
[image: image1.png]
WSDM Web Services Platform

UPLAT

Working Draft December 2003

Document identifier:

Wsdm-uplat-20031201B
Location:

http://www.oasis-open.org/?
Editor:

Homayoun Pourheidari, HP, <homayoun@hp.com>

Andreas Dharmawan, Westbridge Technology, <andreas@westbridgetech.com>

<Editors should add their names here>
Abstract:

This document provides a list of platform features that must be supported by the WSDM MUWS specification. Each feature is assigned a priority in terms of its relevance and importance to the MUWS architecture. Additionally, this document provides supporting context and recommendations for how to support each feature.

Status:

This document is a working draft of the OASIS Web Services Distributed Management (WSDM) Technical Committee. We solicit your comments.

Committee members should send comments on this specification to the wsdm@lists.oasis-open.org list. Others should subscribe to and send comments to the wsdm-comment@lists.oasis-open.org list. To subscribe, send an email message to wsdm-comment-request@lists.oasis-open.org with the word “subscribe” as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the WSDM TC web page (http://www.oasis-open.org/committees/wsdm/).

Table of Contents

6Introduction

61.1 Purpose

71.2 Terminology

71.3 Glossary

82
Platform Features

82.1 Initial Focus

82.1.1 Identification

112.1.2 Versioning

172.1.3 Attributes

182.1.4 Meta Data

192.1.5 Addressing

212.1.6 Notification

262.1.7 Relationships

272.1.8 Security

302.1.9 Registration and Discovery

312.1.10 Policy

332.1.11 Collection

352.1.12 Transaction

Error! Bookmark not defined.2.1.13 Resource State Model (Resource Lifecycle)

Error! Bookmark not defined.2.1.14 Service LifeCycle

392.1.15 Name Resolution

402.2 Future Focus

402.2.1 Flow

422.2.2 Negotiation

432.2.3 Relationship Service

442.2.4 Logging

473
References

473.1 Normative

473.2 Non-Normative

48Appendix A. Acknowledgments

49Appendix B. Revision History

51Appendix C. Notices

Introduction

1.1 Purpose

This document is the requirements for the Management of Web Services specification of the Web Services Distributed Management Technical Committee, whose purpose and deliverables (http://www.oasis-open.org/committees/wsdm/charter.php) are.

WSDM TC Statement of Purpose

To define web services management. This includes using web services architecture and technology to manage distributed resources. This TC will also develop the model of a web service as a manageable resource. This TC will collaborate with various evolving activities within other standards groups, including, but not limited to, DMTF (working with its technical work groups regarding relevant CIM Schema), GGF (on the OGSA common resource model and OGSI regarding infrastructure), and W3C (the web services architecture committee). Also liaison with other OASIS TC, including the security TC and other management oriented TC.

WSDM TC List of Deliverables

Web Services Distributed Management (WSDM) V1.0 Specification, March 2004 this includes WSDL described manageable resources and the xml schema to complete those descriptions. This document will also define explicit manageability for the components of the Web Services Architecture (WSA) as defined by the W3C.

Initial Focus

The initial focus of the work is to define the minimal set of requirements to represent manageability of Web service endpoints (definition below). However it is expected that related resources, that affect the manageability of Web service endpoints will also need to be address in the tenure of the WSDM TC, these include, but are not limited to; Web service execution environment and Web service conversations.

Relationship to MUWS

This set of requirements is expected to drive the definition of a manageability model, specific to a Web services endpoint that will be exposed using work developed in the WSDM TC addressing management using Web services [MUWS].

1.2 Terminology

The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119].

1.3 Glossary
2 Platform Features

Based on our discussions last time, I have created an initial focus and future focus grouping of this work and have a preliminary grouping. However, we can move things around as needed.

2.1 Initial Focus

The following features must be supported by the current version of the MUWS specification.

2.1.1 Identification (High)
2.1.1.1 What?

Identification is a way to represent that one element is same or different than the other without necessarily looking at the contents or definition of the element.
2.1.1.2 Why?

Manageable resources need to be uniquely identified for the manager to tell one from the other and also to consistently refer to. Therefore a standard representation of a unique identity is required.

2.1.1.3 How?

Applied to Web resources in general, as defined by W3C, a Uniform Resource Identifier (URI) can be used to represent the identity of a Web resource. Applied to Web services; every element which Web service description is composed of (service, interface, endpoint, location, etc.), is required to be identifiable by a URI. Such URI must be unique by definition. Identity is not required to be an addressable location, so a dereferencing mechanism may be required to actually locate the corresponding resource.
2.1.1.3.1 Co-relatable Names (High)
2.1.1.3.1.1 What?

Meta-data attached to one or more attributes from the information model for a manageable resource. It indicates that the values of these “co-relatable” attributes can be compared across instances, and if they are equal, signifies that the same “real-world” entity is being described by those instances. The use of a standardized meta-data “label” provides a non-ambiguous mechanism for defining attributes appropriate for correlating identities.

It is important to note the scope within which the attributes are indeed co-relatable. For example, although disk drives have serial numbers, they are found to repeat. Therefore, within a single system, the numbers for a single vendor are unique identifiers. However, across an enterprise or even across multiple vendor products in a single system, that may not be true.

