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Abstract

This paper proposes a solution based on forward error
recovery, oriented towards providing dependability of com-
posite Web services. While exploiting their possible support
for fault tolerance (e.g., transactional support at the level
of each service), the proposed solution has no impact on
the autonomy of the individual Web services, Our solution
lies in system structuring in terms of co-operative atomic
actions that have a well-defined behaviour, both in the ab-
sence and in the presence of service failures. More specifi-
cally, we define the notion of Web Service Composition Ac-
tion (WSCA), based on the Coordinated Atomic Action con-
cept, which allows structuring composite Web services in
terms of dependable actions. Fault tolerance can then be
obtained as an emergent property of the aggregation of sev-
eral potentially non-dependable services. We further intro-
duce a framework enabling the development of composite
Web services based on WSCAs, consisting of an XML-based
language for the specification of WSCAs.

1 Introduction

Systems that build upon the Web services architecture
are expected to become a major class of wide-area open
distributed systems in the near future. The Web services
architecture targets the development of applications based
on XML-based standards, hence easing the development of
distributed systems through the dynamic integration of ap-
plications distributed over the Internet, irrespective of their
underlying platforms. However, the provision of effective
support for the dependable integration of Web services is
still an open issue, which has led to tremendous research
effort over the last few years, in both industry and academia
(e.g., [1, 3, 9, 12, 13, 23]).

1.1 Composition of Web services

Although the definition of the overall Web services ar-
chitecture is still incomplete, the base standards have al-
ready emerged from the W3C1, which define a core mid-
dleware for Web services, partly building upon results from
object-based and component-based middleware technolo-
gies. These standards relate to the specification of Web ser-
vices and a supporting interaction protocol. SOAP (Simple
Object Access Protocol) defines a lightweight protocol for
information exchange that sets the rules of how to encode
data in XML as well as the SOAP mapping to an Internet
transport protocol (e.g., HTTP) [18]. Specification of Web
service interfaces relies on the WSDL (Web Services De-
scription Language) [19] declarative language that is used
to specify: (i) the service’s abstract interface that describes
the messages exchanged with the service, and (ii) the con-
crete binding information that contains specific protocol-
dependent details including the network end-point address
of the service. Complementary to the above core middle-
ware for the integration of Web services is UDDI (Univer-
sal Description, Discovery and Integration); this specifies a
registry for dynamically locating and advertising Web ser-
vices [14].

Composing Web services relates to dealing with the as-
sembly of existing services so as to deliver a new service out
of them, given the corresponding published interfaces (see
Figure 1). Integration of Web services is then realized ac-
cording to the specification of the overall process compos-
ing the Web services. The process specifying the composi-
tion must actually not solely define the functional behaviour
of the process in terms of interactions with the composed
services, but also the process’s non-functional properties,
possibly exploiting middleware-related services. Various
non-functional properties (e.g., availability, extendibility,
reliability, openness, performance, security, scalability)
should be accounted for in the context of Web services.

1World Wide Web Consortium, http://www.w3.org
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Figure 1. Web services and their composition

However, enforcing dependability of composite Web ser-
vices is one of the most challenging issues due to the con-
cern for supporting business processes, combined with the
fact that the composition process deals with the assembly of
loosely-coupled autonomous components.

1.2 Dependability of composite Web services

In general, Web services run on heterogeneous plat-
forms, and are autonomous components with different char-
acteristics (e.g., transactional supports, concurrency poli-
cies, access rights). Moreover, Web services can use dif-
ferent transport protocols (e.g., HTTP, SMTP) and interact-
ing with them requires dealing with limitations of the In-
ternet, which is not a reliable media [7]. In addition, avail-
ability is a major issue in addressing dependability in Web
service applications. Web services may be unavailable for
an unknown reason and for an unknown amount of time.
Moreover, the overall network status and server loads may
cause extensively long delays on responses from Web ser-
vice servers.

Composite Web services have high dependability re-
quirements that call for dedicated fault tolerance mecha-
nisms due to both the specifics of the Web services archi-
tecture and limitations of the Internet. The autonomy of
component Web services raises challenging issues in speci-
fying composition processes and in particular behaviour of
composite services in the presence of faults. These faults in-
clude but are not limited to (i) faults occurring at the level of
the Web services, which may be notified by error messages,
(ii) faults at the underlying platform (e.g., hardware faults,
timeouts), and (iii) faults due to online upgrades of compo-
nent services and/or of their interfaces. These specifics of
Web services require special care in the design of support-
ing fault tolerance mechanisms, which is the focus of our
paper.

