Working Document, Definition of Resource State Capabilities
Authors: E. Stokes, K. Schopmeyer

Status: Draft only partly complete.
History

	Version
	date
	Author
	Changes

	0.1
	26 Jan. 2004
	KS
	Original

	0.2
	28 Jan 2004
	ES/KS
	Incorporate ES work on 27 and add some definitions.

	0.3
	28 Jan 2004
	KS
	Add section on other models and CIM info

Started admin but barely

	0.4
	29 January
	KS
	Send preliminary copy to WSDM group.

1 Overview of the Document
This is a working document that is being used as the support tool in the definition of the state concepts and characteristics for the WSDM specifications. This document is to be considered a work in progress and basis/documentation for decisions and definition about the WSDM model state capabilities. When this document is finished, the specification components will become part of the WSDM specifications.
2 Use Cases

<<ED: TBD _ To be filled in as use cases are presented.>>
3 Open Issues

<<ED: We will keep this list up to date as we get closer to a real model>>
4 Requirements

4.1 WSDM Requirements Documents

The following requirements were taken from the WSDM documents (references TBD).
MOWS

1.1.1 Resource State Model / Status

[Life. 1.] The manageability representation MUST support a defined

state model for the Web service endpoint and state management capabilities

[10]

[Life. 2.] The manageability representation MUST support the ability

to track status, health, degrees of up [32]

[Life. 3.] The manageability representation MUST support current

state of a Web service, and does NOT preclude the distinction between

observed and reported state (see Mod 7) [29, 45]

[Life. 4.] The manageability representation MUST support long running

and transient state [145]

[Life. 5.] The manageability representation MUST support query on

availability, [96]

[Life. 6.] Lifecycle defined in the manageability representation must

be extensible. This is a specialization of [Overall 8.] [96]

[Life. 7.] The manageability representation SHOULD support a ?ping?

to a Web service that does not change the service?s state [45]

[Life. 8.] The manageability representation MUST support separation

of status and state [146]

[Life. 9.] The manageability representation MUST support state change

capabilities?start, stop. [77]

[Life. 10.] The manageability representation MUST support state change

capabilities that include timing issues ? stop immediately, stop quiesce

[138]

[Life. 11.] The manageability representation MUST support a status

type of unknown [143]

[Life. 12.] The manageability representation MUST support events for

lifecycle and/or status changes (e.g., enabled to disabled) with context

(e.g., administrator initiated)

[Life. 13.] The manageability representation SHOULD support

capabilities for controlling and monitoring lifecycle: [90, 23, 94]

MUWS

LC-MGMT.001 The manageability interface MUST allow monitoring of

lifecycle states of manageable resources.

LC-MGMT.002 The manageability interface MUST allow control of

lifecycle states of manageable resources.

LC-MGMT.003 The manageability interface SHOULD allow creation and

deletion of new manageability interfaces for manageable resources.

LC-MGMT.004 The manageability interface MUST NOT define a canonical

lifecycle for all manageable resources.

4.2 WSDM Discussion (xx Januuary Telecon)

The first major discussion of state and the WSDM state capability occurred in this Telecon. The following is the record of this discussion from the minutes for that telecom

· Heather noted that WS-Manageability had two models: 1) Resource States and Transitions, and 2) Request Processing States. But 2) belongs to MOWS so will not be discussed today.

· WS-Manageability uses URNs to identify states and sub-states and URNs to identify transitions. Igor noted that we should standardize a pattern for the states and transitions. Knowledge about what they mean may require domain knowledge related to the resource.

· You create the resource state model and publish it. Can change the state, query the current state, subscribe to events about state changes.

· William noted that the pattern needs to identify the hierarchy of states and sub-states, so that when a Consumer requests the current state and only understands the top layer, the response the Provider gives can be understood, even if it has sub-state information in it.

· William provided information about the WSMF approach. It included the full hierarchy of parent and child states and sub-states. It also did not specify Transitions in a machine-readable form. So registering for Events involved specifying the state(s) of interest.

· The following were agreed to:

· Document the patterns to use for States and Transitions.

