
Issue 6.2: Updated proposal:
Includes amendments made at September F2F, plus 6.2b
Last modified: Sept 21, 2005 – 7:00pm PDT

Proposal
=========

Syntax:

<forEach counterName="ncname" ...>
 standard-elements
 <iterator>
 <startCounterValue expressionLanguage="anyURI">
 ...
 </startCounterValue>?
 <finalCounterValue expressionLanguage="anyURI">
 ...
 </finalCounterValue>?
 </iterator>
 <completionCondition>?
 Scope
</foreach>

<completionCondition extension-attribute>
 extension-element
 <branches expressionLanguage="URI"?
countCompletedBranchesOnly="yes|no"?>
 an-integer-expression
 </branches>
</completionCondition>

Semantics:

(1) The completionCondition element is an optional element
of the parallel forEach activity. Default behavior of the
parallel forEach activity is they wait for all their
directly enclosed activities to complete. Optional
<completionCondition> is applicable to parallel forEach
only, and not serial forEach. This restriction MUST be
enforced by static analysis.

(2) <branches> is an integer value expression which is used
to define condition of flavor N out of M. The actual value
of the expression is calculated at the beginning of the
forEach activity. It will not change as the result of the
forEach execution. At the end of execution of each
directly enclosed activity the number of completions is

checked against this value. This condition has "at least N
out of M" semantics. (The exact N out of M condition
semantics involves resolving racing condition among
directly enclosed activities.)

(3) If the integer value is larger than the number of
directly enclosed activities, then
bpws:invalidBranchCondition fault MUST be thrown. Note
that the number of branches may be known only during
runtime in some cases. Static analysis should be encouraged
to detect this erroneous situation at design time when
possible. (For example, when the branches expression is a
constant.)

(4) Element <branches> has an optional attribute
"countCompletedBranchesOnly". Its default value is "no". If
countCompletedBranchesOnly is "no", it means the WS-BPEL
processor will count branches which have completed (either
successfully or unsuccessfully). If
countCompletedBranchesOnly is "yes", it means the
WS-BPEL processor will count branches, which have completed
successfully only.

(5) If parallel forEach activity specifies a
completionCondition element the completion condition is
evaluated each time a directly enclosed activity completes.
If upon completion of a directly enclosed activity, it can
be determined that the completion condition can never be
true the "bpws:completionConditionFailure" MUST be thrown
by the parallel forEach activity. If the completion
condition evaluates to true the parallel forEach activity
completes successfully.

 For a parallel forEach activity, after
completionCondition is fulfilled, all still running
directly enclosed activities will be terminated. This
 means that the parallel forEach activity begins
implicitly terminating the directly enclosed
activities that are still active.

 For a serial forEach activity, when the
completionCondition is being evaluated, there will be
no directly enclosed activities actively running and
hence no termination will be triggered. After
completionCondition of a serial forEach is fulfilled,
the serial forEach will just simply complete.
(6) Standard WS-BPEL termination semantics applies to
running directly enclosed activities when the

completion condition is met. The termination of
running nested activities follows the termination
semantics defined in the specification (see section
13.4.4 Semantics of Activity Termination).

[Chris’ amendment]:
Fix language in section 13.4.4 Semantics of Activity
Termination from:

"However, a termination handler cannot throw any fault.
Even if an uncaught fault occurs during its behavior, it is
not rethrown to the next enclosing scope. This is because
the enclosing scope has already either faulted or is in the
process of being terminated, which is what is causing the
forced termination of the nested scope."

Add that the termination may be the outcome of early
completion of parallel forEach. The new version would be:

"However, a termination handler cannot throw any fault.
Even if an uncaught fault occurs during its behavior, it is
not rethrown to the next enclosing scope. This is because:
(a) the enclosing scope has already either faulted or is in
the process of being terminated, which is what is causing
the forced termination of the nested scope; (b) the scope
being terminated is a branch of a parallel <forEach> and
early completion mechanism triggers the termination as
<completionCondition> of <forEach> is fulfilled."

(end)