Note that the attributes that are labeled as “co-relatable” are specific to the semantics of the managed resource. For example, in fiber channel environments, world-wide-names are likely to be globally unique. Therefore, a single “WWN” attribute may be labeled with the “globally co-relatable” tag for an instance of FCA (fiber channel adapter). This is independent of how the adapter is discovered or identified by the management infrastructure.
2.1.1.3.1.2 Why?

The general use case for co-relatable names is that a single “real-world” entity may be managed through several endpoints, and/or managers. For these endpoints and managers, the instances must be identifiable. This does not, however, dictate that a single identification scheme must be adopted throughout the managed environment. To support a single scheme, all endpoints and managers would need access to the complete information required by the “identification” algorithm, and it would be necessary that the algorithm be sufficient in all implementations.

Since a globally unique identifier for all environments is not achievable, it is important to provide mechanisms to determine if data for the same or different “real-world” entities is being reported. For example, when performing discovery, it is necessary to accurately determine the resources in the environment (and not over-estimate). Continuing this example, “co-relatable names” are required when a partitioned system has multiple management infrastructures – perhaps one for each of the partitions and one for the host system. The partitions’ hardware data will be a strict subset of the host system’s data. But, the host system’s data will be completely populated, and therefore a superset. There is a need to correlate these “hardware” instances from multiple management endpoints, using processor GUIDs and/or other data.
2.1.1.3.1.3 How?

Use what we come up for the metadata solution to define the tag(s) required.
2.1.2 Versioning (High)
2.1.2.1 What?

Version is an attribute of a Web service description component identifying a set of supported capabilities and a sequence of modifications to the component.
There are two kinds of versioning; the resource version and the service version. The former is out of scope of this work. Can the later be standardized and enforced? There seem to be some disagreements here.
Below is the UML model of Versioning discussed in MOWS. It is depicted here for reference:

[image: image2.png]
2.1.2.2 Why?

Version information is useful so that the manager can know if the manageable Web Service interfaces have changed (bugs have been fixed or new functions added) since she obtained her copy. She could also learn whether a bug report relates to the current version.

A manager of manageable resources must have the ability to query the available endpoints’ revisions along with the corresponding change descriptions such that the manager can discern the most appropriate and compatible interface of a particular manageability function that her management client can use.

2.1.2.3 How?

Uplat doesn’t specify (agnostic) a specific format of version number. An example of version number format is as follow. <There is an argument for WSDM-Uplat to specify the format of manageable webservice component’s versioning. This will be resolved in F2F meeting.>
Each version is identified by the version information, following a certain specified format signifying the major version number, minor version number, the revision number, and build number.

Typically an increment in the major version signifies a substantial increase in the function of the Webservice or partial or total re-implementation. An increment of the minor version signifies a small increase in the functions of the Webservice such as an extension to the existing functionality. The revision number increases each time the Webservice is changed in any way such as bug fixes or patches. The build number indicates the software build instance.
Version number is accompanied by other version attributes; change description describing what has changed in a revision compared to the previous one, version predecessor pointing to the previous version, version successor pointing to the [successive | next] version.

Below is an example of how versioning can be implemented using existing namespace mechanisms in WSDL. This will require OASIS to define a set of WSDM attributes in http://oasis-open.org/draft/11/2003/wsdm/ schema. In this schema, version attributes (version, version-change-description, version-predecessor, version-successor, etc.) will be declared along with other wsdm related attributes (relationship attributes, etc.).
The advantage of this approach: this WSDL can be processed by client who is not WSDM ready as the wsdm:version attributes will be ignored by clients who don’t look for them.
<?xml version=”1.0” encoding=”UTF-8” ?>
<wsdl:definitions targetNamespace=”http://acmecorp.com/stockquoteservice/manageability”

 xmlns:wsdm=”http://oasis-open.org/draft/11/2003/wsdm/”
 xmlns:impl=”http://acmecorp.com/StockQuote”

 xmlns:intf=”http://acmecorp.com/StockQuote”

 xmlns:apachesoap=”http://xml.apache.org/xml-soap”

 xmlns:wsdlsoap=”http://schemas.xmlsoap.org/wsdl/soap/”

 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”

 xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:message name=”getTransactionNumberInTheLastHoursResponse”>

 <wsdl:part name=”transaction_numbers” type=”xsd:int” />

 </wsdl:message>

<wsdl:message name=”getTransactionNumberInTheLastHoursRequest”>

 <wsdl:part name=”hours” type=”xsd:int” />

 </wsdl:message>

<wsdl:portType name=”StockQuoteManageability” wsdm:version=”2.1.1” wsdm:version-change-description=”fixed type on the interface name”>

 <wsdl:operation name=”getTransactionNumberInTheLastHours” parameterOrder=”hours”>

 <wsdl:input name=” getTransactionNumberInTheLastHoursRequest “ message=”impl:getTransactionNumberInTheLastHoursRequest “ />

 <wsdl:output name=” getTransactionNumberInTheLastHoursResponse “ message=”impl:getTransactionNumberInTheLastHoursResponse “ />