· Register for Event Notification based on Transitions or groups of Transitions.

· Transitions must end in exactly one State/sub-State.

· Will use Available and NotAvailable as the two top-level States (a decision about a possible third state has not been reached). These will be defined clearly so those who develop a sub-State of “Stopping”, for example, will be able to clearly identify whether it should come under Available or NotAvailable. It was agreed that the resource must be providing some level of service (possibly only to priority customers or such) to be Available or a sub-state of Available.

· Sub-States have a Parent state.

· Transitions are modeled as instantaneous. For real-life situations where a resource may spend significant time in a real-life transition such as powering up, additional states would be needed to reflect this.

· The TC will define a few likely sub-states, such as Congested, Stopping, Starting. Input from DMTF and ISO work in this area will be considered.

· The order of events is likely to be:

· 1. Develop a UML Model for the states. With accompanying text to explain the states.

· 2. Develop a table for Transitions. With accompanying text to explain.

· 3. Document a Markup example.

· 4. Document interfaces and events and data that would go into the events.

4.3 Other Requirements

<<ED: These will be inserted as they develop. The intention is that this section define requirements that arrive as part of the creation of this document>>
5 Definitions of State, State Machines, etc.
5.1 General State Machine definitions

5.1.1 Behavior

A behavior of an object is a collection of actions that the object may take part in, together with the set of constraints on when those actions can occur. The object model does not constrain the form or nature of object behavior. The actions can be interactions of the object with its environment or internal actions of the object.

State and behavior are interrelated concepts. The state of an object is the condition of the object at a given instant that determines the potential future sequences of actions that object may be involved in. At the same time, actions bring about state changes and, hence, the current state of an object is partly determined by its past behaviour. Of course, the actions the object will actually undertake are not entirely determined by its present state; they will also depend on which actions the environment is prepared to participate in.

5.1.2 State

There are many different definitions of state depending on the author’s viewpoint.

A state is a situation or condition in the life of a system during which some invariant holds, the system performs some activity or the system waits for some external event [OMG 01].

<<ED: Add more definition here>>

5.1.3 Lifecycle

Lifecycle is a set of states that a resource can be in and the valid transitions between those states.

5.1.4 State Machine

In general, a state machine is any device that stores the status of something at a given time and can operate on input to change the status and/or cause an action or output to take place for any given change. A computer is basically a state machine and each machine instruction is input that changes one or more states and may cause other actions to take place. Each computer's data register stores a state. The read-only memory from which a boot program is loaded stores a state (the boot program itself is an initial state). The operating system is itself a state and each application that runs begins with some initial state that may change as it begins to handle input. Thus, at any moment in time, a computer system can be seen as a very complex set of states and each program in it as a state machine. In practice, however, state machines are used to develop and describe specific device or program interactions.

To summarize it, a state machine can be described as:

· An initial state or record of something stored someplace

· A set of possible input events

· A set of new states that may result from the input

· A set of possible actions or output events that result from a new state

In their book Real-time Object-oriented Modeling, Bran Selic & Garth Gullekson view a state machine as:

· A set of input events

· A set of output events

· A set of states

· A function that maps states and input to output

· A function that maps states and inputs to states (which is called a state transition function)

· A description of the initial state

5.1.5 Finite State Machine

A finite state machine is one that has a limited or finite number of possible states. (An infinite state machine can be conceived but is not practical.) A finite state machine can be used both as a development tool for approaching and solving problems and as a formal way of describing the solution for later developers and system maintainers. There are a number of ways to show state machines, from simple tables through graphically animated illustrations.

5.1.6 Hierarchal State Machines

<<ED: karl>>
5.1.7 Events

<<ED:TBD Karl>>

5.1.8 State versus Status

<<ED: Karl>>
5.2 The UML StateDiagram

UML is to be used as the basis for the definition and specification work within WSDM. UML has a particular state model that has evolved from earlier work to a unified model known as the state diagram. This facility has a particular set of characteristics which should be clarified and defined to understand what tools exist and to set the criteria for what state concepts can be used and what the cost is for implementations.