1.3 Contributions

This paper introduces a solution based on forward er-
ror recovery, for making composite Web services fault tol-
erant. The proposed solution has no impact on the auton-
omy of the individual Web Services, while exploiting their
possible support for fault tolerance (e.g., transaction sup-
port at the level of each service). We define the notion of
Web Service Composition Action (WSCA), which allows
structuring composite Web services in terms of coordinated
atomic actions that have a well-defined behaviour, both in
the absence and in the presence of service failures. We then
introduce an XML-based language for the specification of
WSCAs. The language is used to define fault tolerant com-
posite Web services and provides the application logic.

Section 2 presents proposed fault tolerance mecha-
nisms for composite Web services, identifying limitations
of mechanisms based on backward error recovery. This
leads us to introduce Web Services Composition Actions
(WSCA) for structuring the composition of Web services
into fault tolerant functional units in Section 3. The as-
sociated development process and deployment of compos-
ite Web services is described in Section 4. Section 4.2
then defines the XML-based WSCA Language (WSCAL)
to be used for specifying Web services composition based
on WSCA, which may further be exploited for the auto-
matic generation of the implementation of composite ser-
vices. Finally, Section 5 summarises our contribution, and
discusses our current and future work.

2 Fault tolerance mechanisms for Web ser-
vices

The choice of fault tolerance techniques to be exploited
for the development of dependable systems depends very
much on the fault assumptions and on the system’s charac-
teristics and requirements (Section 2.1). Developing fault
tolerant mechanisms for composite Web services has been
an active area of research over the last couple of years
(see [16] for a survey). Existing proposals mainly exploit
backward error recovery, and more specifically, transactions
(Section 2.2). However, the autonomy of Web services and
the Web latency have led to exploit more flexible transac-
tional models and forward error recovery techniques (Sec-
tion 2.3).

2.1 Backward versus forward error recovery

There are two main classes of error recovery [8]: back-
ward (based on rolling system components back to the pre-
vious correct state) and forward error recovery (which in-
volves transforming the system components into any cor-
rect state). The former uses either diversely-implemented
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software or simple retry; the latter is usually application-
specific and relies on an exception handling mechanism [4].

It is a widely-accepted fact that the most beneficial way
of applying fault tolerance is by associating its measures
with system structuring units as this decreases system com-
plexity and makes it easier for developers to apply fault tol-
erance [15]. Structuring units applied for both building dis-
tributed systems and providing their fault tolerance are well-
known: they aredistributed transactionsandatomic actions
(also referred to as conversations). Distributed transactions
[5] use backward error recovery as the main fault toler-
ance measure in order to satisfy completely or partially the
ACID (atomicity, consistency, isolation, durability) proper-
ties. Atomic actions [2] allow programmers to apply both
backward and forward error recovery. The latter relies on
coordinated handling of action exceptions that involves all
action participants. Backward error recovery has a lim-
ited applicability, and in spite of all its advantages, modern
systems are increasingly relying on forward error recovery,
which uses appropriate exception handling techniques as a
means [4]. Examples of such applications are complex sys-
tems involving human beings, COTS components, external
devices, several organizations, movement of goods, opera-
tions on the environment, real-time systems that do not have
time to go back. Integrated Web services clearly falls into
this category.

2.2 Backward error recovery for the Web

Transactions have been proven successful in enforcing
fault tolerance in closed distributed systems and are exten-
sively exploited for the implementation of primitive (non-
composite) Web services. However, transactions are not
suited for making the composition of Web services fault tol-
erant in general, for at least two reasons. First, the manage-
ment of transactions that are distributed over Web services
requires cooperation among the transactional supports of in-
dividual Web services, which may not be compliant with
each other and may not be willing to do so given their in-
trinsic autonomy and the fact that they span different ad-
ministrative domains. Second, locking resources until the
termination of the embedding transaction is in general not
appropriate for Web services, still due to their autonomy,
and also to the fact that they potentially have a large number
of concurrent clients that will not stand extensive delays.

Enhanced transactional models have been considered to
alleviate the latter shortcoming. In particular, the split
model (also referred to as open-nested transactions) where
transactions may split into a number of concurrent sub-
transactions that can commit independently allows reduc-
ing the latency due to locking. Typically, sub-transactions
are matched to the transactions already supported by Web
services (e.g., transactional booking offered by a service).