 </wsdl:operation>

 </wsdl:portType>

<wsdl:binding name=”StockQuoteManageabilitySoapBinding” type=”impl:StockQuoteManageability”>

 <wsdlsoap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http” />

<wsdl:operation name=” getTransactionNumberInTheLastHours “>

 <wsdlsoap:operation soapAction=”” />

<wsdl:input name=” getTransactionNumberInTheLastHoursRequest “>

 <wsdlsoap:body use=”encoded” encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” namespace=”http://acmecorp.com/StockQuote” />

 </wsdl:input>

<wsdl:output name=” getTransactionNumberInTheLastHoursResponse”>

 <wsdlsoap:body use=”encoded” encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” namespace=”http://acmecorp.com/StockQuote” />

 </wsdl:output>

<wsdl:service name=”StockQuoteManageabilityService” wsdm:version=”1.2.2.22” wsdm:version-predecessor=”1.2.1.30” >

<wsdl:port name=”StockQuoteManageability” binding=”impl:StockQuoteManageabilitySoapBinding” >

<wsdlsoap:address location=”http://acmecorp.com/StockQuote/Manageability” wsdm:version=”1.1.0.15” />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

2.1.3 Attributes (High)
2.1.3.1 What?

Attributes are describable information that can be queried and may be written. Attributes may be provided by a Web service. That may incur defining a schema (data type and name) of the attributes and operations (message exchanges) to find, read and write them. Attribute declarations (names) and descriptions (types) should be introspect-able at design time and at runtime. Attribute is synonymous with property in this definition. For manageability, a property is a name, type, value triple that is part of the advertised manageability interface for a resource. An attribute can be used to represent configuration values, metrics, identifiers, etc.
2.1.3.2 Why?

Many manageability capabilities of a manageable resource take the form of information about the resource that the manager is able to query and set. While these can be accessed through individual and special WSDL operations, in management scenarios it is often required to access this information in more efficient ways (like bulk get). In order to allow these scenarios, such information should be modeled as a set of attributes (or properties) with access methods that allow access to it in ways that meet the scalability requirements of management applications.
2.1.3.3 How?

Possible mechanism to implement attributes:
Follow OGSI Specification.
WSDL support would be nice.

2.1.4 Meta Data (High)
2.1.4.1 What?

Meta data is generally defined as data about data. In the context of management, it is additional information about all the components of an information model that describe a managed resource. These components include: attributes, operations, events, interface categories, and the service representing the managed resource. Meta data may include descriptive information about the context, quality and condition, or characteristics of the data. Meta data can be introspected at design time and runtime.
2.1.4.2 Why?

In IT management, it is important to describe data in richer ways so that it can ultimately be linked to the goals that drive the existence of the source of this data. For example, information like limitations, purpose, context, quality, and characteristics of management data as an associated piece of that data will help to describe how the data is related to the objectives of an IT environment. Meta data is one of the means through which such descriptions are provided.

Meta data values can include units, volatility, modifiability, aliases, policies, duration, etc. For example, Meta data values for attributes can include units, volatility, modifiability, aliases, and Meta data values for operations can include end state.

In the management space, the manageability capabilities are likely to be provided by a number of different providers. That is, the management space is likely to be an integration issue. To aid the manageability consumer in integrating the information from these dissimilar sources, the meta data is of increased importance.
2.1.4.3 How?

WSDM-Uplat may create some short-term Meta data schema if OGSI specification is not available yet (a set of xml tags would do). Later, OGSI specification can be adopted.
One of the strong points of the Distributed Management Task Force's Common Information Model (CIM) is the concept of qualifiers. Qualifiers are meta-data concerning a class, property, method, notification or method parameter. The CIM qualifiers may be mined for useful information for web services meta-data.
2.1.5 Addressing (High)
2.1.5.1 What?

An address or reference is the data structure to refer to a unique Web service with sufficient information to be able to locate and invoke it given that the supported messages are already understood. The reference must include the ability to locate the description of the service. In this context address and reference are used synonymously.
<Must give an ability to include the description>

2.1.5.2 Why?

It is necessary for management because we need to be able to refer to manageability services and manageable services in relationships, events, and operation signature in an interoperable manner.
2.1.5.3 How?

Possible mechanism for addressing:

WS-Addressing.

There is a proposal in the W3C WS-Desc working group to use the WSDL-defined service element to serialize a reference to a Web service. The current decision of the WS-Desc working group is to “add a paragraph in the spec describing that <wsdl:service> can show up on the wire as a service reference. Primer will have some examples”. The basis for the examples will be a proposal by Roberto Chinnici available at http://lists.w3.org/Archives/Public/www-ws-desc/2003Oct/att-0345/counterproposal.html.

This is in the scope of the WSDL 2.0 work, but it doesn’t take too much imagination to come up with an equivalent proposal for WSDL 1.1. This would provide a way for WSDM to get support for referencing Web services (and endpoints).