CONCLUSION:it is our intention to define the state model for WSDM in the form defined by UML and with the characteristics defined by the UML state model. This implies that implementations MUST adher to this model.
ISSUE: This model has grown in each version of UML. We need to clarify exactly which version of UML we are using to be sure we are using only the characteristics consistent with that version and below. The new functionality that is arriving in new versions of UML can have a significant impact on implementations. Thus, as an example, I believe that the concept of orthogonal (or-substate) and nonorthogonal substate machines was only introduced in UML 2. If we are not committing to UML 2, we should not be using this concept in our definitions.

5.3 Common Definitions for UML StateDiagram
· Hierarchical states - tbd
· Behavioral Inheritance - tbd
· Orthogonal Regions - tbd
· Composite states - tbd
· Substates - tbd
· Guards - tbd
· Events - tbd
· Actions and Transitions - tbd
· Transition Execution Sequence – tbd
5.3.1 Impact of the StateDiagram on Implementation

<<ED: Karl. Not sure if we want to talk about this but there are some siginificant implications in implementation if we define using the full UML StateDiagram model and if we demand interoperability.>>
6 Defining Characteristics of WSDM State Model

This section is the working core of the document where we work on the various issues and design characteristics that lead up to the state model. Generally we have tried to list the major design components and to define the background, technical basis, alternatives, etc. that lead towards our decision.

For each, consider the following material. This does not mean that we have these subsections, just this is the flow of thought

· Requirements

· Discussion

· Relevant material

· Conclusion

6.1 Using the multi-level State Machine (Hierarchical) model

6.2 The High Level States

There are three states for a resource:

· Not Available – In this state the resource has been created, but cannot do useful work until it is Available. However, information about the resource is available in this state. (Note that the some of the operations or properties of the service are available in this state, although the resource the service represents is not).

· Available – In this state the resource is running and available to process new work.

· Yellow (we need a better name) – available but degraded
ISSUE: W3C Management architecture work defined 2 states, up and down, and transitions between them. Why are we inventing and renaming states? We should build on that work and extend with a hierarchy of substates and other extensibility.

6.3 The Sub states

Each state may have a hierarchy of sub-states that further define the state.

The Available state has no common (spec defined) substates.

The Not Available state has a hierarchy of substates for maintenance, starting/stopping (assuming these are not treated as transitions), and failure.

· Failed

· dependencyFailure: resource not restartable because of a loss of a supporting/hosting resource

· nonRecoverableError: resource not restartable because of a non-recoverable error

· Maintenance

· Starting

· Stopping

The Yellow state has substates (ISSUE: is there a level of hierarchy that we should define?):

· restartable: resource is stopped but is restartable

· recovered: resource is down but is restartable. This can occur if the resource has abnormally ended and recovered an error or is in maintenance.
· idle: resource provides the expected service, can accept new work, but is not currently processing work

· busy: resource provides the expected service, can accept new work, and is currently processing work

· degraded: resource runs but not optimally. It may not deliver 100% of expected service, e.g. performance bottleneck, or it may be consuming excess system resources, it may be starved for resources, it may be saturated with work, it may recognize that failure is imminent, or it may be running maintenance with limited availability

6.4 Administration as a function of state

Requirements: <<ED: Filter from MUWS MOWS requirements above>>

Generally, three primary factors affect the management state of a managed object with regard to its corresponding resources’ availability:
–
operability: whether or not the resource is physically installed and working, if applicable;

–
usage: whether or not the resource is actively in use at a specific instant, and if so, whether or not it has spare capacity for additional users at that instant. A resource is said to be “in use” when it has received one or more requests for service that it has not yet completed or otherwise discharged, or when some part of its capacity has been allocated, and not yet reclaimed, as a result of a previous service request;

· administration: permission to use or prohibition against using the resource, imposed through the management services.

COMMENT: Note that enable and available are equivalent.

The functions that we expect to be built around administration of the resource include:

· Control of the operability of the resource

· Setting/unsetting permission to use the resource (is the separate from operatbility?)

· Testing of the resource (See requirements)

These would normally be accomplished by issuing operations to the resource such as:

· Start

· Stop

· Test

These operations would 1) be conditionally applicable depending on the state of the resource, 2) initiate changes of state of the resource.