Hence, transactions over composite services do not increase
the access latency as offered by the individual services. En-
forcing the atomicity property over a transaction that has
been split into a number of sub-transactions then requires
using compensation over committed sub-transactions in the
case of transaction abortion. However, to support this, Web
services should provide compensating operations for all the
operations they offer. Such an issue is in particular ad-
dressed by the BPEL4WS [9] and WSCI [20] languages
for specifying services, which allow defining compensat-
ing operations associated with the services’ operations. It
is worth noting that using compensation for aborting dis-
tributed transactions must extend to all the participating
Web services (i.e., cascading compensation by analogy with
cascading abort). Such a concern is addressed in [12]. This
paper introduces a middleware whose API may be exploited
by clients of a composite service for specifying and execut-
ing a (open-nested) transaction over a set of Web services
whose termination is dictated by the outcomes of the trans-
actional operations invoked on the individual services.

In addition to client-side solutions to the coordination
of distributed open-nested transactions, work is undertaken
in the area of distributed transaction protocols supporting
the deployment of transactions over the Web, while not
imposing long-lived locks over Web resources. These in-
clude BTP (Business Transaction Protocol) [13] and WS-
Transaction [11]. The BTP protocol introduces the notion
of cohesion, which allows non-ACID transactions to be de-
fined by not requiring successful termination of all the trans-
action’s participants for committing.

WS-Transaction defines a specialization of WS-
Coordination [10], which is an extensible framework for
specifying distributed protocols that coordinate the execu-
tion of Web services, and that can be used in conjunction
with BPEL4WS. Thebusiness activityprotocol defined
in WS-Transaction specifically serves coordinating the
execution of open-nested transactions over a set of business
processes.

2.3 Forward error recovery for the Web

In addition to backward error recovery, forward error
recovery, using exception handling mechanisms, is exten-
sively exploited in the specification of composite Web ser-
vices in order to handle error occurrences. For instance, in
BPEL4WS [9], exception handlers (referred to as fault han-
dlers) can be associated to a (possibly nested) activity so
that when an error occurs inside an activity, its execution
terminates, and the corresponding exception handler is exe-
cuted. However, when an activity is defined as a concurrent
process and at least one embedded activity signals an excep-
tion, all the embedded activities are terminated as soon as
one signaled exception is caught, and only the handler for
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this specific exception is executed. Hence, error recovery
actually accounts for a single exception and thus cannot en-
sure recovery of a correct state. The only case where correct
state recovery may be ensured is when the effect of all the
aborted activities are rolled back to a previous state, which
may not be supported in general in the context of Web ser-
vices, as discussed in the previous section. The shortcom-
ing of BPEL4WS actually applies to all XML-based lan-
guages for Web services composition that integrate support
for specifying concurrent activities and exception handling.

3 Web service composition actions

Our solution to the above shortcoming of forward error
recovery approaches for composite Web services is based
on the notion ofcoordinated atomic actionsthat provides
a sound basis for dealing with concurrent exceptions (Sec-
tion 3.1). However, the notion requires to be adapted to
cope with the fault model (Section 3.2) and the specifics
of Web services, leading to introduce WSCA (Section 3.3).
Illustration of using WSCA is further illustrated using the
classicaltravel agencycase study (Section 3.4).

3.1 Coordinated atomic actions

The Coordinated Atomic Action (or CA action) concept
[21] is a unified scheme for coordinating complex concur-
rent activities and supporting error recovery between multi-
ple interacting components. It provides a conceptual frame-
work for dealing with different kinds of concurrency and
achieving fault tolerance by extending and integrating two
complementary concepts – atomic actions and ACID trans-
actions. Atomic actions are used to control cooperative
concurrency and to implement coordinated error recovery
whilst ACID transactions are used to maintain the consis-
tency of shared resources. A CA action is designed as a set
of participantscooperating inside it and a set of resources
accessed by them (see Figure 2).
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Figure 2. Coordinated atomic actions

In the course of the action,participantscan access ex-
ternal resources that have ACID properties. Actionpartici-
pantseither reach the end of the action and produce a nor-
mal outcome and commit transactions on external resources
or, if one or more exceptions are raised, all theparticipants
are involved in their coordinated handling. If several excep-
tions have been raised concurrently, they are resolved using
a resolution tree imposing a partial order on all action ex-
ceptions, and all theparticipantshandle the resolved excep-
tion [2]. If this handling is successful, the action completes
normally, but if handling is not possible then an exception
is propagated and responsibility for recovery is passed to
the caller of the action, while transactions on all external
resources are aborted. A formal specification of CA actions
can be found in [17].