In WSDL 1.1 a service element contains a set (0 to unbounded) of ports elements, each referring to binding element by its Qname. The extensibility model for the service element allows additional elements to be added as long as they are not in the WSDL namespace. This prevents a WSDL import statement from being there. But it allows WSDM to define an extension to provide more information about the endpoint (such as type) or a link to the WSDL description of the endpoint. So that in case the Qname of the binding is not already know to the recipient of the reference, the recipient can find out its definition. We also have the choice to use the wsdl:service element itself or to create a type that extends the wsdl:serviceType type.

I addition, we could also decide to add a restriction that a service element used for reference purposes can only contain one endpoint, as a way to use this mechanism to reference endpoints instead of services.

2.1.6 Notification (High)
<Igor will update this section to support both pull and push models. Additionally he will capture the requirements on the event format and payload.>

2.1.6.1 What?

Notification is a method of conveying information from a source to recipients that expressed interest in that information. In terms of Web services it means delivering an XML message from the source to addressable recipients. An interest in receiving those messages must be established by the recipients, or by third parties on behalf of the recipients. When registering interest, address(es) of recipient(s) must be provided (see Addressing).

2.1.6.2 Why?

Manageable resources need to convey information to the managers. In certain cases, it is unreasonable for the manager to explicitly poll (request) the information, and it has to be sent to the manager by the resource. For example, a manager may be interested when a service receives a new message. The resource representing the service has to notify the manager when it happens (event). The resource needs to know which managers are interested in which information and what are the deliverable addresses of the managers to send the notification message when an event occurs.

2.1.6.3 How?

When considering requirements on the platform with regards to means of notification, it is important to separate capability of simple message exchange for the purposes of notification from the complex event processing (CEP). The former may be achievable with a little effort and the later is a discipline of its own and usually requires a lot of supporting infrastructure that has nothing to do with means of notification, per se. To be concrete simple notification is required to efficiently provide manageability of resources. CEP can be built on top of simple notification and may be considered out of scope for now.

In a very simple case, recipient could poll for the information available at the source. This could be implemented using regular request-response message exchange in which the recipient would send request for information it is interested in and the source would respond with the available information or indicate a fault. In the current context this simple case is not considered to be a notification, but rather an operation. As it is discussed later, polling for available information may need to be standardized too.

To make simple notification possible the following has to happen

1. Recipient has to know how to register interest with the source of information

2. Source has to know how to deliver information to recipient

3. Recipient needs to know that is it being notified and also by which source

Note that the recipient and the source are defined as roles here. Roles do not imply actual implementation approach and merely define a set of responsibilities of the ‘involved parties’. The message exchanges that happen between roles define the protocol. Actual implementations may render roles in any possible way and only need to abide by the protocol. In this case the protocol is the notification – registration of the interest and delivery of information message exchanges.

Assuming that both the source and recipient are implemented with Web services tools and run on Web services platforms; source and recipient want to implement notification (protocol) using Web services. Web services tools/platforms are designed to facilitate easy creation and deployment of a client and a service type of applications. Traditionally, a client is an initiator and a service is the responder in the interactions. To make it possible, a service provides a description of how it expects the interaction to happen and a client finds and understands it. The interesting difference is that both recipient and the source have to be initiators and responders to be able to satisfy the three requirements of the simple notification (protocol). Therefore both the recipient and the source are services and clients at the same time and need to provide descriptions of how the interactions need to happen. Each side can only provide descriptions of interactions it will respond to. The source can provide description of how a recipient needs to register its interest in available information, and the recipient can provide description how a source can deliver information to it. Definitely, both sides need to have an apriori agreement on (and knowledge of) both of the descriptions to allow the bidirectional interaction to happen.

The claim is that if the above three requirements are satisfied by a standard, that is, both recipients’ and sources’ side descriptions are standardized, it is possible to use existing Web services tools and platforms to implement recipient and source as Web services. Each Web service is actually a client and a service to the other one, but both are aware of each other’s abilities as a recipient or a source (role).

Such standard would have to define source’s side description (WSDL) with

1. How to register an interest in an identifiable information (e.g. name, Qname, URI, etc.)

2. How to convey address of a deliverable recipient (e.g. WS-Addressing, URL, etc.)

3. How to verify registration of the interest

4. How to cancel registration of the interest

5. How a source can notify of the unilateral cancellation of the interest

And the recipient’s side description (WSDL) with

7. How to deliver information and identify that it is a notification

8. How to tell what source it came from and possibly what is the context at the source.

Note that in this context ‘information’ is arbitrary, no assumption is made on the purpose or the format of the information itself. Of course, the assumption is that information is represent-able in XML and its format is described in XML Schema. The standard would allow source to choose a suitable way to identify the information (by a name, use XML Schema element’s Qname, etc.). The standard would allow information to be ‘wrapped’ in standard ‘envelope’ (e.g. CBE) to capture some extra situational information. Although, such ‘enveloping’ is not part of the definition of the notification protocol itself.

Using standardized two-side descriptions, a source can embed both of the descriptions (i.e. what the source can provide and what it expects the recipient to support) in one WSDL document using for example BPEL partnerLink specification. In fact this approach is already being widely used for examples of asynchronous messaging in BPEL specified business processes.

The proposition is that such simple notification two-side description specification happens in a standards body and not in WSDM itself. WSDM may specify just the format of the notification information.