<<ED: Karl This section is not complete>>
6.5 Transitions
6.5.1 Required Operations

We assume that there is a requirement for an an adminstrator to be able to issue operations against the resource as defined above including start, stop, etc. and that there is a requirement that the ability to issue such operation is itself optional (it is not certain that all resources would allow start or stop operations, for example).
6.5.2 Defining the transitions
<<ED: TBD>>
6.6 Unknown as a state

If a manageable resource cannot define its lifecycle state, then the resource is said to be in the ‘unknown’ state. When a resource is in the ‘unknown’ state, the information provided by the lifecycle XML attributes (see Appendix) is not useful to an application or management tool.

Discussion: generally, it appears to be logical to avoid the use of the unknown state wherever possible. It simply tells the user that the system is confused. For example, generally the top level states of available, unavailable, etc. should suffice. If there are issues, unavailable should cover the situation and substates can clarify the status, history, etc.
6.7 Extensibility

6.7.1 Version extensibility

6.7.2 User extensibility

6.8 Registering for Events (Actions)
6.9 TBD
7 The Model

<<ED: This is where we will put the UML model itself as it develops>>

8 The Specification of State
<<ED: This is where we will put in the specification itself, the words that surround the UML definitions>>
9 APPENDIX - XML Attributes

*** This section is included because the TC didn’t make a firm decision and agreed to capture the information on this topic so as not to lose it. These are useful constructs for autonomic computing. ***
There are XML attributes that further describe the state characteristics of the resource for use by an application or management tool, specifically the changeability, validity, volatility, and latency of the pieces comprising the service.
Taking a message queue example, not all of the properties of the queue have the same behavior over time. For example, the queue will have a property queueName which is set set when the queue is created. Another property, averageTimeInQueue, is only valid while the queue is running, and the queue may require a restart for changes to the property maximumNumberOfMessages to take effect.

The value of the state XML attributes changeable and valid can be one or more states and sub-states, or the values ‘any’ or ‘unknown’. The ‘any’ value indicates that resource can be in any state for the property / operation to be valid or changeable. The ‘unknown’ value indicates that the state a resource’s property or operation must be in to be valid or changeable is not known or not defined.

valid

The XML attribute ‘valid’ specifies when in the lifecycle of a resource a property defined in the port type is valid. The semantic meaning depends on the type of element:

· For properties, validity indicates the lifecycle(s) in which the property can be read and is meaningful.

· For operations, validity indicates the lifecycle in which it is meaningful to invoke the operation.

changeable

The XML attribute ‘changeable’ is used with properties to indicate when in the lifecycle of a resource the value(s) of its properties can be changed by an application or management tool.

It differs from the XML attribute ‘valid’ in that validity indicates when the property can be read. The distinction is important because the property data may be modifiable only at certain times. For example, the persistence state of a message queue (indicating whether messages are persisted or not) may only be changed while the queue is down, but can be viewed at any time. In this example, the changeable value would be “down” whereas the valid value would be “any”.

latency

The XML attribute ‘latency’ is valid for modifiable properties and for operations. Latency indicates when the write action or the result of the operation takes effect. For example, latency=”whenStarted” indicates that the resource needs to be restarted before changes to configuration or an operation action takes effect.

Possible values are:

· whenStarted – when the resource is restarted

· immediate – now; during or upon return from executing the action

· afterResync – resource requires a specific command to execute before new value takes effect, e.g. re-read of the resource’s configuration file

· delayed – after a reasonable amount of time; volatility can be used to indicate the period until the change takes effect

volatile

The XML attribute ‘volatile’ indicates how frequently a property may be changed by the resource as part of its normal operation. It provides a rough guideline or hint to the application as to the frequency that changes may occur. For example, a monitoring application that reads service data for graphing purposes would use the volatile value to determine roughly how often to read that service data. Note that this attribute does not give any indication that changes will actually occur at this frequency – in some periods multiple changes may occur, or it may be much longer then this period between changes.