3.2 Fault model of Web services

The CA action concept for tolerating faults is based on
exception handling. It requires the detection of faults, and
the mapping of these faults to anticipated exceptions for
which handlers are to be defined. Several kinds of errors
can occur during the execution of a composite Web ser-
vice and can be detected at the composition level. These
faults relate to: (i) system faults like crashes, timeouts or
network errors that can be detected by specialized moni-
tors that generate exceptions at the application level, and (ii)
application-level faults. The latter includes a broad range of
errors like system exceptions, programmed exceptions, ex-
ceptions propagated from other participants, fault messages
that are received from SOAP calls and transport level faults
(e.g., HTTP errors). Note that the semantics of exceptions
is application-dependant. For instance, a timeout does not
necessarily mean that a remote system has crashed, and an
application-specific handler must be provided to handle this
kind of error.

3.3 Adapting CA actions for the Web

CA actions provide a base structuring mechanism for de-
veloping fault tolerant composite Web services: a CA action
specifies the collaborative realization of a given function by
composed services, and Web services correspond to exter-
nal resources. However, as raised previously, ACID proper-
ties over external resources are not suited in the case of Web
services. We therefore introduce the notion of Web Service
Composition Action (WSCA) that adapts CA actions to the
specifics of Web services. WSCAs mainly differ from CA
actions in relaxing the transactional requirements over ex-
ternal resources, which are not suitable for wide-area open
systems.

WSCA participants specify interactions with composed
Web services, stating the role of each Web service in the
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composition. Each Web service is viewed as an external
resource. However, unlike the base CA action model, in-
teractions do not have to be transactional. The interactions
adhere to the semantics of the Web service operations that
are invoked. An interaction may then be transactional if the
given operation that is called is. However, transactions do
not span multiple interactions.

Every WSCA participant further specifies actions to be
undertaken when the Web services with which it interacts
signal an exception, which may be either handled locally
to the participant (system-level exceptions or programmed
exceptions signaled by Web services operations that do not
need to be cooperatively handled at the WSCA level) or be
propagated to the level of the embedding WSCA. The latter
then leads to co-operative exception handling according to
the exceptional specification of the WSCA. When Web ser-
vices offer compensating operations, the resulting forward
recovery may realize a relaxed form of atomicity. If oper-
ations are compensated, the action itself will be atomic in
the sense that it will restore its initial state, assuming that
the compensating operations succeed. However, the exter-
nal actions that accessed the service in an intermediate state
might have invalidated values.

Compared to solutions that primarily rely on transac-
tional supports for composite Web services, ours mainly
differs in that it exploits forward error recovery at the com-
position level, while enabling exploitation of transactional
supports offered by individual Web services, –if any. For
many applications, the strict requirement for transactional-
ity can indeed be substitued by the optional mechanisms
offered by the underlying services. These concern services
offering compensating operations. Hence, the underlying
protocol for interaction among Web services remains the
one of the Web services architecture (i.e., SOAP) and does
not need to be complemented with a distributed transaction
protocol. Similarly to our solution, the one of [12] does
not require any new protocol to support distributed open-
nested transactions. An open-nested transaction is declared
on the client side by grouping transactions of the individ-
ual Web services, through call to a dedicated function of the
middleware running on the client. The transaction then gets
aborted by the middleware using compensation operations
offered by the individual Web services, according to con-
ditions set by the client over the outcomes of the grouped
transactions. Our solution is then more general since we al-
low forward error recovery involving several Web services
to be specified at the composition level, enabling in partic-
ular to integrate non-transactional Web services while still
supporting dependability of the composite service. Fault
tolerance can then be obtained as an emergent property of
the aggregation of some potentially non-dependable ser-
vices, based on the detection of faults and their mapping
to application-dependant exceptions.

