Web Service Conversations

A conversation is a bi-directional communication between two or more parties. The most important attribute of a conversation is it’s context. For example, if you and a friend are deciding on which restaurant to eat at, then each of you will make suggestions for restaurants; however, knowing the context of the conversation is critical to participating. The conversation would be chaotic and useless if each party each has their own context. For example, if your context was deciding where to eat and your friend’s context was restaurants that were too expensive for them, then the suggestions your friend makes would be deemed by you to be their choice where to eat.

Another example that illustrates the importance of context can be seen in the Instant Messaging world. If you’ve ever used Instant Messaging to hold a conversation, the time lag between entries can wreak havoc on context. The other party might be answering a question you asked earlier during which time you had posted another question. Following the thread can often times be confusing or otherwise get lost in the space between messages.

When you are designing applications using Web Services, one of the design criteria you will have to decide on is whether or not to use conversations. While this may seem a simple enough decision, the choice will impact the technologies used to implement your Web Service and how interoperable it is with Web Service clients.

The Purpose of Conversations in Web Services

The reason to use (or not use) conversations in your Web Services is directly related to the implementation of the Web Service. There seems to be a pattern among those that have designed distributed object solutions to think of Web Services as just another remote procedure call interface, such as CORBA or DCOM. Indeed, many Web Services will be implemented on a distributed object infrastructure, such as Enterprise Java Beans. However, Web Services are not remote objects. Indeed, while a Web Service can support multiple interfaces, a Web Service differs from a remote object in that each interface is an individual service. Invocation by the same client to a multiple services does not immediately imply that the service should, or will, track state across those invocations.

This pattern does not only occur with distributed object developers, but also those that have experience developing Web applications. Because Web Services are most often deployed in application servers and use an HTTP interface, there is a natural inclination to believe that the Web Service will automatically inherit the session capabilities of the application server. Again, this assumption is an incorrect one as Web Services can also be bound to Simple Mail Transfer Protocol (SMTP) in which no such capabilities exist.

Conversations may be useful is in designing data services, such as query support or database access. Having to allocate a connection to the database for every invocation adds overhead to the application (even if the database connections are pooled). Requiring the client to first generate a connection across invocations seems like a reasonable method of overcoming this hurdle, but realize the downside to this may be connections left open waiting to timeout and you will have to implement a Web Service conversation scheme.

Finally, the need for managing conversations is critical in the business-to-business application world. Here, business documents are sent and acknowledged in an asynchronous manner, with sometime more than one type of document being referenced to the original invocation.

This leads us to explore Web Services designs and to answer the question, “Should a Web Service track context across invocations from the same client?”

Coarse- or Fine-grained Web Services

Coarse- or fine-grained Web Services is an architectural debate; especially with issue to managing context across multiple invocations. Some Web Services architects that are fully immersed in the paradigm—that is, they are not simply interfacing existing Web applications or distributed object solutions—would argue that a Web Service that requires managed context is improperly designed. These architects believe that because a Web Service interface is an independent entity, that it should be self-contained and coarse-grained. This means that any data required for processing should be provided at the time of invocation and there should be no assumptions that any Web Service invocation has a relationship to any other invocation.

The need to manage context across invocations does illustrate that the Web Service designer has implemented a fine-grained model—one that mimics closely the remote object or Web application design. An example of this is the good old shopping cart application. As a user moves between pages of a Web site and selects items for purchase, a message is sent to the Web application that captures this information for downstream processing. This is all based on the server managing context through either browser-based cookies or application server sessions. In this particular example, the function to put an item in the cart is exposed on the server, but it needs the context of the shopping cart in order for the function to operate properly.

How Conversations Are Handled Today

There may be many methods of implementing managed context in Web Services, but the two most prevalent are the cookies and the conversation identifier. The cookies approach is indicative of the fact that Web Services are most often deployed inside of an application server. Therefore, each invocation of service can return a cookie to the client that becomes the basis for matching internal sessions with client invocations.

The first issue regarding using cookies is that there is an implication that the Web Service is only bound to the HTTP protocol. If this is an acceptable assumption, another problem that can arise from using the cookie method is that it assumes that the client is capable of accepting cookies. If your company or you ever shut off cookie support in your browser you’ve seen the impact that it has when surfing the Web. The same result applies when cookies aren’t supported by the Web Service client. Additionally, it can be very difficult to diagnose this problem, as it is not stated as part of the Web Service Description Language that cookies must be supported in order to use a particular service. Hence, invocations of Web Services fail when they seem they should be operating properly.

The second primary method of managing context across invocations is the context identifier. This is a unique identifier that gets associated with an invocation response—usually in the SOAP header—and it becomes the client’s responsibility to capture that context identifier and make sure it is included in all future communications with that Web Service from the client. This particular method is even more rarely supported today by Web Service clients than cookies are making it particularly difficult to use a service that is implemented in this manner today.

Conclusion

Web Services conversations are a design decision. Given the lack of standardization around this area today, the recommendation would be to develop coarse-grained Web Services and deal with any performance overhead rather than risk being incompatible with the large base of emerging Web Services tools. At time of this writing, the W3C Web Services Architecture Working Group has identified conversations as a requirement for Web Services architecture, but has yet to provide a definitive direction. However, BEA Systems is a strong proponent of the conversation identifier methodology, which could lead to a greater focus on solving this problem.

JP Morgenthal is Chief Services Architect for SoftwareAG, a leading supplier of products and solutions for the XML marketplace. He is the author of "Enterprise Application Integration with XML and Java". JP is also a leading authority on distributed application development, including Web Services, EII, EAI, B2B, and SCM.

1