To facilitate simple polling for the information available at the source (as an alternate way of ‘receiving’ notifications), the following needs to be standardized. Source’s side description (WSDL) with

How to request an identifiable information (e.g. name, Qname, URI, etc.)

How to respond with an address where to poll for the information (if not the same as the source’s endpoint address)

How to respond with the requested information, identify the information and identify which source it came from

How to tell that no more information is available for polling
2.1.7 Relationships (High)
2.1.7.1 What?

A relationship is a data structure describing the association between two resources or resource types which may or may not be represented by a manageability endpoint or interface. The data structure would include the type of the association, a reference to both resource participants. Both references will be described using the mechanism described in the section “Addressing”. Relationships would also include a Web service interface to retrieve the relationships that a participant resource knows about from the participant resource directly.

2.1.7.2 Why?

Relationships are used by a manageability consumer to help track down the root cause of any failure, to understand how a set of resources are working together to accomplish a task, and to discover other resources that may have manageability endpoints. They are used by installation, availability, and problem determination management applications.

2.1.7.3 How?

Possible mechanism to implement relationships:
WSMF relationships AND ALSO
WS-Manageability relationships
The standard UML relationships and refinements of those described by the DMTF CIM Schema may be consulted for additional semantics.

2.1.8 Security (Medium)
2.1.8.1 What?

(Information/Computer Security) There are many ways to categorize information security, but the most common today is represented by the letters C, I, A: Confidentiality, Integrity, and Authentication. Additional concepts that can be arguably kept separate are: Access Control, Non-repudiation, Availability, and Privacy.

Confidentiality: Preventing unauthorized entities from accessing information or resources.

Integrity: Making sure that when authorized entities access information, it is either not changed or any changes are detectable.

Authentication: Making sure that entities are who/what they claim to be.

Access Control: Making sure those entities can only access services, resources, or information that they are authorized for.

Non-repudiation: Making sure the sender of a message can not deny having sent the message.

Availability: Making sure a service or resource can be accessed by authorized users. While this goes beyond security, security is expected to address denial of service attacks.

Privacy: Making sure that information on entities is used only for the express purposes allowed.

Primarily the issue with Security is that while the requirement for Security within manageability is extremely important, it is not unique to manageability. All the same issues arise with any other Web Services endpoint. Every manageability endpoint and many business endpoints will have requirements for confidentiality, integrity, and authentication, as well as access control, availability, and privacy (see the definition of Security).

Also, there is the issue of location. Security may be implemented in various ways. For example, there could be a security filter/proxy in front of every Web Services endpoint (including the manageability endpoint) that only allows messages through that are valid, authenticated, authorized, and have no integrity problems identified. Or all of those functions could be performed by the endpoint itself.

Thus, the main concern for Security is that the specification allow for external Security infrastructure mechanisms that are compos-able on top of the manageability exposed via Web Services. This will require examining other standards like WS-Security to ensure nothing done in the specification precludes the compos-ability of Security.

Another external effort is to work with standards groups developing interoperable Security infrastructure mechanisms. It is desirable that these mechanisms provide manageability exposed via Web Services.

Security has a relationship with Policy. There may be both types of Security Policies: those that are published so the Consumer can interact with a Provider using the same security mechanisms, and those that affect how the Provider behaves, such as which entities should have access to which operations.

2.1.8.2 Why?

Resources have to be manageable in a secure way (see definition of security). Security is compos-able on top of the manageability exposed via Web services, similar to securing any other capability of a resource exposed via a Web service. For example, access to a manageability operation can be granted to only clients that present “manager’s identity” in a request message.

Security must be manageable, preferably via Web services. For example, identity or access assertion can be verified by issuing a request to a security Web service.

2.1.8.3 How?

WS-Security.
2.1.9 Registration and Discovery (Medium)
2.1.9.1 What?

Registration is a method of advertising an existence of an element so that it can be discovered. Discovery is a method of locating an existing element so that it can be used or operated. Discovery can be based on selection criteria or simply a name or identity of an element. Location is a method of obtaining an address of an element.

For example, location may mean translating an identity of an element into an address of an existing useable element. In the Web services sense, registration, discovery and location can be represented by a set of operations and schema which may be implemented by a Registry. A Web service can register itself or can be registered by a third party by sending a request to the Registry. A Web service can be discovered by sending a request to the Registry. The Registry can return the description of a Web service with location address included in a description or it may return the location address directly.

2.1.9.2 Why?

1. Manageable resources have to be discoverable by the managers.

2. Manageable resources exposed via Web services can be registered, discovered and located via a Registry.

2.1.9.3 How?

In the mean time, WSDM-UPLAT will come up with simplistic solution. And it will grow in the future to a more sophisticated solution such as UDDI.
2.1.10 Policy (Medium)
2.1.10.1 What?

A Policy is a course of action, guiding principle, or procedure considered expedient, prudent, or advantageous for a given condition or event. It describes a broad range of service requirements, preferences, and capabilities.
There are two kinds of policy that governs Webservice manageability:
· A set of policy that describes how the client of a manageable resource interacts with the functional interfaces of the Webservice. For example; policy describing how a certain set of client will be authenticated and authorized, policy describing the privacy of data being communicated by a certain set of clients.
· A set of policy that describes how the manager of a manageable resource places operational requirements on to the Webservice. For example; policy describing the SLA or QoS of the manageable Webservice.