3.4 WSCA example: the travel agency

For illustration of WSCA, we consider joint booking of
accommodation and flights using separate hotel and flight
Web services. Then, the composite Web service’s opera-
tion is specified using WSCAs as follows. The top-level
TravelAgentWSCA comprises theUserand theTravelpar-
ticipants; the former interacts with the user while the lat-
ter achieves joint booking according to the user’s request
through call to the WSCA that composes theFlight and
theHotel participants. A diagrammatic specification of the
aforementioned WSCAs is shown in Figure 3.

reservation

coordinated exception

JointBooking WSCA

book
request

User

Travel

Flight

Hotel

TravelAgent WSCA
handling involving the user

bookreservation
Flight Web Service

Hotel Web Servicecancel

cancelled

unavailable
Hotel

book

unavailable

Figure 3. WSCA for composing Web services

In theTravelAgentWSCA, theUserparticipant requests
the Travel participant to book a flight ticket and a hotel
room for the duration of the given stay. This leads the
Travel participant to invoke theJointBookingWSCA that
composes theHotel Web service and theFlight Web ser-
vice. The participants of theJointBookingWSCA respec-
tively requests for a hotel room and a flight ticket, given the
travel itinerary and dates provided by the user. Each request
is subdivided into reservation for the given period and sub-
sequent booking if the reservation succeeds. If both theHo-
tel and theFlight participants raise theunavailableexcep-
tion, then concurrent exception resolution applies, leading
theJointBookingWSCA to signal an exception to theTravel
participant of theTravelAgentWSCA, where the exception
gets handled in a cooperation with theUserdenoted by the
greyed box in the figure (e.g., the user is requested to give
alternative dates). In the case where either the reservation
or the booking of one of the participants fails, the partici-
pant raises an exception (unavailableHotelin the example)
that is cooperatively handled at the level of theJointBooking
WSCA. If one participant has already confirmed a reserva-
tion, the booking that has succeeded is cancelled and anun-
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availableexception is signaled to the callingTravelAgent
WSCA for recovery with user intervention (see Figure 3).
Note that if the handling fails and the cancellation is not
possible, the exception that is signaled is a failure exception
sent to the calling WSCA with sufficient information about
failed operations for later recovery.

4 Building WSCA-based composite services

Given the notion of WSCA, composite Web services are
built by specifying their operations as WSCAs. The Web
services that are composed are further declared in an ab-
stract way to enable more flexible integration of different
Web service instances through dynamic binding.

4.1 Composition process

The development process of a WSCA-based composite
service comprises the definitions of: (i) the required abstract
interfaces of the composed Web services that are to be inte-
grated, and (ii) the composition process that gives the bind-
ing information as well as the WSCAs’ standard and excep-
tional behaviours.

Required interfaces of components services to be inte-
grated are declared. The abstract interface of any such ser-
vice is given in terms of WSDL (limited to the abstract
part), which defines the messages exchanged with the Web
service. The service interface is further enriched with the
characterization of the service’s transactional behaviour if
offered, in a way similar to existing solutions in the area
(e.g., [12],[20]).

The composition process of WSCA-based composite
services is expressed as an independent XML document,
which specifies the service instances to be integrated to-
gether with provided WSCAs, as detailed in Section 4.2.
The Web service instance associated to a given composed
service may be either statically set or dynamically retrieved
according to the service’s abstract specification. The only
requirement that is demanded from the Web service in-
stances is the conformance of their interfaces with the de-
clared required interfaces. In the most general case, the
conformance is verified by syntactically checking WSDL
documents of Web services. To provide availability, we al-
low a participant to be bound to a set of Web service in-
stances implementing the service’s specification. WSCAs
define the operations provided by the composite Web ser-
vice. The definition of a WSCA specifies the behaviour of
the WSCA’s participants including the exception handlers
that are executed when an exception occurs.

The WSCA-based composite services are deployed as
Web services on top of a base Web service middleware
(see Figure 4). Services that provide some WSCA com-
posite services, are referenced in a UDDI Web services reg-

istry for client use. Given base middleware for Web ser-
vices, supporting the deployment of WSCA-based compos-
ite Web services requires in addition, a local runtime sup-
port for running WSCAs. The runtime support should in-
clude mechanisms for WSCA creation, synchronization of
participants, exception detection and propagation, and dy-
namic binding of Web services.
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Figure 4. WSCA deployment

4.2 Specifying composite services

This section introduces an XML-based language for
the specification of WSCA-based composite Web services,
which defines the graph of interactions among Web ser-
vices. The actual implementation of the service composi-
tion may then be decoupled from the specification of the
composition process, leaving under the responsibility of the
developer to check that his/her implementation conforms to
the service’s specification. Alternatively, the implementa-
tion may be generated from the specification.