The unit of measure of the volatility attribute is seconds. A property may change more frequently than every second, but from a monitoring viewpoint ‘seconds’ is a reasonable unit of measure.

10 Glossary

<<ED: A glossary will be developed as the document progresses.>>

11 Appendix - References

[OMB 01] <<ED: OMG UML Spec>>
12 Background on other State Models

12.1 ISO

<<ED: The background information in ISO state management was provided to the WSDM group as a separate set of documents>>

12.2 CIM Models Today

From 2.8 DMTF CIM Model (See Email by by Andrea to WSDM group)
DMTF's schema distinguishes between status and state. I have included both properties and their enums here.

EnabledState, Default = 5

 0 = "Unknown", 1 = "Other", 2 = "Enabled",
 3 = "Disabled", 4 = "Shutting Down", 5 = "Not Applicable",
 6 = "Enabled but Offline", 7 = "In Test", 8 = "Deferred",
 9 = "Quiesce", 10 = "Starting", 11 + up = "Reserved"

"EnabledState is an integer enumeration that indicates the enabled/disabled states of an element. It can also indicate the transitions between these requested states. For example, shutting down (value = 4) and starting (value=10) are transient states between enabled and disabled. The following text briefly summarizes the various enabled/disabled states:
 - Enabled (2) indicates that the element is/could be executing commands,
 will process any queued commands, and queues new requests.
 - Disabled (3) indicates that the element will not execute commands and
 will drop any new requests.
 - Shutting Down (4) indicates that the element is in the process of going to a Disabled state.
 - Not Applicable (5) indicates the element doesn't support being enabled/disabled.
 - Enabled but Offline (6) indicates that the element may be completing
 commands, and will drop any new requests.
 - Test (7) indicates that the element is in a test state.
 - Deferred (8) indicates that the element may be completing commands,
 but will queue any new requests.
 - Quiesce (9) indicates that the element is enabled but in a restricted mode.
 The element's behavior is similar to the Enabled state, but it only processes a restricted set of commands. All other requests are queued.
 - Starting (10) indicates that the element is in the process of going to an
 Enabled state. New requests are queued."

OperationalStatus - An array
 0 = "Unknown", 1="Other", 2="OK", 3="Degraded",
 4="Stressed", 5="Predictive Failure", 6="Error",
 7="Non-Recoverable Error", 8="Starting", 9="Stopping",
 10="Stopped", 11="In Service", 12="No Contact",
 13="Lost Communication", 14="Aborted", 15="Dormant",
 16="Supporting Entity in Error", 17="Completed",
 18="Power Mode"

"Indicates the current status(es) of the element. Various health and operational statuses are defined. Many of the enumeration's values are self- explanatory. However, a few are not and are described in more detail.
 - \"Stressed\" indicates that the element is functioning, but needs attention.
 Examples of \"Stressed\" states are overload, overheated, etc.
 - \"Predictive Failure\" indicates that an element is functioning nominally but
 predicting a failure in the near future.
 - \"In Service\" describes an element being configured, maintained, cleaned,
 or otherwise administered.
 - \"No Contact\" indicates that the monitoring system has knowledge of this element, but has never been able to establish communications with it.
 - \"Lost Communication\" indicates that the ManagedSystemElement is known to exist and has been contacted successfully in the past, but is currently unreachable.
 - \"Stopped\" and \"Aborted\" are similar, although the former implies a clean and orderly stop, while the latter implies an abrupt stop where the element's state
 and configuration may need to be updated.
 - \"Dormant\" indicates that the element is inactive or quiesced.
 - \"Supporting Entity in Error\" describes that this element may be \"OK\" but that another element, on which it is dependent, is in error. An example is a network service or endpoint that cannot function due to lower layer networking problems.
 - \"Completed\" indicates the element has completed its operation. This value
 should be combined with either OK, Error, or Degraded so that a client can tell if the complete operation passed (Completed with OK), and failure (Completed with Error).
 Completed with Degraded would imply the operation finished, but did not complete OK or report an error.
 - \"Power Mode\" indicates the element has additional power model information contained in the AssociatedPowerManagementService association.