There are various policies that can be specified to manageable resources (Webservice functional and manageability endpoints) via MUWS such as: authentication, access control, privacy, non-repudiation, service level agreement, quality of service, routing, content inspection, auditing, etc. policies.

2.1.10.2 Why?

MUWS must leverage as much as existing Webservices specifications and technologies in applying policies to the manageable resources. MUWS should endorse a list of such specifications and technologies, and should specify the compatibility and interoperability requirements.

2.1.10.3 How?

Leverage existing Webservice standards that can implement various policies:
WS-Policy (Expressing policy to the consumer)

SAML (Expressing Authentication and Authorization policy)

XACML (Expressing Entitlement Policy)

Etc.

Policy is also of prime concern in various industry standards - GGF's Policy Research Group (https://forge.gridforum.org/projects/policy-rg/), IETF's Policy Framework Working Group

(http://www.ietf.org/html.charters/policy-charter.html) and DMTF's Policy Working Group (http://www.dmtf.org/about/committees/slaWGCharter.pdf). Existing standards should be built upon, for the web services work. Also, policy languages such as Imperial College's Ponder

(http://www-dse.doc.ic.ac.uk/Research/policies/index.shtml) may be useful.

2.1.11 Collection (Medium)
2.1.11.1 What?

A collection is an ordered or unordered set, which is itself a manageable resource and which groups zero or more other entities. The members of a collection may be manageable resources in their own right, and may have their own management interfaces.

2.1.11.2 Why?

At the most basic level, a concept of collections is needed to group manageable resources. For example, a group of fans may be identified as the “spares” for the engineering department of a company. Taking the example further, these fans may be protected by a warranty based on purchase date. So, there may be criteria (a basic ordering of the set members) by which a fan is selected from the spare group.

Another use of collections is as a proxy for its members. A manager may send a single request to a collection where the result is that its members are acted upon as specified in the request. The result of a manager sending a single request to a collection must be the same as a manager sending a separate message to each of the members of the collection. It is not necessary that the collection actually send separate messages to each of its members, only that the result to the members is the same. For instance, using a collection, a manager can query for the state of each resource using one request, rather than querying each resource individually. Also, it would be possible to reset the state of certain metrics for the resources in the collection using a single request.

A collection provides the ability for a management system to scale much better than a system not supporting collections. Also, there are cases where the exact membership of a group is better known by an entity, such as a collection, that may be “closer” to the group than a manager. This allows the manager to defer to the collection to determine the exact entities upon which to act.

As the number of managed resources grows, it becomes more important for a management system to provide a mechanism to allow a manager to perform the same action on many resources at once. For instance, with a collection a manager can query for the state of all resources in the collection at once rather than one at a time. Also, it is possible for a collection to reset the state of metrics for the resources in the collection using a single request. A collection provides the ability for a management system to scale much better than a system not supporting collections. Also, there are cases where the exact membership of a group is better known by an entity, such as a collection, that may be closer to the group than a manager. This allows the manager to defer to the collection to determine the exact entities to act upon.

2.1.11.3 How?

WSMF collection

OGSI serviceGroup

OGSI serviceGroupRegistration
DMTF CIM's Core Model Collection class and its associations, MemberOfCollection and OrderedMemberOfCollection.
2.1.12 Transaction (Medium)
2.1.12.1 What?

A “unit of work” that consists of multiple actions (typically, an ordered set) invoked against a single resource, the same action applied to multiple resources, or multiple actions against multiple resources. The “unit of work” should be executed once and only once, even if due to transmission failures or other errors, the request may be received multiple times. One of three outcomes will result from the execution of a transaction:
All actions against all resources may succeed
One or more actions may fail and all actions against all resources are rolled back (if roll back is not possible or not supported, then the resources should be reconfigured to an operational, compensory state)
One or more actions may fail and the resources are left as affected by the actions

A UML diagram describing a transaction model is provided below:
[image: image3.png]
2.1.12.2 Why?

Grouping actions against resources and assuring their execution is very valuable. A manager may request that multiple actions/operations be performed as a single “unit”, and that the integrity of the complete/combined request be preserved. For example, it may be important for efficient operation to first shutdown and then failover a jabbering port (an example of multiple, ordered actions against a single resource). It is not correct to failover the port addressing until the shutdown has occurred. And, it is not correct to have the shutdown request arrive multiple times, after the port error has been corrected. Another example of multiple (possibly unordered) actions against a single resource is the setting of two or more management attributes on a resource, where the attributes must be set/reset together in order for the resource to successfully operate. One last example is where an administrator wishes to configure three identical resources using the same configuration settings. This is an example of multiple actions (the setting of multiple attributes) against multiple resources. Again, for successful operation, all three resources must be updated or reset together in order to interoperate.

Note that transactions are being designed into functional/business Web Services. Manageability implementations would simply make use of existing Web Services transactional capabilities.
2.1.12.3 How?