The specification of a composite Web service is given
by the WSCAL (Web Service Composition Action Lan-
guage) XML-based language which includes declarations
of the service instances and the behaviour of the supported
operations:

<WSCAL name=nmtoken>
<services>

Detailed below
</ services>
<WSCA operation=nmtoken exceptionTree=anyURI>*

Detailed below
</ WSCA>

</ WSCAL>
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4.2.1 Service instances

The service instances are given through theserviceselement
that refers to the corresponding abstract interfaces of com-
posed Web services:

<services>
<service name=qname>*

<definition hrefSchema=anyURI />
<staticService instance=anyURI />* |
<dynamicService onCall=boolean multiple=boolean />?

</ service>
</ services>

Each service may be statically bound to a specific service
instance (defined by thestaticServiceelement) and/or dy-
namically bound to an instance matching the abstract defini-
tion of the service interface that is given by the correspond-
ing definitionattribute (defined by thedynamicServiceele-
ment). In the former case, concrete binding information is
provided through the WSDL document associated with the
service’s instance. In the latter case, a matching service in-
stance is located at runtime using a location service such as
a UDDI service. Dynamic binding of participants with as-
sociated Web services may take place either upon first invo-
cation of the service’s WSCAs or upon instantiation of the
composite Web service, according to the value of theon-
Call Boolean attribute of the given participant. Finally, we
allow each service to be bound to a set of instances match-
ing the specification of the associated service rather than a
single instance for the sake of availability; this is specified
using themultipleBoolean attribute in theDynamicService
element and by stating as many instances as required with
thestaticServiceelement. Then, a unique Web service that
is available is chosen for the whole WSCA at the first in-
vocation of the corresponding service. Note that if the Web
service becomes unavailable, an exception is raised and an-
other Web service can be chosen if it is explicitly specifed
in the corresponding handler.

A sample of theserviceselement for theTravelAgent
composite service is given below, which directly follows
from the informal presentation of Section 3.4. The service
in particular offers theJointBookingWSCA that coordi-
nates booking over theHotel andFlight Web services, for
which instances are dynamically retrieved upon invocation
of the WSCA.

<services>
<service name=‘‘UserBrowser’’>

<definition hrefSchema=‘‘http://ta.com/TAUser.req’’/>
<staticService instance=‘‘http://ta.com/Client.wsdl’’/>

</ service>
<service name=‘‘FlightService’’>

<definition hrefSchema=‘‘http://ta.com/Flight.req’’/>
<dynamicService onCall=true multiple=true />

</ service>
<service name=‘‘HotelService’’>

<definition hrefSchema=‘‘http://ta.com/Hotel.req’’/>
<dynamicService onCall=true multiple=true />

</ service>
</ services>

4.2.2 WSCA behaviour

The behaviour of the operations offered by the composite
service is defined by theWSCAelement:

<WSCA operation=nmtoken exceptionTree=anyURI>*
<participant name=nmtoken>*

<bind service=qname/>*
<input name=nmtoken ? message=qname/>
<output name=nmtoken ? message=qname/>
<fault name=nmtoken message=qname/>*
<state>?

<xsd: schema .../>*
</ state>
<behavior>

<standard>
Statements ...

</ standard>
<coordinatedHandler exception=qname>*

Statements ...
</ coordinatedHandler>

</ behavior>
</ participant >

</ WSCA>

In the above, theoperationattribute gives the name of
the operation being specified and theexceptionTreeattribute
gives the XML document of the corresponding exception
resolution tree. The exception tree is used to resolve the ex-
ceptions that are concurrently raised within WSCAs into a
single exception, in a way similar to CA actions. Then, a
sequence ofparticipantelements are declared, each speci-
fying:

� The serviceswith which the WSCA participant inter-
acts through thebind element that gives the name of
the services among those defined by theserviceele-
ments in the embeddingserviceselement.

� Parts of the messagesassociated with the WSCA that
are relevant to the specific participant, which is defined
using theinput, outputandfaultelements. Thefaultel-
ements define the exceptions that may be raised by the
participants, which require cooperative exception han-
dling and get composed with the exceptions concur-
rently raised by peer participants using the exception
tree.

� The local stateof the specific participant through the
stateelement that defines the local variables.

� The behaviour of the specific participant using the
behaviorelement. The participant behaviour subdi-
vides into the participant’s standard and exceptional
behaviour (as defined by thestandardandcoordinat-
edHandlerelements). Each such behaviour is defined
as a process using classical statements, including in
particular interaction with the Web service instance(s)
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associated with the participant, message exchanges
with peer participants and exception handling.

