysis Fault Code
	Static analysis Description
	Section Reference

	SA00001
	A WS-BPEL processor MUST reject a WS-BPEL that refers to a portType that contain solicit-response or notification operations as defined in the WSDL 1.1 specification.
	Section 3

	SA00002
	If the value of exitOnStandardFault of a <scope> or <process> is set to “yes”, then a fault handler that explicitly targets the WS-BPEL standard faults MUST NOT be used in that scope. A process definition that violates this condition MUST be detected and rejected by static analysis.
	Section 5.2

	SA00003
	Determine which languages are referenced by queryLanguage or expressionLanguage attributes either in the BPEL process definition itself or in any BPEL property definitions in associated WSDLs and if any referenced language is unsupported by the BPEL processor then the processor MUST reject the process.
	Section 5.2

	SA00004
	The initializePartnerRole attribute specifies if the BPEL processor is required to initialize a partnerLink's partnerRole value. The attribute has no affect on the partnerRole's value after its initialization. The initializePartnerRole attribute MUST NOT be used on a partnerLink that does not have a partner role; this restriction MUST be statically enforced.
	Section 6.2

	SA00005
	A partnerLink can be declared within a process or scope element. The name of a partnerLink should be unique amongst the names of all partnerLinks defined within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 6.2

	SA00006
	For performance reasons, properties used for correlation MUST be defined using XML Schema simple types, this restriction MUST be statically enforced.
	Section 7.2

	SA00007
	Static analysis MUST detect property usages where property aliases for the associated variable's type were not found in any WSDL directly imported by the BPEL process.
	Section 7.3

	SA00008
	The name of a variable MUST be unique amongst the names of all variables defined within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 8.1

	SA00009
	When XPath 1.0 is used as an expression or query language in BPEL, with the exception of propertyAlias definitions, there is no context node available. Therefore the legal values of the XPath Expr (http://www.w3.org/TR/xpath#NT-Expr) production must be restricted in order to prevent access to the context node.

Specifically, the "LocationPath" (http://www.w3.org/TR/xpath#NT-LocationPath) production rule of "PathExpr" (http://www.w3.org/TR/xpath#NT-PathExpr) production rule MUST NOT be used when XPath is used as an expression or query language (except in the case of propertyAlias which is covered separately). The previous restrictions on the XPath Expr production for the use of XPath as an expression language MUST be statically enforced.
	Section 8.2.4

	SA00010
	Expression or query language should ensure that the returned value of a query language expression is an lvalue. Specifically, when XPath is used as a query language the XPath MUST begin with a "VariableReference" and this restriction MUST be statically enforced.
	Section 8.2.4

	SA00011
	The arguments to all XPath functions defined in this specification MUST be given as quoted strings. The previous requirement MUST be statically enforced. It is therefore illegal to pass into a BPEL XPath function any XPath variables, the output of XPath functions, a XPath location path or any other value that is not a quoted string. This means, for example, that getVariableProperty("varA","propB") meets the previous requirement while getVariableProperty($varA, string(getVariableProperty("varB","propB")) does not. Note that the previous requirement institutes a restriction which does not exist in the XPath standard.
	Section 8.3

	SA00012
	For the bpws:doXslTransform() XPath 1.0 extension function, as described below
Object bpws:doXslTransform(String, node-set, (String, Object)*)

· The first parameter (an XPath String) provides a URI naming the style sheet to be used by the WS-BPEL processor. This MUST take the form of a string literal. This constraint MUST be enforced by static analysis.

	Section 8.4

	SA00013
	For the bpws:doXslTransform() XPath 1.0 extension function, as described below
Function Syntax:

Object bpws:doXslTransform(String, node-set, (String, Object)*)
The optional parameters after the second parameter MUST appear in pairs, as follows. (Use of these values is explained below.)

· Firstly an XPath String parameter, which provides the qualified name of an XSLT parameter

· Secondly an XPath Object parameter, providing the value for the named XSLT parameter.