Leverage other Webservice standards that are addressing transactions.
There are several existing specifications addressing web services transactions. These are:

· Committee Specs from the OASIS Business Transactions http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=business-transaction. See "Documents"

· WS-Transaction Management submitted to the OASIS Web Services Composite Application Framework http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-caf See also http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf
· WS-Transaction http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/.
2.1.13 Resource State Model (a.k.a. LifeCycle) (Medium)
2.1.13.1 What?

Resource state model is a set of states that a resource can be in and the valid transitions between those states. A resource goes through a set of states and transitions throughout its life. Resource state model manageability provides the capability to understand the valid states and transitions, manage the actual operational state of a resource, invoke operations to influence a change in the state of a resources, and receive events indicating when a state change has occurred.

2.1.13.2 Why?

An application or management tool uses the resource state information for a resource to better understand and manage that resource. Resource state awareness can be used in several ways:

Decorating operations and properties with state context: Some Operations and properties may be valid only when the resource is in a particular state. In fact, a property may have a different set of valid values when the resource is in a particular state. The manageability capabilities of a resource may indicate which operations or property values are valid during particular resource states. Invoking operations and changing properties may also influence the resource state itself. Therefore the manageability capabilities of a resource may indicate what the initial state must be for an operation to be invoked or what the end state should be after the operation finishes. Using these state decorations on operations and properties, operations of a resource may be determined through introspection of a resource’s state to aid the application or management tool in doing those actions only in the state in which those actions are valid. This is important in autonomic systems where actions taken do not expect exceptions to be thrown.

State management: Several management applications, including availability management, provisioning, automated recovery, state change impact analysis, and problem determination all need to be able to understand the state model of a resource and influence a change in that state.

2.1.13.3 How?

(May be in the management domain and within WSDM scope, therefore not part of the platform.)
Suggestion: A specification based on GGF CMM Lifecycle

2.1.14 Name Resolution (Medium)
2.1.14.1 What?

For management purposes: A service which accepts a name identifier (URI) of a resource and returns an address or reference for the manageability endpoint for the resource. The service should return sufficient information such that the manageability endpoint can be invoked. The name resolution service may be used to resolve names to references in other application domains unrelated to management as well, i.e. service discovery, etc.
<Need to clarify the relationship between Name Resolution and Discovery and Registration>
2.1.14.2 Why?

A name resolution service is necessary for management because resources and manageability services have identifiers (from existing instrumentation and technologies) and it will be necessary to be able to get a reference for that resource identifier so that the manager can interact with a resource through its manageability interface.

2.1.14.3 How?

Suggestion: Look at how this is being handled in the Grid community.
<I am not sure where this should go: Addressing: The specification should support returning an address as defined by the Address support in this document, including a WS-Addressing EndPointReference.>
2.2 Future Focus
2.2.1 Flow (Low)
2.2.1.1 What?

Flow, more often called workflow or workflow management, is the management of business processes with information technology. By defining, analyzing, and organizing an organization’s resources and operations, workflow management systems ensure that the right information reaches the right person or computer application at the right time.

In the context of Web services, business process management (BPM) workflow or execution languages support the idea of composing simple services into more complex processes, typically at the enterprise or B2B level. These languages are sometimes referred to as Web services orchestration languages. Typically, such languages allow the definition of a set of Web services. They also define the coordinated overall behavior of the Web services that pertain to that process, which is, itself, exposed as a Web service. Such coordination includes, but may not be limited to, constructs for the identification of partners, message correlation, fault detection and compensating activities, parallel and serial execution of services, and so on.

There are many examples of such orchestration languages including OASIS WSBPEL (Business Process Execution Language) and BPML (Business Process Markup Language). The WSBPEL language enjoys the support of many leading software vendors. The composite service and participating service define their interfaces to each other using WSDL and WS-Policy. An example might be an association between a retailer and a credit verification service.
2.2.1.2 Why?

Management solutions may be required to execute complex operations as a result of certain observed metrics in order to maintain specified service levels. Web services orchestration languages may be useful tools allowing Web services management providers to enable more complex and meaningful actions to be taken as a result of observations.

Also, it may be necessary for this committee to consider extensions to the manageability of a Web service exposed by a business process engine to properly and consistently monitor and control composite Web services. For example, it might be possible to identify to the management system the current session of a process, what subordinate Web services are in flight, if the process is in a fault condition, and much more.
2.2.1.3 How?

It is recommended that further work be done to explore possible extensions to MOWS for composite Web services. Since composite Web services are themselves Web services, it may be out of scope to consider how a management system might invoke these services, as existing standards are already sufficient.
2.2.2 Negotiation (Low)
2.2.2.1 What?

Negotiation is the process by which two services dynamically negotiate terms of a contract between initiators and participants of that contract. A contract is a document that represents a set of objectives and resources.

2.2.2.2 Why?

In a service oriented environment, it is important for services to understand what they can expect from the other services so that they can better describe their own level of performance. This not only applies to interactions between services that need to be managed but also to the manager that in effect provides a management service to the managed services.

Moreover, as deployment environments get more complex and resources are virtualized and federated, it is often required that you establish agreements on how information is exchanged between the components of federated deployments. The components can include the managed object application services, the management services, or the services that support a management deployment (e.g. logging).
2.2.2.3 How?