WSCAL statements for specifying participants’ be-
haviour are quite similar to the ones introduced by XML-
based languages for the specification of composite services.
We more specifically base the definition of WSCAL on
the CSP language [6] for the base statements, providing a
sound basis towards formal reasoning about WSCAL spec-
ifications. We thus detail here only some base statements
of interests regarding WSCAs. Thecall statement allows
specifying (synchronous) operation calls where the invoked
operation may be either local to the embedding compos-
ite Web service or provided by the Web services to which
the participant is bound (which may be a WSCA if the ser-
vice is itself composite). Thereturn statement is the dual
statement allowing specifying the message to be returned
as partial result of the embedded operations, which is to be
merged with the results returned by peer participants. The
sendstatement allows specifying the sending of a message
to a peer participant whose dual reception may be expressed
using either the blockingwait or the non-blockingonInput
statement. Finally, theraisestatement allows signaling an
exception whose handling is specified using the traditional
try statement for defining exception handling scopes:

<try >
Statements ...

</ try >
<localHandler exception=qname>*

Statements ...
</ localHandler>

4.3 Coordinated exception handling

The specifics of WSCAL comes from structuring the op-
erations provided by composite Web services as WSCAs
that coordinate the execution of composed Web services
operations with respect to failure occurrences, in particu-
lar introducing the specification of coordinated exception
handling.

For eachparticipant, thefault elements define the excep-
tions that may be raised and require cooperative exception
handling. In addition, a default exception handler is defined
for exceptions that are not declared. When a participant
raises an exception, it is first handled locally by a local han-
dler, defined using thelocalHandlerelement, while other
participants continue their execution normally without be-
ing interrupted. If the local handler fails, or if such a handler
is not defined, the participant ultimately raises the excep-
tion, which is propagated to all participants, leading to co-
ordinated exception handling, defined using the correspond-
ing coordinatedHandlerelement. Participants synchronize
for execution of the coordinated exception handlers. That
means in particular that if a participant is engaged in a re-
mote call, all participants wait for the termination of this

call. In the case where several participants raise exceptions
which are concurrently propagated, then the exceptions are
resolved using the document defined in theexceptionTree
attribute, which imposes a partial order on all exceptions,
and all participants handle this unique exception. The ex-
ception is then handled cooperatively by participants that
can coordinate their execution in the same way as in the
standard behavior, i.e., by message passing, and they can
invoke external WSCAs if needed. The corresponding ex-
ception resolution algorithm can be found in [22].

The WSCA that executes a coordinated exception han-
dler terminates with one of the following outcomes [21]:

� Exceptional outcome:All external operations on Web
services and nested WSCAs are performed success-
fully (e.g., all transactions are validated). An exception
is signaled to the upper level.

� Abort outcome: The WSCA has aborted and all ex-
ternal operations are aborted or compensated accord-
ing to the transactional behavior of the accessed Web
services as specified in the service interface. An abort
exception is signaled to the upper level:

� Failure outcome: The handling has failed and exter-
nal operations cannot be aborted or compensated. This
can be due to a failure in performing the cancellation
operation or if such an operation is not defined. Re-
sponsibility for recovery is passed to the caller of the
action. A failure exception is signaled to the upper
level with information about failed operations:

Adopting the concept of coordinated exception handling
of CA actions allows dealing with different types of faults
in a disciplined way inside atomic units and partial results
of nested actions to be reported to the higher level action,
keeping error propagation under control.

4.4 The travel agency example

A sample of theparticipantelement specifying theHotel
participants behaviour is given below. An example entry of
the exception tree document is:

<resolve name=‘‘unavailable’’>
<exception name=‘‘unavailableHotel’’/>
<exception name=‘‘unavailableFlight’’/>

</ resolve>
<resolve name=‘‘unavailable’’>

<exception name=‘‘unavailableHotel’’/>
<exception name=‘‘cancelled’’/>

</ resolve>

Flight participants behavior is not detailed as it is
similar to the Hotel participant. Coordinated booking
is achieved as discussed in Section 3.4, exploiting in
particular open-nested transactions of participating Web
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services. The two participants of theJointBookingWSCA
have similar behaviour. The participant first invokes the
reserveoperation of the Web service to which it is bound
and then books the proposed selection –if any– through
call to book. Otherwise, theunavailable exception is
raised by the reservation operation, leading to retry an
alternative reservation, and ultimately propagating the
unavailableHotelexception for cooperative handling at
the level of the WSCA. Finally, cooperative handling of
unavailableHotelby the WSCA amounts to canceling the
performed booking by the peer participant –if any.