The WS-BPEL processor MUST enforce the pairing of these parameters by static analysis (i.e., an odd number of parameters must cause a static analysis error). Note that the second member of each pair can be an XPath Expr; this is an exception to the restriction of XPath arguments to string literals given in section 8.3 Expressions.
	Section 8.4

	SA00014
	For the bpws:doXslTransform() XPath 1.0 extension function, as described below
Function Syntax:

· Object bpws:doXslTransform(String, node-set, (String, Object)*)
For the third and subsequent parameters, XSLT global parameters ([XSLT 1.0], section 11.4) are used to pass additional values from the BPEL process to the XSLT processor. These optional parameters for doXslTransform function come in the form of name-value pair in the argument list, as described in section 8.4 above. They are used to identify the XSLT global parameters by qualified name, and to supply values for the named global parameters. The global parameter names MUST be string literals conforming to the definition of QName in [Namespaces in XML] section 3, and these constraints MUST be enforced by static analysis.
	Section 8.4

	SA00015
	This fault code is related to replacement logic of copy operation. When the keepSrcElementName attribute is explicitly set, the selection results of the from-spec and to-spec MUST be elements. A BPEL processor MAY enforce this checking through static analysis of the expression/query language. If a violation is detected during runtime, a bpws:selectionFailure fault MUST be thrown
	Section 8.4.2

	SA00016
	The name of a correlation set MUST be unique amongst the names of all correlation sets defined within the same immediately enclosing scope. This requirement MUST be statically enforced. It is possible to "hide" a correlation set in an outer scope by declaring a correlation set with an identical name in an inner scope.

	Section 9.1

	SA00017
	The pattern attribute of invoke is only allowed for request-response operations, and disallowed when a one-way operation is invoked. Any violation of this rule MUST be detected during static analysis.
	Section 9.2

	SA00018
	The name of a named activity MUST be unique amongst all named activities present within the same immediately enclosing scope. This requirement MUST be statically enforced.
	Section 10.1

	SA00019
	If a reply activity cannot be associated with an incomplete receive activity by matching the tuples then this requirement MAY be caught during static analysis. If this is not caught during static analysis then at runtime bpws:missingRequest fault MUST be thrown within the BPEL process on the reply activity. Because conflicting requests should have been rejected at the time inbound message activity is executed, there cannot be more than one corresponding inbound message activity at the time <reply> is executed.
	Section 10.4

	SA00020
	A link’s name MUST be unique amongst all link names defined within the same immediately enclosing flow. This requirement MUST be statically enforced.

	Section 11.6

	SA00021
	It is illegal for a link to have an activity as a target if the source activity of the link is an ancestor of the target activity of the link. This requirement MUST be statically enforced.

	Section 11.6.1

	SA00022
	For the <forEach> activity, <branches> is an integer value expression which is used to define condition of flavor N out of M. The actual value of the expression is calculated at the beginning of the forEach activity. It will not change as the result of the forEach execution. At the end of execution of each directly enclosed activity the number of completions is checked against this value. This condition has "at least N out of M" semantics. (The exact N out of M condition semantics involves resolving racing condition among directly enclosed activities.)

If the integer value is larger than the number of directly enclosed activities, then bpws:invalidBranchCondition fault MUST be thrown. Note that the number of branches may be known only during runtime in some cases. Static analysis MAY be used to detect this erroneous situation at design time when possible. (For example, when the branches expression is a constant.)

	Section 11.7

	SA00023
	The value of the scope attribute on a compensate activity MUST NOT resolve to the name of a scope nested immediately inside a handler. This rule MUST be statically enforced.
	Section 12.3.3

	SA00024
	All scopes and activities directly nested in a scope (i.e. not within a nested scope) MUST be uniquely named. If the value of the target attribute specified on a compensateScope activity does not resolve to a unique scope or activity name in the same scope as the compensateScope activity, the BPEL definition MUST be rejected from processing. This requirement MUST be statically enforced.
	Section 12.3.3

	SA00025
	If a scope is nested inside of a fault handler then the scope’s compensation handler is available only for the lifetime of the enclosing fault handler. If the fault handler is left then any installed compensation handlers within it are uninstalled. Especially, a root scope nested inside a fault handler cannot have a compensation handler associated because it is not reachable at all from anywhere within the process. Therefore, the root scope inside a fault handler MUST not have a compensation handler. This rule MUST be statically enforced.
	Section 12.3.4.3

	SA00026
	If a scope is nested inside a compensation handler then the scope’s compensation handler is available only for the lifetime of the enclosing compensation handler. It can be used to ensure “all or nothing” semantics for compensation handlers, but not for reversing the work of a successfully completed compensation handler. If the compensation handler completes successfully then any installed compensation handlers for scopes nested within it are uninstalled. Especially, a root scope nested inside a compensation handler cannot have a compensation handler associated because it is not reachable at all from anywhere within the process. Therefore, the root scope inside a compensation handler MUST not have a compensation handler. This rule MUST be statically enforced.
	Section 12.3.4.4