Suggestion: WS-Agreement for the dynamic negotiation
2.2.3 Relationship Service (Low)
2.2.3.1 What?

Relationship Service is a relationship repository or registry which may be responsible for creating, inventorying, tracking, and validating relationships. This service may or may not be a participant in the relationships. If relationships are rule based, then it would also be responsible for altering relationship members based on the rules. This would include portType operations for querying, adding, finding, and validating relationships. This service would build on the Relationships feature above.
2.2.3.2 Why?

Understanding relationships is an integral part of the responsibility of many types of managers. Solution installation, availability, and problem determination management applications need to understand the relationship of a resource to be installed, which has had status changes, which has failed, to other resources in the environment. Some relationships are known by the resource, and the resource be able to be queried about the relationship directly. Some relationships are created by a larger scoped view/application, like installation requirements, and the resources in the relationship are not aware that they are participants in the relationship. In this latter case, a third party relationship manager may create and maintain the relationship. This is one case for a relationship manager service. Another case for a relationship manager service: sets of relationships are supplied by managed resources and relationship managers, it may be easier for a manager to traverse the relationships and detect inconsistencies and relationship integrity problems if there is a central relationships manager service which accumulates and connects all the relationships so that the relationships of the environment can be searched and traversed without causing significant network traffic doing distributed searches and traversals. A sophisticated central relationships manager service may also be a control point for changing relationship which drives changes onto the actual relationships and resources in the relationships.
2.2.3.3 How?

WS-Manageability Relationships section.
2.2.4 Logging (Low)
2.2.4.1 What?

Logging is the action in which message producers generate log artifacts, i.e., atomic expressions of diagnostic or activity information which is stored in some persistent manner. Persistence may be temporary based on policies or the configuration of the application. The log information may or may not be used at a later time by other, independent, message consumers for a variety of purposes.

2.2.4.2 Why?

Logged information is required for audit trails needed to fulfill judiciary and organizational policy requirements, to reconcile security related inconsistencies, and to provide for forensic evidence both after the fact and real-time. Logged information is also used as input to many management applications, including but not limited to, service level monitoring, capacity planning, usage mining, metering, billing, and problem determination.

2.2.4.3 How?

There are two parts necessary to provide interoperable logging:

Programming model: Canonical logging Web service that a manageable service, application using the service, or intermediary may invoke passing the log information.

Infrastructure: Logging intermediary may watch messages flowing through a system and log relevant information. The intermediary should use the logging service to record data formatted as a CBE.

Format: Common Base Event log record format should be used to allow common semantic understanding of the information in the event.

3 References

3.1 Normative

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

3.2 Non-Normative

[WSAR]
A. Austin, A. Barbir, C. Ferris, S. Garg, Web Services Architecture Requirement, http://www.w3.org/TR/wsa-reqs, W3C, November 2002.

Appendix A. Acknowledgments

The following individuals were members of the committee during the development of this specification:

· Jane Doe, Example Corp.

· A. Nonymous (chair), Example Corp.

· John Smith, Example Corp.

· Karl Best, OASIS

· John Doe, Other Examples, Inc.

· Eve Maler, Sun Microsystems

· Norman Walsh, Sun Microsystems

In addition, the following people made contributions to this specification:

· Joe Blow, Example Corp.

Appendix B. Revision History

[This appendix is optional, but helpful. It should be removed for specifications that are at OASIS Standard level.]

	Rev
	Date
	By Whom
	What

	wd-00
	2003-11-03
	Andreas Dharmawan
	Transferred aggregated list from email thread into this document.

	Wd-00
	2003-11-10
	Andreas Dharmawan
	Revised Addressing (2.1.5), Name Resolution (2.1.14) sections per Heather’s update.
Revised Versioning (2.1.4) based on the email discussion and attempted to illustrate versioning using targetNamespace.

	Wd-00
	2003-11-12
	Andreas Dharmawan
	Incorporated new what and why for Versioning, Attributes, Relationship based on group discussion on 11/11/03.

	
	2003-11-13
	Andreas Dharmawan
	Incorporated new meta data and notification sections based on group discussion on 11/11/03

	
	2003-11-15
	Andreas Dharmawan
	Incorporated newer meta data, policy, based on group discussion on 11/13/2003 and email thread up to 11/15/2003

	
	2003-11-24
	Homayoun Pourheidari
	Updated based on group discussion on 11/18/2003 and 11/20/2003 and email thread up to 11/24/2003

	
	2003-11-26
	Andreas Dharmawan
	Updated based on group discussion on 11/25/2003 and email thread up to 11/26/2003

	
	2003-12-01
	Andreas Dharmawan
	Added priority for each item

	
	2003-12-01
	Andreas Dharmawan
	Added Andrea’s Hows for Transaction, Meta-Data, Relationship, Policy, Collection

Appendix C. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself does not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 2002 OASIS. All rights reserved.

Page 1 of 52
2
Wsdm-uplat-20031201

December 2003

Copyright © OASIS Open 2002. All Rights Reserved.
Page 16 of 26

_1129745988.bin