<WSCA operation=‘‘JointBooking’’
exceptionTree=‘‘http://ta.com/TAExcepTree.xml’’/>

<participant name=‘‘flight’’>
Not detailed, similar to hotel given below

</participant >

<participant name=‘‘hotel’’>
<bind service=‘‘HotelService’’/>
<input message=‘‘InputMsg’’ />
<output message=‘‘OutputMsg’’ />
<fault name=‘‘unavailableHotel’’ message=‘‘unvHotel’’/>
<state> Not detailed </ state>
<behavior>

<standard>
<try >

<comment text=‘‘Try reserve a room’’/>
<call service=‘‘HotelService’’ operation=‘‘reserve’’

input = ‘‘...’’ output = ‘‘...’’
fault = ‘‘unavailableHotel’’/>

<comment text=‘‘Book the room that was found’’/>
<call service=‘‘HotelService’’ operation=‘‘book’’

input = ‘‘...’’ output = ‘‘...’’
fault = ‘‘BookFailed’’/>

<comment text=‘‘Return booking information’’/>
<return element=‘‘...’’/>

</ try >

<localHandler exception=‘‘unavailableHotel’’>
Retry booking, propagates unavailableHotel
to all participants
(for coordinated error recovery) otherwise:
<raise exception=‘‘unavailableHotel’’/>

</ localHandler>
</ standard>

<coordinatedHandler exception=‘‘unavailableHotel’’>
<comment text=‘‘Signal exception to the caller’’/>
<raise exception=‘‘unavailableHotel’’/>

</ coordinatedHandler>

<coordinatedHandler exception=‘‘unavailableFlight’’>
<comment text=‘‘Compensate action’’/>
<try >

<call service=‘‘HotelService’’ operation=‘‘cancel’’
input = ‘‘...’’ output = ‘‘...’’
fault = ‘‘CancelFailed’’/>

<raise exception=‘‘cancelled’’/>
</ try >
<localHandler exception=‘‘CancelFailed’’>

<comment text=‘‘Signal exception’’/>
<raise exception=‘‘CancelFailed’’ type=‘‘failure’’>

Fault details
</ raise>

</ localHandler>
</ coordinatedHandler>

<coordinatedHandler exception=‘‘unavailable’’>
<raise exception=‘‘unavailable’’/>

</ coordinatedHandler>
</ behavior>

</ participant >
</ WSCA>

5 Conclusion

Web services are expected to become a major class of
systems of systems in the near future. This paper has in-
troduced our work towards supporting the development of
dependable systems of systems in the context of the Web
service architecture. Our approach primarily lies in the WS-
CAL XML-based language for the abstract specification of
the fault tolerant composition of Web services, which builds
upon the CA actions concept for enforcing dependability.

We are currently implementing a base middleware sup-
port for WSCAs. The middleware includes the generation
of composite Web services from WSCAL specification and
a service for locating Web services. We are further work-
ing on the formal specification of WSCAL for enabling rig-
orous reasoning about the behavior of composite Web ser-
vices regarding both the correctness of the composition and
offered dependability properties. The specification of com-
posite Web services using WSCAL allows carrying out a
number of analyses with respect to the correctness and the
dependable behavior of composite services. Except classi-
cal static type checking, the correctness of the composite
service may be checked statically with respect to the usage
of individual services. In addition, the same specification
can be used for implementing executable assertions to check
the composite service behaviour online. Reasoning about
the dependable behaviour of composite Web services lies in
the precise characterization of the dependability properties
that hold over the states of the individual Web services after
the execution of WSCAs. We are in particular interested in
the specification of properties relating to the relaxed form
of atomicity that is introduced by the exploitation of open-
nested transactions within WSCA.

As discussed in Section 2, there is extensive research
work that is ongoing towards supporting the development of
fault tolerant composite Web services, relying on the XML-
based abstract specification of Web services and of their
composition, and on the transactional supports for compos-
ite Web services. Our contribution primarily comes from
relying on forward error recovery instead of backward error
recovery for specifying the behavior of composite Web ser-
vices in the presence of failures. Forward error recovery is
further specified in terms of co-operative actions, building
upon the CA actions concept. Our analysis shows that this
approach is more effective in dealing with faults at the level
of composite Web services.
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